cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tlb.c (4176B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2015 - ARM Ltd
      4 * Author: Marc Zyngier <marc.zyngier@arm.com>
      5 */
      6
      7#include <asm/kvm_hyp.h>
      8#include <asm/kvm_mmu.h>
      9#include <asm/tlbflush.h>
     10
     11#include <nvhe/mem_protect.h>
     12
     13struct tlb_inv_context {
     14	u64		tcr;
     15};
     16
     17static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
     18				  struct tlb_inv_context *cxt)
     19{
     20	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
     21		u64 val;
     22
     23		/*
     24		 * For CPUs that are affected by ARM 1319367, we need to
     25		 * avoid a host Stage-1 walk while we have the guest's
     26		 * VMID set in the VTTBR in order to invalidate TLBs.
     27		 * We're guaranteed that the S1 MMU is enabled, so we can
     28		 * simply set the EPD bits to avoid any further TLB fill.
     29		 */
     30		val = cxt->tcr = read_sysreg_el1(SYS_TCR);
     31		val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
     32		write_sysreg_el1(val, SYS_TCR);
     33		isb();
     34	}
     35
     36	/*
     37	 * __load_stage2() includes an ISB only when the AT
     38	 * workaround is applied. Take care of the opposite condition,
     39	 * ensuring that we always have an ISB, but not two ISBs back
     40	 * to back.
     41	 */
     42	__load_stage2(mmu, kern_hyp_va(mmu->arch));
     43	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
     44}
     45
     46static void __tlb_switch_to_host(struct tlb_inv_context *cxt)
     47{
     48	__load_host_stage2();
     49
     50	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
     51		/* Ensure write of the host VMID */
     52		isb();
     53		/* Restore the host's TCR_EL1 */
     54		write_sysreg_el1(cxt->tcr, SYS_TCR);
     55	}
     56}
     57
     58void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
     59			      phys_addr_t ipa, int level)
     60{
     61	struct tlb_inv_context cxt;
     62
     63	dsb(ishst);
     64
     65	/* Switch to requested VMID */
     66	__tlb_switch_to_guest(mmu, &cxt);
     67
     68	/*
     69	 * We could do so much better if we had the VA as well.
     70	 * Instead, we invalidate Stage-2 for this IPA, and the
     71	 * whole of Stage-1. Weep...
     72	 */
     73	ipa >>= 12;
     74	__tlbi_level(ipas2e1is, ipa, level);
     75
     76	/*
     77	 * We have to ensure completion of the invalidation at Stage-2,
     78	 * since a table walk on another CPU could refill a TLB with a
     79	 * complete (S1 + S2) walk based on the old Stage-2 mapping if
     80	 * the Stage-1 invalidation happened first.
     81	 */
     82	dsb(ish);
     83	__tlbi(vmalle1is);
     84	dsb(ish);
     85	isb();
     86
     87	/*
     88	 * If the host is running at EL1 and we have a VPIPT I-cache,
     89	 * then we must perform I-cache maintenance at EL2 in order for
     90	 * it to have an effect on the guest. Since the guest cannot hit
     91	 * I-cache lines allocated with a different VMID, we don't need
     92	 * to worry about junk out of guest reset (we nuke the I-cache on
     93	 * VMID rollover), but we do need to be careful when remapping
     94	 * executable pages for the same guest. This can happen when KSM
     95	 * takes a CoW fault on an executable page, copies the page into
     96	 * a page that was previously mapped in the guest and then needs
     97	 * to invalidate the guest view of the I-cache for that page
     98	 * from EL1. To solve this, we invalidate the entire I-cache when
     99	 * unmapping a page from a guest if we have a VPIPT I-cache but
    100	 * the host is running at EL1. As above, we could do better if
    101	 * we had the VA.
    102	 *
    103	 * The moral of this story is: if you have a VPIPT I-cache, then
    104	 * you should be running with VHE enabled.
    105	 */
    106	if (icache_is_vpipt())
    107		icache_inval_all_pou();
    108
    109	__tlb_switch_to_host(&cxt);
    110}
    111
    112void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
    113{
    114	struct tlb_inv_context cxt;
    115
    116	dsb(ishst);
    117
    118	/* Switch to requested VMID */
    119	__tlb_switch_to_guest(mmu, &cxt);
    120
    121	__tlbi(vmalls12e1is);
    122	dsb(ish);
    123	isb();
    124
    125	__tlb_switch_to_host(&cxt);
    126}
    127
    128void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
    129{
    130	struct tlb_inv_context cxt;
    131
    132	/* Switch to requested VMID */
    133	__tlb_switch_to_guest(mmu, &cxt);
    134
    135	__tlbi(vmalle1);
    136	asm volatile("ic iallu");
    137	dsb(nsh);
    138	isb();
    139
    140	__tlb_switch_to_host(&cxt);
    141}
    142
    143void __kvm_flush_vm_context(void)
    144{
    145	dsb(ishst);
    146	__tlbi(alle1is);
    147
    148	/*
    149	 * VIPT and PIPT caches are not affected by VMID, so no maintenance
    150	 * is necessary across a VMID rollover.
    151	 *
    152	 * VPIPT caches constrain lookup and maintenance to the active VMID,
    153	 * so we need to invalidate lines with a stale VMID to avoid an ABA
    154	 * race after multiple rollovers.
    155	 *
    156	 */
    157	if (icache_is_vpipt())
    158		asm volatile("ic ialluis");
    159
    160	dsb(ish);
    161}