cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vgic-mmio-v3.c (32727B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * VGICv3 MMIO handling functions
      4 */
      5
      6#include <linux/bitfield.h>
      7#include <linux/irqchip/arm-gic-v3.h>
      8#include <linux/kvm.h>
      9#include <linux/kvm_host.h>
     10#include <linux/interrupt.h>
     11#include <kvm/iodev.h>
     12#include <kvm/arm_vgic.h>
     13
     14#include <asm/kvm_emulate.h>
     15#include <asm/kvm_arm.h>
     16#include <asm/kvm_mmu.h>
     17
     18#include "vgic.h"
     19#include "vgic-mmio.h"
     20
     21/* extract @num bytes at @offset bytes offset in data */
     22unsigned long extract_bytes(u64 data, unsigned int offset,
     23			    unsigned int num)
     24{
     25	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
     26}
     27
     28/* allows updates of any half of a 64-bit register (or the whole thing) */
     29u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
     30		     unsigned long val)
     31{
     32	int lower = (offset & 4) * 8;
     33	int upper = lower + 8 * len - 1;
     34
     35	reg &= ~GENMASK_ULL(upper, lower);
     36	val &= GENMASK_ULL(len * 8 - 1, 0);
     37
     38	return reg | ((u64)val << lower);
     39}
     40
     41bool vgic_has_its(struct kvm *kvm)
     42{
     43	struct vgic_dist *dist = &kvm->arch.vgic;
     44
     45	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
     46		return false;
     47
     48	return dist->has_its;
     49}
     50
     51bool vgic_supports_direct_msis(struct kvm *kvm)
     52{
     53	return (kvm_vgic_global_state.has_gicv4_1 ||
     54		(kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
     55}
     56
     57/*
     58 * The Revision field in the IIDR have the following meanings:
     59 *
     60 * Revision 2: Interrupt groups are guest-configurable and signaled using
     61 * 	       their configured groups.
     62 */
     63
     64static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
     65					    gpa_t addr, unsigned int len)
     66{
     67	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
     68	u32 value = 0;
     69
     70	switch (addr & 0x0c) {
     71	case GICD_CTLR:
     72		if (vgic->enabled)
     73			value |= GICD_CTLR_ENABLE_SS_G1;
     74		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
     75		if (vgic->nassgireq)
     76			value |= GICD_CTLR_nASSGIreq;
     77		break;
     78	case GICD_TYPER:
     79		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
     80		value = (value >> 5) - 1;
     81		if (vgic_has_its(vcpu->kvm)) {
     82			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
     83			value |= GICD_TYPER_LPIS;
     84		} else {
     85			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
     86		}
     87		break;
     88	case GICD_TYPER2:
     89		if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
     90			value = GICD_TYPER2_nASSGIcap;
     91		break;
     92	case GICD_IIDR:
     93		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
     94			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
     95			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
     96		break;
     97	default:
     98		return 0;
     99	}
    100
    101	return value;
    102}
    103
    104static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
    105				    gpa_t addr, unsigned int len,
    106				    unsigned long val)
    107{
    108	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
    109
    110	switch (addr & 0x0c) {
    111	case GICD_CTLR: {
    112		bool was_enabled, is_hwsgi;
    113
    114		mutex_lock(&vcpu->kvm->lock);
    115
    116		was_enabled = dist->enabled;
    117		is_hwsgi = dist->nassgireq;
    118
    119		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
    120
    121		/* Not a GICv4.1? No HW SGIs */
    122		if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
    123			val &= ~GICD_CTLR_nASSGIreq;
    124
    125		/* Dist stays enabled? nASSGIreq is RO */
    126		if (was_enabled && dist->enabled) {
    127			val &= ~GICD_CTLR_nASSGIreq;
    128			val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
    129		}
    130
    131		/* Switching HW SGIs? */
    132		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
    133		if (is_hwsgi != dist->nassgireq)
    134			vgic_v4_configure_vsgis(vcpu->kvm);
    135
    136		if (kvm_vgic_global_state.has_gicv4_1 &&
    137		    was_enabled != dist->enabled)
    138			kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
    139		else if (!was_enabled && dist->enabled)
    140			vgic_kick_vcpus(vcpu->kvm);
    141
    142		mutex_unlock(&vcpu->kvm->lock);
    143		break;
    144	}
    145	case GICD_TYPER:
    146	case GICD_TYPER2:
    147	case GICD_IIDR:
    148		/* This is at best for documentation purposes... */
    149		return;
    150	}
    151}
    152
    153static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
    154					   gpa_t addr, unsigned int len,
    155					   unsigned long val)
    156{
    157	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
    158	u32 reg;
    159
    160	switch (addr & 0x0c) {
    161	case GICD_TYPER2:
    162		if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
    163			return -EINVAL;
    164		return 0;
    165	case GICD_IIDR:
    166		reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
    167		if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
    168			return -EINVAL;
    169
    170		reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
    171		switch (reg) {
    172		case KVM_VGIC_IMP_REV_2:
    173		case KVM_VGIC_IMP_REV_3:
    174			dist->implementation_rev = reg;
    175			return 0;
    176		default:
    177			return -EINVAL;
    178		}
    179	case GICD_CTLR:
    180		/* Not a GICv4.1? No HW SGIs */
    181		if (!kvm_vgic_global_state.has_gicv4_1)
    182			val &= ~GICD_CTLR_nASSGIreq;
    183
    184		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
    185		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
    186		return 0;
    187	}
    188
    189	vgic_mmio_write_v3_misc(vcpu, addr, len, val);
    190	return 0;
    191}
    192
    193static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
    194					    gpa_t addr, unsigned int len)
    195{
    196	int intid = VGIC_ADDR_TO_INTID(addr, 64);
    197	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
    198	unsigned long ret = 0;
    199
    200	if (!irq)
    201		return 0;
    202
    203	/* The upper word is RAZ for us. */
    204	if (!(addr & 4))
    205		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
    206
    207	vgic_put_irq(vcpu->kvm, irq);
    208	return ret;
    209}
    210
    211static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
    212				    gpa_t addr, unsigned int len,
    213				    unsigned long val)
    214{
    215	int intid = VGIC_ADDR_TO_INTID(addr, 64);
    216	struct vgic_irq *irq;
    217	unsigned long flags;
    218
    219	/* The upper word is WI for us since we don't implement Aff3. */
    220	if (addr & 4)
    221		return;
    222
    223	irq = vgic_get_irq(vcpu->kvm, NULL, intid);
    224
    225	if (!irq)
    226		return;
    227
    228	raw_spin_lock_irqsave(&irq->irq_lock, flags);
    229
    230	/* We only care about and preserve Aff0, Aff1 and Aff2. */
    231	irq->mpidr = val & GENMASK(23, 0);
    232	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
    233
    234	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
    235	vgic_put_irq(vcpu->kvm, irq);
    236}
    237
    238bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
    239{
    240	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    241
    242	return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
    243}
    244
    245static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
    246					     gpa_t addr, unsigned int len)
    247{
    248	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    249	unsigned long val;
    250
    251	val = atomic_read(&vgic_cpu->ctlr);
    252	if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
    253		val |= GICR_CTLR_IR | GICR_CTLR_CES;
    254
    255	return val;
    256}
    257
    258static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
    259				     gpa_t addr, unsigned int len,
    260				     unsigned long val)
    261{
    262	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    263	u32 ctlr;
    264
    265	if (!vgic_has_its(vcpu->kvm))
    266		return;
    267
    268	if (!(val & GICR_CTLR_ENABLE_LPIS)) {
    269		/*
    270		 * Don't disable if RWP is set, as there already an
    271		 * ongoing disable. Funky guest...
    272		 */
    273		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
    274					      GICR_CTLR_ENABLE_LPIS,
    275					      GICR_CTLR_RWP);
    276		if (ctlr != GICR_CTLR_ENABLE_LPIS)
    277			return;
    278
    279		vgic_flush_pending_lpis(vcpu);
    280		vgic_its_invalidate_cache(vcpu->kvm);
    281		atomic_set_release(&vgic_cpu->ctlr, 0);
    282	} else {
    283		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
    284					      GICR_CTLR_ENABLE_LPIS);
    285		if (ctlr != 0)
    286			return;
    287
    288		vgic_enable_lpis(vcpu);
    289	}
    290}
    291
    292static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
    293{
    294	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
    295	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    296	struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
    297
    298	if (!rdreg)
    299		return false;
    300
    301	if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
    302		return false;
    303	} else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
    304		struct list_head *rd_regions = &vgic->rd_regions;
    305		gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
    306
    307		/*
    308		 * the rdist is the last one of the redist region,
    309		 * check whether there is no other contiguous rdist region
    310		 */
    311		list_for_each_entry(iter, rd_regions, list) {
    312			if (iter->base == end && iter->free_index > 0)
    313				return false;
    314		}
    315	}
    316	return true;
    317}
    318
    319static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
    320					      gpa_t addr, unsigned int len)
    321{
    322	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
    323	int target_vcpu_id = vcpu->vcpu_id;
    324	u64 value;
    325
    326	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
    327	value |= ((target_vcpu_id & 0xffff) << 8);
    328
    329	if (vgic_has_its(vcpu->kvm))
    330		value |= GICR_TYPER_PLPIS;
    331
    332	if (vgic_mmio_vcpu_rdist_is_last(vcpu))
    333		value |= GICR_TYPER_LAST;
    334
    335	return extract_bytes(value, addr & 7, len);
    336}
    337
    338static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
    339					     gpa_t addr, unsigned int len)
    340{
    341	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
    342}
    343
    344static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
    345					      gpa_t addr, unsigned int len)
    346{
    347	switch (addr & 0xffff) {
    348	case GICD_PIDR2:
    349		/* report a GICv3 compliant implementation */
    350		return 0x3b;
    351	}
    352
    353	return 0;
    354}
    355
    356static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
    357					 gpa_t addr, unsigned int len,
    358					 unsigned long val)
    359{
    360	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
    361	int i;
    362	unsigned long flags;
    363
    364	for (i = 0; i < len * 8; i++) {
    365		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
    366
    367		raw_spin_lock_irqsave(&irq->irq_lock, flags);
    368		if (test_bit(i, &val)) {
    369			/*
    370			 * pending_latch is set irrespective of irq type
    371			 * (level or edge) to avoid dependency that VM should
    372			 * restore irq config before pending info.
    373			 */
    374			irq->pending_latch = true;
    375			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
    376		} else {
    377			irq->pending_latch = false;
    378			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
    379		}
    380
    381		vgic_put_irq(vcpu->kvm, irq);
    382	}
    383
    384	return 0;
    385}
    386
    387/* We want to avoid outer shareable. */
    388u64 vgic_sanitise_shareability(u64 field)
    389{
    390	switch (field) {
    391	case GIC_BASER_OuterShareable:
    392		return GIC_BASER_InnerShareable;
    393	default:
    394		return field;
    395	}
    396}
    397
    398/* Avoid any inner non-cacheable mapping. */
    399u64 vgic_sanitise_inner_cacheability(u64 field)
    400{
    401	switch (field) {
    402	case GIC_BASER_CACHE_nCnB:
    403	case GIC_BASER_CACHE_nC:
    404		return GIC_BASER_CACHE_RaWb;
    405	default:
    406		return field;
    407	}
    408}
    409
    410/* Non-cacheable or same-as-inner are OK. */
    411u64 vgic_sanitise_outer_cacheability(u64 field)
    412{
    413	switch (field) {
    414	case GIC_BASER_CACHE_SameAsInner:
    415	case GIC_BASER_CACHE_nC:
    416		return field;
    417	default:
    418		return GIC_BASER_CACHE_SameAsInner;
    419	}
    420}
    421
    422u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
    423			u64 (*sanitise_fn)(u64))
    424{
    425	u64 field = (reg & field_mask) >> field_shift;
    426
    427	field = sanitise_fn(field) << field_shift;
    428	return (reg & ~field_mask) | field;
    429}
    430
    431#define PROPBASER_RES0_MASK						\
    432	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
    433#define PENDBASER_RES0_MASK						\
    434	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
    435	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
    436
    437static u64 vgic_sanitise_pendbaser(u64 reg)
    438{
    439	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
    440				  GICR_PENDBASER_SHAREABILITY_SHIFT,
    441				  vgic_sanitise_shareability);
    442	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
    443				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
    444				  vgic_sanitise_inner_cacheability);
    445	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
    446				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
    447				  vgic_sanitise_outer_cacheability);
    448
    449	reg &= ~PENDBASER_RES0_MASK;
    450
    451	return reg;
    452}
    453
    454static u64 vgic_sanitise_propbaser(u64 reg)
    455{
    456	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
    457				  GICR_PROPBASER_SHAREABILITY_SHIFT,
    458				  vgic_sanitise_shareability);
    459	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
    460				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
    461				  vgic_sanitise_inner_cacheability);
    462	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
    463				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
    464				  vgic_sanitise_outer_cacheability);
    465
    466	reg &= ~PROPBASER_RES0_MASK;
    467	return reg;
    468}
    469
    470static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
    471					     gpa_t addr, unsigned int len)
    472{
    473	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
    474
    475	return extract_bytes(dist->propbaser, addr & 7, len);
    476}
    477
    478static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
    479				     gpa_t addr, unsigned int len,
    480				     unsigned long val)
    481{
    482	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
    483	u64 old_propbaser, propbaser;
    484
    485	/* Storing a value with LPIs already enabled is undefined */
    486	if (vgic_lpis_enabled(vcpu))
    487		return;
    488
    489	do {
    490		old_propbaser = READ_ONCE(dist->propbaser);
    491		propbaser = old_propbaser;
    492		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
    493		propbaser = vgic_sanitise_propbaser(propbaser);
    494	} while (cmpxchg64(&dist->propbaser, old_propbaser,
    495			   propbaser) != old_propbaser);
    496}
    497
    498static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
    499					     gpa_t addr, unsigned int len)
    500{
    501	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    502	u64 value = vgic_cpu->pendbaser;
    503
    504	value &= ~GICR_PENDBASER_PTZ;
    505
    506	return extract_bytes(value, addr & 7, len);
    507}
    508
    509static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
    510				     gpa_t addr, unsigned int len,
    511				     unsigned long val)
    512{
    513	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    514	u64 old_pendbaser, pendbaser;
    515
    516	/* Storing a value with LPIs already enabled is undefined */
    517	if (vgic_lpis_enabled(vcpu))
    518		return;
    519
    520	do {
    521		old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
    522		pendbaser = old_pendbaser;
    523		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
    524		pendbaser = vgic_sanitise_pendbaser(pendbaser);
    525	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
    526			   pendbaser) != old_pendbaser);
    527}
    528
    529static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
    530					 gpa_t addr, unsigned int len)
    531{
    532	return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
    533}
    534
    535static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
    536{
    537	if (busy) {
    538		atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
    539		smp_mb__after_atomic();
    540	} else {
    541		smp_mb__before_atomic();
    542		atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
    543	}
    544}
    545
    546static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
    547				   gpa_t addr, unsigned int len,
    548				   unsigned long val)
    549{
    550	struct vgic_irq *irq;
    551
    552	/*
    553	 * If the guest wrote only to the upper 32bit part of the
    554	 * register, drop the write on the floor, as it is only for
    555	 * vPEs (which we don't support for obvious reasons).
    556	 *
    557	 * Also discard the access if LPIs are not enabled.
    558	 */
    559	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
    560		return;
    561
    562	vgic_set_rdist_busy(vcpu, true);
    563
    564	irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
    565	if (irq) {
    566		vgic_its_inv_lpi(vcpu->kvm, irq);
    567		vgic_put_irq(vcpu->kvm, irq);
    568	}
    569
    570	vgic_set_rdist_busy(vcpu, false);
    571}
    572
    573static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
    574				   gpa_t addr, unsigned int len,
    575				   unsigned long val)
    576{
    577	/* See vgic_mmio_write_invlpi() for the early return rationale */
    578	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
    579		return;
    580
    581	vgic_set_rdist_busy(vcpu, true);
    582	vgic_its_invall(vcpu);
    583	vgic_set_rdist_busy(vcpu, false);
    584}
    585
    586/*
    587 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
    588 * redistributors, while SPIs are covered by registers in the distributor
    589 * block. Trying to set private IRQs in this block gets ignored.
    590 * We take some special care here to fix the calculation of the register
    591 * offset.
    592 */
    593#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
    594	{								\
    595		.reg_offset = off,					\
    596		.bits_per_irq = bpi,					\
    597		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
    598		.access_flags = acc,					\
    599		.read = vgic_mmio_read_raz,				\
    600		.write = vgic_mmio_write_wi,				\
    601	}, {								\
    602		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
    603		.bits_per_irq = bpi,					\
    604		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
    605		.access_flags = acc,					\
    606		.read = rd,						\
    607		.write = wr,						\
    608		.uaccess_read = ur,					\
    609		.uaccess_write = uw,					\
    610	}
    611
    612static const struct vgic_register_region vgic_v3_dist_registers[] = {
    613	REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
    614		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
    615		NULL, vgic_mmio_uaccess_write_v3_misc,
    616		16, VGIC_ACCESS_32bit),
    617	REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
    618		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
    619		VGIC_ACCESS_32bit),
    620	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
    621		vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
    622		VGIC_ACCESS_32bit),
    623	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
    624		vgic_mmio_read_enable, vgic_mmio_write_senable,
    625		NULL, vgic_uaccess_write_senable, 1,
    626		VGIC_ACCESS_32bit),
    627	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
    628		vgic_mmio_read_enable, vgic_mmio_write_cenable,
    629	       NULL, vgic_uaccess_write_cenable, 1,
    630		VGIC_ACCESS_32bit),
    631	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
    632		vgic_mmio_read_pending, vgic_mmio_write_spending,
    633		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
    634		VGIC_ACCESS_32bit),
    635	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
    636		vgic_mmio_read_pending, vgic_mmio_write_cpending,
    637		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
    638		VGIC_ACCESS_32bit),
    639	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
    640		vgic_mmio_read_active, vgic_mmio_write_sactive,
    641		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
    642		VGIC_ACCESS_32bit),
    643	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
    644		vgic_mmio_read_active, vgic_mmio_write_cactive,
    645		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
    646		1, VGIC_ACCESS_32bit),
    647	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
    648		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
    649		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
    650	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
    651		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
    652		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
    653	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
    654		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
    655		VGIC_ACCESS_32bit),
    656	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
    657		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
    658		VGIC_ACCESS_32bit),
    659	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
    660		vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
    661		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
    662	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
    663		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
    664		VGIC_ACCESS_32bit),
    665};
    666
    667static const struct vgic_register_region vgic_v3_rd_registers[] = {
    668	/* RD_base registers */
    669	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
    670		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
    671		VGIC_ACCESS_32bit),
    672	REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
    673		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
    674		VGIC_ACCESS_32bit),
    675	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
    676		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
    677		VGIC_ACCESS_32bit),
    678	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
    679		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
    680		NULL, vgic_mmio_uaccess_write_wi, 8,
    681		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
    682	REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
    683		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
    684		VGIC_ACCESS_32bit),
    685	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
    686		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
    687		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
    688	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
    689		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
    690		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
    691	REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
    692		vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
    693		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
    694	REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
    695		vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
    696		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
    697	REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
    698		vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
    699		VGIC_ACCESS_32bit),
    700	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
    701		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
    702		VGIC_ACCESS_32bit),
    703	/* SGI_base registers */
    704	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
    705		vgic_mmio_read_group, vgic_mmio_write_group, 4,
    706		VGIC_ACCESS_32bit),
    707	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
    708		vgic_mmio_read_enable, vgic_mmio_write_senable,
    709		NULL, vgic_uaccess_write_senable, 4,
    710		VGIC_ACCESS_32bit),
    711	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
    712		vgic_mmio_read_enable, vgic_mmio_write_cenable,
    713		NULL, vgic_uaccess_write_cenable, 4,
    714		VGIC_ACCESS_32bit),
    715	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
    716		vgic_mmio_read_pending, vgic_mmio_write_spending,
    717		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
    718		VGIC_ACCESS_32bit),
    719	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
    720		vgic_mmio_read_pending, vgic_mmio_write_cpending,
    721		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
    722		VGIC_ACCESS_32bit),
    723	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
    724		vgic_mmio_read_active, vgic_mmio_write_sactive,
    725		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
    726		VGIC_ACCESS_32bit),
    727	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
    728		vgic_mmio_read_active, vgic_mmio_write_cactive,
    729		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
    730		VGIC_ACCESS_32bit),
    731	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
    732		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
    733		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
    734	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
    735		vgic_mmio_read_config, vgic_mmio_write_config, 8,
    736		VGIC_ACCESS_32bit),
    737	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
    738		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
    739		VGIC_ACCESS_32bit),
    740	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
    741		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
    742		VGIC_ACCESS_32bit),
    743};
    744
    745unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
    746{
    747	dev->regions = vgic_v3_dist_registers;
    748	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
    749
    750	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
    751
    752	return SZ_64K;
    753}
    754
    755/**
    756 * vgic_register_redist_iodev - register a single redist iodev
    757 * @vcpu:    The VCPU to which the redistributor belongs
    758 *
    759 * Register a KVM iodev for this VCPU's redistributor using the address
    760 * provided.
    761 *
    762 * Return 0 on success, -ERRNO otherwise.
    763 */
    764int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
    765{
    766	struct kvm *kvm = vcpu->kvm;
    767	struct vgic_dist *vgic = &kvm->arch.vgic;
    768	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    769	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
    770	struct vgic_redist_region *rdreg;
    771	gpa_t rd_base;
    772	int ret;
    773
    774	if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
    775		return 0;
    776
    777	/*
    778	 * We may be creating VCPUs before having set the base address for the
    779	 * redistributor region, in which case we will come back to this
    780	 * function for all VCPUs when the base address is set.  Just return
    781	 * without doing any work for now.
    782	 */
    783	rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
    784	if (!rdreg)
    785		return 0;
    786
    787	if (!vgic_v3_check_base(kvm))
    788		return -EINVAL;
    789
    790	vgic_cpu->rdreg = rdreg;
    791	vgic_cpu->rdreg_index = rdreg->free_index;
    792
    793	rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
    794
    795	kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
    796	rd_dev->base_addr = rd_base;
    797	rd_dev->iodev_type = IODEV_REDIST;
    798	rd_dev->regions = vgic_v3_rd_registers;
    799	rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
    800	rd_dev->redist_vcpu = vcpu;
    801
    802	mutex_lock(&kvm->slots_lock);
    803	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
    804				      2 * SZ_64K, &rd_dev->dev);
    805	mutex_unlock(&kvm->slots_lock);
    806
    807	if (ret)
    808		return ret;
    809
    810	rdreg->free_index++;
    811	return 0;
    812}
    813
    814static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
    815{
    816	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
    817
    818	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
    819}
    820
    821static int vgic_register_all_redist_iodevs(struct kvm *kvm)
    822{
    823	struct kvm_vcpu *vcpu;
    824	unsigned long c;
    825	int ret = 0;
    826
    827	kvm_for_each_vcpu(c, vcpu, kvm) {
    828		ret = vgic_register_redist_iodev(vcpu);
    829		if (ret)
    830			break;
    831	}
    832
    833	if (ret) {
    834		/* The current c failed, so iterate over the previous ones. */
    835		int i;
    836
    837		mutex_lock(&kvm->slots_lock);
    838		for (i = 0; i < c; i++) {
    839			vcpu = kvm_get_vcpu(kvm, i);
    840			vgic_unregister_redist_iodev(vcpu);
    841		}
    842		mutex_unlock(&kvm->slots_lock);
    843	}
    844
    845	return ret;
    846}
    847
    848/**
    849 * vgic_v3_alloc_redist_region - Allocate a new redistributor region
    850 *
    851 * Performs various checks before inserting the rdist region in the list.
    852 * Those tests depend on whether the size of the rdist region is known
    853 * (ie. count != 0). The list is sorted by rdist region index.
    854 *
    855 * @kvm: kvm handle
    856 * @index: redist region index
    857 * @base: base of the new rdist region
    858 * @count: number of redistributors the region is made of (0 in the old style
    859 * single region, whose size is induced from the number of vcpus)
    860 *
    861 * Return 0 on success, < 0 otherwise
    862 */
    863static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
    864				       gpa_t base, uint32_t count)
    865{
    866	struct vgic_dist *d = &kvm->arch.vgic;
    867	struct vgic_redist_region *rdreg;
    868	struct list_head *rd_regions = &d->rd_regions;
    869	int nr_vcpus = atomic_read(&kvm->online_vcpus);
    870	size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
    871			    : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
    872	int ret;
    873
    874	/* cross the end of memory ? */
    875	if (base + size < base)
    876		return -EINVAL;
    877
    878	if (list_empty(rd_regions)) {
    879		if (index != 0)
    880			return -EINVAL;
    881	} else {
    882		rdreg = list_last_entry(rd_regions,
    883					struct vgic_redist_region, list);
    884
    885		/* Don't mix single region and discrete redist regions */
    886		if (!count && rdreg->count)
    887			return -EINVAL;
    888
    889		if (!count)
    890			return -EEXIST;
    891
    892		if (index != rdreg->index + 1)
    893			return -EINVAL;
    894	}
    895
    896	/*
    897	 * For legacy single-region redistributor regions (!count),
    898	 * check that the redistributor region does not overlap with the
    899	 * distributor's address space.
    900	 */
    901	if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
    902		vgic_dist_overlap(kvm, base, size))
    903		return -EINVAL;
    904
    905	/* collision with any other rdist region? */
    906	if (vgic_v3_rdist_overlap(kvm, base, size))
    907		return -EINVAL;
    908
    909	rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
    910	if (!rdreg)
    911		return -ENOMEM;
    912
    913	rdreg->base = VGIC_ADDR_UNDEF;
    914
    915	ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
    916	if (ret)
    917		goto free;
    918
    919	rdreg->base = base;
    920	rdreg->count = count;
    921	rdreg->free_index = 0;
    922	rdreg->index = index;
    923
    924	list_add_tail(&rdreg->list, rd_regions);
    925	return 0;
    926free:
    927	kfree(rdreg);
    928	return ret;
    929}
    930
    931void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
    932{
    933	list_del(&rdreg->list);
    934	kfree(rdreg);
    935}
    936
    937int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
    938{
    939	int ret;
    940
    941	ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
    942	if (ret)
    943		return ret;
    944
    945	/*
    946	 * Register iodevs for each existing VCPU.  Adding more VCPUs
    947	 * afterwards will register the iodevs when needed.
    948	 */
    949	ret = vgic_register_all_redist_iodevs(kvm);
    950	if (ret) {
    951		struct vgic_redist_region *rdreg;
    952
    953		rdreg = vgic_v3_rdist_region_from_index(kvm, index);
    954		vgic_v3_free_redist_region(rdreg);
    955		return ret;
    956	}
    957
    958	return 0;
    959}
    960
    961int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
    962{
    963	const struct vgic_register_region *region;
    964	struct vgic_io_device iodev;
    965	struct vgic_reg_attr reg_attr;
    966	struct kvm_vcpu *vcpu;
    967	gpa_t addr;
    968	int ret;
    969
    970	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
    971	if (ret)
    972		return ret;
    973
    974	vcpu = reg_attr.vcpu;
    975	addr = reg_attr.addr;
    976
    977	switch (attr->group) {
    978	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
    979		iodev.regions = vgic_v3_dist_registers;
    980		iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
    981		iodev.base_addr = 0;
    982		break;
    983	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
    984		iodev.regions = vgic_v3_rd_registers;
    985		iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
    986		iodev.base_addr = 0;
    987		break;
    988	}
    989	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
    990		u64 reg, id;
    991
    992		id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
    993		return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
    994	}
    995	default:
    996		return -ENXIO;
    997	}
    998
    999	/* We only support aligned 32-bit accesses. */
   1000	if (addr & 3)
   1001		return -ENXIO;
   1002
   1003	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
   1004	if (!region)
   1005		return -ENXIO;
   1006
   1007	return 0;
   1008}
   1009/*
   1010 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
   1011 * generation register ICC_SGI1R_EL1) with a given VCPU.
   1012 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
   1013 * return -1.
   1014 */
   1015static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
   1016{
   1017	unsigned long affinity;
   1018	int level0;
   1019
   1020	/*
   1021	 * Split the current VCPU's MPIDR into affinity level 0 and the
   1022	 * rest as this is what we have to compare against.
   1023	 */
   1024	affinity = kvm_vcpu_get_mpidr_aff(vcpu);
   1025	level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
   1026	affinity &= ~MPIDR_LEVEL_MASK;
   1027
   1028	/* bail out if the upper three levels don't match */
   1029	if (sgi_aff != affinity)
   1030		return -1;
   1031
   1032	/* Is this VCPU's bit set in the mask ? */
   1033	if (!(sgi_cpu_mask & BIT(level0)))
   1034		return -1;
   1035
   1036	return level0;
   1037}
   1038
   1039/*
   1040 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
   1041 * so provide a wrapper to use the existing defines to isolate a certain
   1042 * affinity level.
   1043 */
   1044#define SGI_AFFINITY_LEVEL(reg, level) \
   1045	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
   1046	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
   1047
   1048/**
   1049 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
   1050 * @vcpu: The VCPU requesting a SGI
   1051 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
   1052 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
   1053 *
   1054 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
   1055 * This will trap in sys_regs.c and call this function.
   1056 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
   1057 * target processors as well as a bitmask of 16 Aff0 CPUs.
   1058 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
   1059 * check for matching ones. If this bit is set, we signal all, but not the
   1060 * calling VCPU.
   1061 */
   1062void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
   1063{
   1064	struct kvm *kvm = vcpu->kvm;
   1065	struct kvm_vcpu *c_vcpu;
   1066	u16 target_cpus;
   1067	u64 mpidr;
   1068	int sgi;
   1069	int vcpu_id = vcpu->vcpu_id;
   1070	bool broadcast;
   1071	unsigned long c, flags;
   1072
   1073	sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
   1074	broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
   1075	target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
   1076	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
   1077	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
   1078	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
   1079
   1080	/*
   1081	 * We iterate over all VCPUs to find the MPIDRs matching the request.
   1082	 * If we have handled one CPU, we clear its bit to detect early
   1083	 * if we are already finished. This avoids iterating through all
   1084	 * VCPUs when most of the times we just signal a single VCPU.
   1085	 */
   1086	kvm_for_each_vcpu(c, c_vcpu, kvm) {
   1087		struct vgic_irq *irq;
   1088
   1089		/* Exit early if we have dealt with all requested CPUs */
   1090		if (!broadcast && target_cpus == 0)
   1091			break;
   1092
   1093		/* Don't signal the calling VCPU */
   1094		if (broadcast && c == vcpu_id)
   1095			continue;
   1096
   1097		if (!broadcast) {
   1098			int level0;
   1099
   1100			level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
   1101			if (level0 == -1)
   1102				continue;
   1103
   1104			/* remove this matching VCPU from the mask */
   1105			target_cpus &= ~BIT(level0);
   1106		}
   1107
   1108		irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
   1109
   1110		raw_spin_lock_irqsave(&irq->irq_lock, flags);
   1111
   1112		/*
   1113		 * An access targeting Group0 SGIs can only generate
   1114		 * those, while an access targeting Group1 SGIs can
   1115		 * generate interrupts of either group.
   1116		 */
   1117		if (!irq->group || allow_group1) {
   1118			if (!irq->hw) {
   1119				irq->pending_latch = true;
   1120				vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
   1121			} else {
   1122				/* HW SGI? Ask the GIC to inject it */
   1123				int err;
   1124				err = irq_set_irqchip_state(irq->host_irq,
   1125							    IRQCHIP_STATE_PENDING,
   1126							    true);
   1127				WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
   1128				raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
   1129			}
   1130		} else {
   1131			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
   1132		}
   1133
   1134		vgic_put_irq(vcpu->kvm, irq);
   1135	}
   1136}
   1137
   1138int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
   1139			 int offset, u32 *val)
   1140{
   1141	struct vgic_io_device dev = {
   1142		.regions = vgic_v3_dist_registers,
   1143		.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
   1144	};
   1145
   1146	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
   1147}
   1148
   1149int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
   1150			   int offset, u32 *val)
   1151{
   1152	struct vgic_io_device rd_dev = {
   1153		.regions = vgic_v3_rd_registers,
   1154		.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
   1155	};
   1156
   1157	return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
   1158}
   1159
   1160int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
   1161				    u32 intid, u64 *val)
   1162{
   1163	if (intid % 32)
   1164		return -EINVAL;
   1165
   1166	if (is_write)
   1167		vgic_write_irq_line_level_info(vcpu, intid, *val);
   1168	else
   1169		*val = vgic_read_irq_line_level_info(vcpu, intid);
   1170
   1171	return 0;
   1172}