cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mem_protect.c (17879B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2020 Google LLC
      4 * Author: Quentin Perret <qperret@google.com>
      5 */
      6
      7#include <linux/kvm_host.h>
      8#include <asm/kvm_emulate.h>
      9#include <asm/kvm_hyp.h>
     10#include <asm/kvm_mmu.h>
     11#include <asm/kvm_pgtable.h>
     12#include <asm/kvm_pkvm.h>
     13#include <asm/stage2_pgtable.h>
     14
     15#include <hyp/fault.h>
     16
     17#include <nvhe/gfp.h>
     18#include <nvhe/memory.h>
     19#include <nvhe/mem_protect.h>
     20#include <nvhe/mm.h>
     21
     22#define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
     23
     24extern unsigned long hyp_nr_cpus;
     25struct host_kvm host_kvm;
     26
     27static struct hyp_pool host_s2_pool;
     28
     29const u8 pkvm_hyp_id = 1;
     30
     31static void host_lock_component(void)
     32{
     33	hyp_spin_lock(&host_kvm.lock);
     34}
     35
     36static void host_unlock_component(void)
     37{
     38	hyp_spin_unlock(&host_kvm.lock);
     39}
     40
     41static void hyp_lock_component(void)
     42{
     43	hyp_spin_lock(&pkvm_pgd_lock);
     44}
     45
     46static void hyp_unlock_component(void)
     47{
     48	hyp_spin_unlock(&pkvm_pgd_lock);
     49}
     50
     51static void *host_s2_zalloc_pages_exact(size_t size)
     52{
     53	void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
     54
     55	hyp_split_page(hyp_virt_to_page(addr));
     56
     57	/*
     58	 * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
     59	 * so there should be no need to free any of the tail pages to make the
     60	 * allocation exact.
     61	 */
     62	WARN_ON(size != (PAGE_SIZE << get_order(size)));
     63
     64	return addr;
     65}
     66
     67static void *host_s2_zalloc_page(void *pool)
     68{
     69	return hyp_alloc_pages(pool, 0);
     70}
     71
     72static void host_s2_get_page(void *addr)
     73{
     74	hyp_get_page(&host_s2_pool, addr);
     75}
     76
     77static void host_s2_put_page(void *addr)
     78{
     79	hyp_put_page(&host_s2_pool, addr);
     80}
     81
     82static int prepare_s2_pool(void *pgt_pool_base)
     83{
     84	unsigned long nr_pages, pfn;
     85	int ret;
     86
     87	pfn = hyp_virt_to_pfn(pgt_pool_base);
     88	nr_pages = host_s2_pgtable_pages();
     89	ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
     90	if (ret)
     91		return ret;
     92
     93	host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) {
     94		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
     95		.zalloc_page = host_s2_zalloc_page,
     96		.phys_to_virt = hyp_phys_to_virt,
     97		.virt_to_phys = hyp_virt_to_phys,
     98		.page_count = hyp_page_count,
     99		.get_page = host_s2_get_page,
    100		.put_page = host_s2_put_page,
    101	};
    102
    103	return 0;
    104}
    105
    106static void prepare_host_vtcr(void)
    107{
    108	u32 parange, phys_shift;
    109
    110	/* The host stage 2 is id-mapped, so use parange for T0SZ */
    111	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
    112	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
    113
    114	host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
    115					  id_aa64mmfr1_el1_sys_val, phys_shift);
    116}
    117
    118static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
    119
    120int kvm_host_prepare_stage2(void *pgt_pool_base)
    121{
    122	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
    123	int ret;
    124
    125	prepare_host_vtcr();
    126	hyp_spin_lock_init(&host_kvm.lock);
    127	mmu->arch = &host_kvm.arch;
    128
    129	ret = prepare_s2_pool(pgt_pool_base);
    130	if (ret)
    131		return ret;
    132
    133	ret = __kvm_pgtable_stage2_init(&host_kvm.pgt, mmu,
    134					&host_kvm.mm_ops, KVM_HOST_S2_FLAGS,
    135					host_stage2_force_pte_cb);
    136	if (ret)
    137		return ret;
    138
    139	mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd);
    140	mmu->pgt = &host_kvm.pgt;
    141	atomic64_set(&mmu->vmid.id, 0);
    142
    143	return 0;
    144}
    145
    146int __pkvm_prot_finalize(void)
    147{
    148	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
    149	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
    150
    151	if (params->hcr_el2 & HCR_VM)
    152		return -EPERM;
    153
    154	params->vttbr = kvm_get_vttbr(mmu);
    155	params->vtcr = host_kvm.arch.vtcr;
    156	params->hcr_el2 |= HCR_VM;
    157	kvm_flush_dcache_to_poc(params, sizeof(*params));
    158
    159	write_sysreg(params->hcr_el2, hcr_el2);
    160	__load_stage2(&host_kvm.arch.mmu, &host_kvm.arch);
    161
    162	/*
    163	 * Make sure to have an ISB before the TLB maintenance below but only
    164	 * when __load_stage2() doesn't include one already.
    165	 */
    166	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
    167
    168	/* Invalidate stale HCR bits that may be cached in TLBs */
    169	__tlbi(vmalls12e1);
    170	dsb(nsh);
    171	isb();
    172
    173	return 0;
    174}
    175
    176static int host_stage2_unmap_dev_all(void)
    177{
    178	struct kvm_pgtable *pgt = &host_kvm.pgt;
    179	struct memblock_region *reg;
    180	u64 addr = 0;
    181	int i, ret;
    182
    183	/* Unmap all non-memory regions to recycle the pages */
    184	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
    185		reg = &hyp_memory[i];
    186		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
    187		if (ret)
    188			return ret;
    189	}
    190	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
    191}
    192
    193struct kvm_mem_range {
    194	u64 start;
    195	u64 end;
    196};
    197
    198static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
    199{
    200	int cur, left = 0, right = hyp_memblock_nr;
    201	struct memblock_region *reg;
    202	phys_addr_t end;
    203
    204	range->start = 0;
    205	range->end = ULONG_MAX;
    206
    207	/* The list of memblock regions is sorted, binary search it */
    208	while (left < right) {
    209		cur = (left + right) >> 1;
    210		reg = &hyp_memory[cur];
    211		end = reg->base + reg->size;
    212		if (addr < reg->base) {
    213			right = cur;
    214			range->end = reg->base;
    215		} else if (addr >= end) {
    216			left = cur + 1;
    217			range->start = end;
    218		} else {
    219			range->start = reg->base;
    220			range->end = end;
    221			return true;
    222		}
    223	}
    224
    225	return false;
    226}
    227
    228bool addr_is_memory(phys_addr_t phys)
    229{
    230	struct kvm_mem_range range;
    231
    232	return find_mem_range(phys, &range);
    233}
    234
    235static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
    236{
    237	return range->start <= addr && addr < range->end;
    238}
    239
    240static bool range_is_memory(u64 start, u64 end)
    241{
    242	struct kvm_mem_range r;
    243
    244	if (!find_mem_range(start, &r))
    245		return false;
    246
    247	return is_in_mem_range(end - 1, &r);
    248}
    249
    250static inline int __host_stage2_idmap(u64 start, u64 end,
    251				      enum kvm_pgtable_prot prot)
    252{
    253	return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start,
    254				      prot, &host_s2_pool);
    255}
    256
    257/*
    258 * The pool has been provided with enough pages to cover all of memory with
    259 * page granularity, but it is difficult to know how much of the MMIO range
    260 * we will need to cover upfront, so we may need to 'recycle' the pages if we
    261 * run out.
    262 */
    263#define host_stage2_try(fn, ...)					\
    264	({								\
    265		int __ret;						\
    266		hyp_assert_lock_held(&host_kvm.lock);			\
    267		__ret = fn(__VA_ARGS__);				\
    268		if (__ret == -ENOMEM) {					\
    269			__ret = host_stage2_unmap_dev_all();		\
    270			if (!__ret)					\
    271				__ret = fn(__VA_ARGS__);		\
    272		}							\
    273		__ret;							\
    274	 })
    275
    276static inline bool range_included(struct kvm_mem_range *child,
    277				  struct kvm_mem_range *parent)
    278{
    279	return parent->start <= child->start && child->end <= parent->end;
    280}
    281
    282static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
    283{
    284	struct kvm_mem_range cur;
    285	kvm_pte_t pte;
    286	u32 level;
    287	int ret;
    288
    289	hyp_assert_lock_held(&host_kvm.lock);
    290	ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, &level);
    291	if (ret)
    292		return ret;
    293
    294	if (kvm_pte_valid(pte))
    295		return -EAGAIN;
    296
    297	if (pte)
    298		return -EPERM;
    299
    300	do {
    301		u64 granule = kvm_granule_size(level);
    302		cur.start = ALIGN_DOWN(addr, granule);
    303		cur.end = cur.start + granule;
    304		level++;
    305	} while ((level < KVM_PGTABLE_MAX_LEVELS) &&
    306			!(kvm_level_supports_block_mapping(level) &&
    307			  range_included(&cur, range)));
    308
    309	*range = cur;
    310
    311	return 0;
    312}
    313
    314int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
    315			     enum kvm_pgtable_prot prot)
    316{
    317	return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
    318}
    319
    320int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
    321{
    322	return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_kvm.pgt,
    323			       addr, size, &host_s2_pool, owner_id);
    324}
    325
    326static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
    327{
    328	/*
    329	 * Block mappings must be used with care in the host stage-2 as a
    330	 * kvm_pgtable_stage2_map() operation targeting a page in the range of
    331	 * an existing block will delete the block under the assumption that
    332	 * mappings in the rest of the block range can always be rebuilt lazily.
    333	 * That assumption is correct for the host stage-2 with RWX mappings
    334	 * targeting memory or RW mappings targeting MMIO ranges (see
    335	 * host_stage2_idmap() below which implements some of the host memory
    336	 * abort logic). However, this is not safe for any other mappings where
    337	 * the host stage-2 page-table is in fact the only place where this
    338	 * state is stored. In all those cases, it is safer to use page-level
    339	 * mappings, hence avoiding to lose the state because of side-effects in
    340	 * kvm_pgtable_stage2_map().
    341	 */
    342	if (range_is_memory(addr, end))
    343		return prot != PKVM_HOST_MEM_PROT;
    344	else
    345		return prot != PKVM_HOST_MMIO_PROT;
    346}
    347
    348static int host_stage2_idmap(u64 addr)
    349{
    350	struct kvm_mem_range range;
    351	bool is_memory = find_mem_range(addr, &range);
    352	enum kvm_pgtable_prot prot;
    353	int ret;
    354
    355	prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
    356
    357	host_lock_component();
    358	ret = host_stage2_adjust_range(addr, &range);
    359	if (ret)
    360		goto unlock;
    361
    362	ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
    363unlock:
    364	host_unlock_component();
    365
    366	return ret;
    367}
    368
    369void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
    370{
    371	struct kvm_vcpu_fault_info fault;
    372	u64 esr, addr;
    373	int ret = 0;
    374
    375	esr = read_sysreg_el2(SYS_ESR);
    376	BUG_ON(!__get_fault_info(esr, &fault));
    377
    378	addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
    379	ret = host_stage2_idmap(addr);
    380	BUG_ON(ret && ret != -EAGAIN);
    381}
    382
    383/* This corresponds to locking order */
    384enum pkvm_component_id {
    385	PKVM_ID_HOST,
    386	PKVM_ID_HYP,
    387};
    388
    389struct pkvm_mem_transition {
    390	u64				nr_pages;
    391
    392	struct {
    393		enum pkvm_component_id	id;
    394		/* Address in the initiator's address space */
    395		u64			addr;
    396
    397		union {
    398			struct {
    399				/* Address in the completer's address space */
    400				u64	completer_addr;
    401			} host;
    402		};
    403	} initiator;
    404
    405	struct {
    406		enum pkvm_component_id	id;
    407	} completer;
    408};
    409
    410struct pkvm_mem_share {
    411	const struct pkvm_mem_transition	tx;
    412	const enum kvm_pgtable_prot		completer_prot;
    413};
    414
    415struct check_walk_data {
    416	enum pkvm_page_state	desired;
    417	enum pkvm_page_state	(*get_page_state)(kvm_pte_t pte);
    418};
    419
    420static int __check_page_state_visitor(u64 addr, u64 end, u32 level,
    421				      kvm_pte_t *ptep,
    422				      enum kvm_pgtable_walk_flags flag,
    423				      void * const arg)
    424{
    425	struct check_walk_data *d = arg;
    426	kvm_pte_t pte = *ptep;
    427
    428	if (kvm_pte_valid(pte) && !addr_is_memory(kvm_pte_to_phys(pte)))
    429		return -EINVAL;
    430
    431	return d->get_page_state(pte) == d->desired ? 0 : -EPERM;
    432}
    433
    434static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
    435				  struct check_walk_data *data)
    436{
    437	struct kvm_pgtable_walker walker = {
    438		.cb	= __check_page_state_visitor,
    439		.arg	= data,
    440		.flags	= KVM_PGTABLE_WALK_LEAF,
    441	};
    442
    443	return kvm_pgtable_walk(pgt, addr, size, &walker);
    444}
    445
    446static enum pkvm_page_state host_get_page_state(kvm_pte_t pte)
    447{
    448	if (!kvm_pte_valid(pte) && pte)
    449		return PKVM_NOPAGE;
    450
    451	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
    452}
    453
    454static int __host_check_page_state_range(u64 addr, u64 size,
    455					 enum pkvm_page_state state)
    456{
    457	struct check_walk_data d = {
    458		.desired	= state,
    459		.get_page_state	= host_get_page_state,
    460	};
    461
    462	hyp_assert_lock_held(&host_kvm.lock);
    463	return check_page_state_range(&host_kvm.pgt, addr, size, &d);
    464}
    465
    466static int __host_set_page_state_range(u64 addr, u64 size,
    467				       enum pkvm_page_state state)
    468{
    469	enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
    470
    471	return host_stage2_idmap_locked(addr, size, prot);
    472}
    473
    474static int host_request_owned_transition(u64 *completer_addr,
    475					 const struct pkvm_mem_transition *tx)
    476{
    477	u64 size = tx->nr_pages * PAGE_SIZE;
    478	u64 addr = tx->initiator.addr;
    479
    480	*completer_addr = tx->initiator.host.completer_addr;
    481	return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
    482}
    483
    484static int host_request_unshare(u64 *completer_addr,
    485				const struct pkvm_mem_transition *tx)
    486{
    487	u64 size = tx->nr_pages * PAGE_SIZE;
    488	u64 addr = tx->initiator.addr;
    489
    490	*completer_addr = tx->initiator.host.completer_addr;
    491	return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
    492}
    493
    494static int host_initiate_share(u64 *completer_addr,
    495			       const struct pkvm_mem_transition *tx)
    496{
    497	u64 size = tx->nr_pages * PAGE_SIZE;
    498	u64 addr = tx->initiator.addr;
    499
    500	*completer_addr = tx->initiator.host.completer_addr;
    501	return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
    502}
    503
    504static int host_initiate_unshare(u64 *completer_addr,
    505				 const struct pkvm_mem_transition *tx)
    506{
    507	u64 size = tx->nr_pages * PAGE_SIZE;
    508	u64 addr = tx->initiator.addr;
    509
    510	*completer_addr = tx->initiator.host.completer_addr;
    511	return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED);
    512}
    513
    514static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte)
    515{
    516	if (!kvm_pte_valid(pte))
    517		return PKVM_NOPAGE;
    518
    519	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
    520}
    521
    522static int __hyp_check_page_state_range(u64 addr, u64 size,
    523					enum pkvm_page_state state)
    524{
    525	struct check_walk_data d = {
    526		.desired	= state,
    527		.get_page_state	= hyp_get_page_state,
    528	};
    529
    530	hyp_assert_lock_held(&pkvm_pgd_lock);
    531	return check_page_state_range(&pkvm_pgtable, addr, size, &d);
    532}
    533
    534static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
    535{
    536	return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
    537		 tx->initiator.id != PKVM_ID_HOST);
    538}
    539
    540static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
    541			 enum kvm_pgtable_prot perms)
    542{
    543	u64 size = tx->nr_pages * PAGE_SIZE;
    544
    545	if (perms != PAGE_HYP)
    546		return -EPERM;
    547
    548	if (__hyp_ack_skip_pgtable_check(tx))
    549		return 0;
    550
    551	return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
    552}
    553
    554static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
    555{
    556	u64 size = tx->nr_pages * PAGE_SIZE;
    557
    558	if (__hyp_ack_skip_pgtable_check(tx))
    559		return 0;
    560
    561	return __hyp_check_page_state_range(addr, size,
    562					    PKVM_PAGE_SHARED_BORROWED);
    563}
    564
    565static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
    566			      enum kvm_pgtable_prot perms)
    567{
    568	void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
    569	enum kvm_pgtable_prot prot;
    570
    571	prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
    572	return pkvm_create_mappings_locked(start, end, prot);
    573}
    574
    575static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
    576{
    577	u64 size = tx->nr_pages * PAGE_SIZE;
    578	int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size);
    579
    580	return (ret != size) ? -EFAULT : 0;
    581}
    582
    583static int check_share(struct pkvm_mem_share *share)
    584{
    585	const struct pkvm_mem_transition *tx = &share->tx;
    586	u64 completer_addr;
    587	int ret;
    588
    589	switch (tx->initiator.id) {
    590	case PKVM_ID_HOST:
    591		ret = host_request_owned_transition(&completer_addr, tx);
    592		break;
    593	default:
    594		ret = -EINVAL;
    595	}
    596
    597	if (ret)
    598		return ret;
    599
    600	switch (tx->completer.id) {
    601	case PKVM_ID_HYP:
    602		ret = hyp_ack_share(completer_addr, tx, share->completer_prot);
    603		break;
    604	default:
    605		ret = -EINVAL;
    606	}
    607
    608	return ret;
    609}
    610
    611static int __do_share(struct pkvm_mem_share *share)
    612{
    613	const struct pkvm_mem_transition *tx = &share->tx;
    614	u64 completer_addr;
    615	int ret;
    616
    617	switch (tx->initiator.id) {
    618	case PKVM_ID_HOST:
    619		ret = host_initiate_share(&completer_addr, tx);
    620		break;
    621	default:
    622		ret = -EINVAL;
    623	}
    624
    625	if (ret)
    626		return ret;
    627
    628	switch (tx->completer.id) {
    629	case PKVM_ID_HYP:
    630		ret = hyp_complete_share(completer_addr, tx, share->completer_prot);
    631		break;
    632	default:
    633		ret = -EINVAL;
    634	}
    635
    636	return ret;
    637}
    638
    639/*
    640 * do_share():
    641 *
    642 * The page owner grants access to another component with a given set
    643 * of permissions.
    644 *
    645 * Initiator: OWNED	=> SHARED_OWNED
    646 * Completer: NOPAGE	=> SHARED_BORROWED
    647 */
    648static int do_share(struct pkvm_mem_share *share)
    649{
    650	int ret;
    651
    652	ret = check_share(share);
    653	if (ret)
    654		return ret;
    655
    656	return WARN_ON(__do_share(share));
    657}
    658
    659static int check_unshare(struct pkvm_mem_share *share)
    660{
    661	const struct pkvm_mem_transition *tx = &share->tx;
    662	u64 completer_addr;
    663	int ret;
    664
    665	switch (tx->initiator.id) {
    666	case PKVM_ID_HOST:
    667		ret = host_request_unshare(&completer_addr, tx);
    668		break;
    669	default:
    670		ret = -EINVAL;
    671	}
    672
    673	if (ret)
    674		return ret;
    675
    676	switch (tx->completer.id) {
    677	case PKVM_ID_HYP:
    678		ret = hyp_ack_unshare(completer_addr, tx);
    679		break;
    680	default:
    681		ret = -EINVAL;
    682	}
    683
    684	return ret;
    685}
    686
    687static int __do_unshare(struct pkvm_mem_share *share)
    688{
    689	const struct pkvm_mem_transition *tx = &share->tx;
    690	u64 completer_addr;
    691	int ret;
    692
    693	switch (tx->initiator.id) {
    694	case PKVM_ID_HOST:
    695		ret = host_initiate_unshare(&completer_addr, tx);
    696		break;
    697	default:
    698		ret = -EINVAL;
    699	}
    700
    701	if (ret)
    702		return ret;
    703
    704	switch (tx->completer.id) {
    705	case PKVM_ID_HYP:
    706		ret = hyp_complete_unshare(completer_addr, tx);
    707		break;
    708	default:
    709		ret = -EINVAL;
    710	}
    711
    712	return ret;
    713}
    714
    715/*
    716 * do_unshare():
    717 *
    718 * The page owner revokes access from another component for a range of
    719 * pages which were previously shared using do_share().
    720 *
    721 * Initiator: SHARED_OWNED	=> OWNED
    722 * Completer: SHARED_BORROWED	=> NOPAGE
    723 */
    724static int do_unshare(struct pkvm_mem_share *share)
    725{
    726	int ret;
    727
    728	ret = check_unshare(share);
    729	if (ret)
    730		return ret;
    731
    732	return WARN_ON(__do_unshare(share));
    733}
    734
    735int __pkvm_host_share_hyp(u64 pfn)
    736{
    737	int ret;
    738	u64 host_addr = hyp_pfn_to_phys(pfn);
    739	u64 hyp_addr = (u64)__hyp_va(host_addr);
    740	struct pkvm_mem_share share = {
    741		.tx	= {
    742			.nr_pages	= 1,
    743			.initiator	= {
    744				.id	= PKVM_ID_HOST,
    745				.addr	= host_addr,
    746				.host	= {
    747					.completer_addr = hyp_addr,
    748				},
    749			},
    750			.completer	= {
    751				.id	= PKVM_ID_HYP,
    752			},
    753		},
    754		.completer_prot	= PAGE_HYP,
    755	};
    756
    757	host_lock_component();
    758	hyp_lock_component();
    759
    760	ret = do_share(&share);
    761
    762	hyp_unlock_component();
    763	host_unlock_component();
    764
    765	return ret;
    766}
    767
    768int __pkvm_host_unshare_hyp(u64 pfn)
    769{
    770	int ret;
    771	u64 host_addr = hyp_pfn_to_phys(pfn);
    772	u64 hyp_addr = (u64)__hyp_va(host_addr);
    773	struct pkvm_mem_share share = {
    774		.tx	= {
    775			.nr_pages	= 1,
    776			.initiator	= {
    777				.id	= PKVM_ID_HOST,
    778				.addr	= host_addr,
    779				.host	= {
    780					.completer_addr = hyp_addr,
    781				},
    782			},
    783			.completer	= {
    784				.id	= PKVM_ID_HYP,
    785			},
    786		},
    787		.completer_prot	= PAGE_HYP,
    788	};
    789
    790	host_lock_component();
    791	hyp_lock_component();
    792
    793	ret = do_unshare(&share);
    794
    795	hyp_unlock_component();
    796	host_unlock_component();
    797
    798	return ret;
    799}