cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vgic.c (28172B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2015, 2016 ARM Ltd.
      4 */
      5
      6#include <linux/interrupt.h>
      7#include <linux/irq.h>
      8#include <linux/kvm.h>
      9#include <linux/kvm_host.h>
     10#include <linux/list_sort.h>
     11#include <linux/nospec.h>
     12
     13#include <asm/kvm_hyp.h>
     14
     15#include "vgic.h"
     16
     17#define CREATE_TRACE_POINTS
     18#include "trace.h"
     19
     20struct vgic_global kvm_vgic_global_state __ro_after_init = {
     21	.gicv3_cpuif = STATIC_KEY_FALSE_INIT,
     22};
     23
     24/*
     25 * Locking order is always:
     26 * kvm->lock (mutex)
     27 *   its->cmd_lock (mutex)
     28 *     its->its_lock (mutex)
     29 *       vgic_cpu->ap_list_lock		must be taken with IRQs disabled
     30 *         kvm->lpi_list_lock		must be taken with IRQs disabled
     31 *           vgic_irq->irq_lock		must be taken with IRQs disabled
     32 *
     33 * As the ap_list_lock might be taken from the timer interrupt handler,
     34 * we have to disable IRQs before taking this lock and everything lower
     35 * than it.
     36 *
     37 * If you need to take multiple locks, always take the upper lock first,
     38 * then the lower ones, e.g. first take the its_lock, then the irq_lock.
     39 * If you are already holding a lock and need to take a higher one, you
     40 * have to drop the lower ranking lock first and re-acquire it after having
     41 * taken the upper one.
     42 *
     43 * When taking more than one ap_list_lock at the same time, always take the
     44 * lowest numbered VCPU's ap_list_lock first, so:
     45 *   vcpuX->vcpu_id < vcpuY->vcpu_id:
     46 *     raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
     47 *     raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
     48 *
     49 * Since the VGIC must support injecting virtual interrupts from ISRs, we have
     50 * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
     51 * spinlocks for any lock that may be taken while injecting an interrupt.
     52 */
     53
     54/*
     55 * Iterate over the VM's list of mapped LPIs to find the one with a
     56 * matching interrupt ID and return a reference to the IRQ structure.
     57 */
     58static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
     59{
     60	struct vgic_dist *dist = &kvm->arch.vgic;
     61	struct vgic_irq *irq = NULL;
     62	unsigned long flags;
     63
     64	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
     65
     66	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
     67		if (irq->intid != intid)
     68			continue;
     69
     70		/*
     71		 * This increases the refcount, the caller is expected to
     72		 * call vgic_put_irq() later once it's finished with the IRQ.
     73		 */
     74		vgic_get_irq_kref(irq);
     75		goto out_unlock;
     76	}
     77	irq = NULL;
     78
     79out_unlock:
     80	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
     81
     82	return irq;
     83}
     84
     85/*
     86 * This looks up the virtual interrupt ID to get the corresponding
     87 * struct vgic_irq. It also increases the refcount, so any caller is expected
     88 * to call vgic_put_irq() once it's finished with this IRQ.
     89 */
     90struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
     91			      u32 intid)
     92{
     93	/* SGIs and PPIs */
     94	if (intid <= VGIC_MAX_PRIVATE) {
     95		intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
     96		return &vcpu->arch.vgic_cpu.private_irqs[intid];
     97	}
     98
     99	/* SPIs */
    100	if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
    101		intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
    102		return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
    103	}
    104
    105	/* LPIs */
    106	if (intid >= VGIC_MIN_LPI)
    107		return vgic_get_lpi(kvm, intid);
    108
    109	return NULL;
    110}
    111
    112/*
    113 * We can't do anything in here, because we lack the kvm pointer to
    114 * lock and remove the item from the lpi_list. So we keep this function
    115 * empty and use the return value of kref_put() to trigger the freeing.
    116 */
    117static void vgic_irq_release(struct kref *ref)
    118{
    119}
    120
    121/*
    122 * Drop the refcount on the LPI. Must be called with lpi_list_lock held.
    123 */
    124void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq)
    125{
    126	struct vgic_dist *dist = &kvm->arch.vgic;
    127
    128	if (!kref_put(&irq->refcount, vgic_irq_release))
    129		return;
    130
    131	list_del(&irq->lpi_list);
    132	dist->lpi_list_count--;
    133
    134	kfree(irq);
    135}
    136
    137void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
    138{
    139	struct vgic_dist *dist = &kvm->arch.vgic;
    140	unsigned long flags;
    141
    142	if (irq->intid < VGIC_MIN_LPI)
    143		return;
    144
    145	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
    146	__vgic_put_lpi_locked(kvm, irq);
    147	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
    148}
    149
    150void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
    151{
    152	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    153	struct vgic_irq *irq, *tmp;
    154	unsigned long flags;
    155
    156	raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
    157
    158	list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
    159		if (irq->intid >= VGIC_MIN_LPI) {
    160			raw_spin_lock(&irq->irq_lock);
    161			list_del(&irq->ap_list);
    162			irq->vcpu = NULL;
    163			raw_spin_unlock(&irq->irq_lock);
    164			vgic_put_irq(vcpu->kvm, irq);
    165		}
    166	}
    167
    168	raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
    169}
    170
    171void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
    172{
    173	WARN_ON(irq_set_irqchip_state(irq->host_irq,
    174				      IRQCHIP_STATE_PENDING,
    175				      pending));
    176}
    177
    178bool vgic_get_phys_line_level(struct vgic_irq *irq)
    179{
    180	bool line_level;
    181
    182	BUG_ON(!irq->hw);
    183
    184	if (irq->ops && irq->ops->get_input_level)
    185		return irq->ops->get_input_level(irq->intid);
    186
    187	WARN_ON(irq_get_irqchip_state(irq->host_irq,
    188				      IRQCHIP_STATE_PENDING,
    189				      &line_level));
    190	return line_level;
    191}
    192
    193/* Set/Clear the physical active state */
    194void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
    195{
    196
    197	BUG_ON(!irq->hw);
    198	WARN_ON(irq_set_irqchip_state(irq->host_irq,
    199				      IRQCHIP_STATE_ACTIVE,
    200				      active));
    201}
    202
    203/**
    204 * kvm_vgic_target_oracle - compute the target vcpu for an irq
    205 *
    206 * @irq:	The irq to route. Must be already locked.
    207 *
    208 * Based on the current state of the interrupt (enabled, pending,
    209 * active, vcpu and target_vcpu), compute the next vcpu this should be
    210 * given to. Return NULL if this shouldn't be injected at all.
    211 *
    212 * Requires the IRQ lock to be held.
    213 */
    214static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
    215{
    216	lockdep_assert_held(&irq->irq_lock);
    217
    218	/* If the interrupt is active, it must stay on the current vcpu */
    219	if (irq->active)
    220		return irq->vcpu ? : irq->target_vcpu;
    221
    222	/*
    223	 * If the IRQ is not active but enabled and pending, we should direct
    224	 * it to its configured target VCPU.
    225	 * If the distributor is disabled, pending interrupts shouldn't be
    226	 * forwarded.
    227	 */
    228	if (irq->enabled && irq_is_pending(irq)) {
    229		if (unlikely(irq->target_vcpu &&
    230			     !irq->target_vcpu->kvm->arch.vgic.enabled))
    231			return NULL;
    232
    233		return irq->target_vcpu;
    234	}
    235
    236	/* If neither active nor pending and enabled, then this IRQ should not
    237	 * be queued to any VCPU.
    238	 */
    239	return NULL;
    240}
    241
    242/*
    243 * The order of items in the ap_lists defines how we'll pack things in LRs as
    244 * well, the first items in the list being the first things populated in the
    245 * LRs.
    246 *
    247 * A hard rule is that active interrupts can never be pushed out of the LRs
    248 * (and therefore take priority) since we cannot reliably trap on deactivation
    249 * of IRQs and therefore they have to be present in the LRs.
    250 *
    251 * Otherwise things should be sorted by the priority field and the GIC
    252 * hardware support will take care of preemption of priority groups etc.
    253 *
    254 * Return negative if "a" sorts before "b", 0 to preserve order, and positive
    255 * to sort "b" before "a".
    256 */
    257static int vgic_irq_cmp(void *priv, const struct list_head *a,
    258			const struct list_head *b)
    259{
    260	struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
    261	struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
    262	bool penda, pendb;
    263	int ret;
    264
    265	/*
    266	 * list_sort may call this function with the same element when
    267	 * the list is fairly long.
    268	 */
    269	if (unlikely(irqa == irqb))
    270		return 0;
    271
    272	raw_spin_lock(&irqa->irq_lock);
    273	raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
    274
    275	if (irqa->active || irqb->active) {
    276		ret = (int)irqb->active - (int)irqa->active;
    277		goto out;
    278	}
    279
    280	penda = irqa->enabled && irq_is_pending(irqa);
    281	pendb = irqb->enabled && irq_is_pending(irqb);
    282
    283	if (!penda || !pendb) {
    284		ret = (int)pendb - (int)penda;
    285		goto out;
    286	}
    287
    288	/* Both pending and enabled, sort by priority */
    289	ret = irqa->priority - irqb->priority;
    290out:
    291	raw_spin_unlock(&irqb->irq_lock);
    292	raw_spin_unlock(&irqa->irq_lock);
    293	return ret;
    294}
    295
    296/* Must be called with the ap_list_lock held */
    297static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
    298{
    299	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    300
    301	lockdep_assert_held(&vgic_cpu->ap_list_lock);
    302
    303	list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
    304}
    305
    306/*
    307 * Only valid injection if changing level for level-triggered IRQs or for a
    308 * rising edge, and in-kernel connected IRQ lines can only be controlled by
    309 * their owner.
    310 */
    311static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
    312{
    313	if (irq->owner != owner)
    314		return false;
    315
    316	switch (irq->config) {
    317	case VGIC_CONFIG_LEVEL:
    318		return irq->line_level != level;
    319	case VGIC_CONFIG_EDGE:
    320		return level;
    321	}
    322
    323	return false;
    324}
    325
    326/*
    327 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
    328 * Do the queuing if necessary, taking the right locks in the right order.
    329 * Returns true when the IRQ was queued, false otherwise.
    330 *
    331 * Needs to be entered with the IRQ lock already held, but will return
    332 * with all locks dropped.
    333 */
    334bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
    335			   unsigned long flags)
    336{
    337	struct kvm_vcpu *vcpu;
    338
    339	lockdep_assert_held(&irq->irq_lock);
    340
    341retry:
    342	vcpu = vgic_target_oracle(irq);
    343	if (irq->vcpu || !vcpu) {
    344		/*
    345		 * If this IRQ is already on a VCPU's ap_list, then it
    346		 * cannot be moved or modified and there is no more work for
    347		 * us to do.
    348		 *
    349		 * Otherwise, if the irq is not pending and enabled, it does
    350		 * not need to be inserted into an ap_list and there is also
    351		 * no more work for us to do.
    352		 */
    353		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
    354
    355		/*
    356		 * We have to kick the VCPU here, because we could be
    357		 * queueing an edge-triggered interrupt for which we
    358		 * get no EOI maintenance interrupt. In that case,
    359		 * while the IRQ is already on the VCPU's AP list, the
    360		 * VCPU could have EOI'ed the original interrupt and
    361		 * won't see this one until it exits for some other
    362		 * reason.
    363		 */
    364		if (vcpu) {
    365			kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
    366			kvm_vcpu_kick(vcpu);
    367		}
    368		return false;
    369	}
    370
    371	/*
    372	 * We must unlock the irq lock to take the ap_list_lock where
    373	 * we are going to insert this new pending interrupt.
    374	 */
    375	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
    376
    377	/* someone can do stuff here, which we re-check below */
    378
    379	raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
    380	raw_spin_lock(&irq->irq_lock);
    381
    382	/*
    383	 * Did something change behind our backs?
    384	 *
    385	 * There are two cases:
    386	 * 1) The irq lost its pending state or was disabled behind our
    387	 *    backs and/or it was queued to another VCPU's ap_list.
    388	 * 2) Someone changed the affinity on this irq behind our
    389	 *    backs and we are now holding the wrong ap_list_lock.
    390	 *
    391	 * In both cases, drop the locks and retry.
    392	 */
    393
    394	if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
    395		raw_spin_unlock(&irq->irq_lock);
    396		raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
    397					   flags);
    398
    399		raw_spin_lock_irqsave(&irq->irq_lock, flags);
    400		goto retry;
    401	}
    402
    403	/*
    404	 * Grab a reference to the irq to reflect the fact that it is
    405	 * now in the ap_list.
    406	 */
    407	vgic_get_irq_kref(irq);
    408	list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
    409	irq->vcpu = vcpu;
    410
    411	raw_spin_unlock(&irq->irq_lock);
    412	raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
    413
    414	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
    415	kvm_vcpu_kick(vcpu);
    416
    417	return true;
    418}
    419
    420/**
    421 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
    422 * @kvm:     The VM structure pointer
    423 * @cpuid:   The CPU for PPIs
    424 * @intid:   The INTID to inject a new state to.
    425 * @level:   Edge-triggered:  true:  to trigger the interrupt
    426 *			      false: to ignore the call
    427 *	     Level-sensitive  true:  raise the input signal
    428 *			      false: lower the input signal
    429 * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
    430 *           that the caller is allowed to inject this IRQ.  Userspace
    431 *           injections will have owner == NULL.
    432 *
    433 * The VGIC is not concerned with devices being active-LOW or active-HIGH for
    434 * level-sensitive interrupts.  You can think of the level parameter as 1
    435 * being HIGH and 0 being LOW and all devices being active-HIGH.
    436 */
    437int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
    438			bool level, void *owner)
    439{
    440	struct kvm_vcpu *vcpu;
    441	struct vgic_irq *irq;
    442	unsigned long flags;
    443	int ret;
    444
    445	trace_vgic_update_irq_pending(cpuid, intid, level);
    446
    447	ret = vgic_lazy_init(kvm);
    448	if (ret)
    449		return ret;
    450
    451	vcpu = kvm_get_vcpu(kvm, cpuid);
    452	if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
    453		return -EINVAL;
    454
    455	irq = vgic_get_irq(kvm, vcpu, intid);
    456	if (!irq)
    457		return -EINVAL;
    458
    459	raw_spin_lock_irqsave(&irq->irq_lock, flags);
    460
    461	if (!vgic_validate_injection(irq, level, owner)) {
    462		/* Nothing to see here, move along... */
    463		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
    464		vgic_put_irq(kvm, irq);
    465		return 0;
    466	}
    467
    468	if (irq->config == VGIC_CONFIG_LEVEL)
    469		irq->line_level = level;
    470	else
    471		irq->pending_latch = true;
    472
    473	vgic_queue_irq_unlock(kvm, irq, flags);
    474	vgic_put_irq(kvm, irq);
    475
    476	return 0;
    477}
    478
    479/* @irq->irq_lock must be held */
    480static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
    481			    unsigned int host_irq,
    482			    struct irq_ops *ops)
    483{
    484	struct irq_desc *desc;
    485	struct irq_data *data;
    486
    487	/*
    488	 * Find the physical IRQ number corresponding to @host_irq
    489	 */
    490	desc = irq_to_desc(host_irq);
    491	if (!desc) {
    492		kvm_err("%s: no interrupt descriptor\n", __func__);
    493		return -EINVAL;
    494	}
    495	data = irq_desc_get_irq_data(desc);
    496	while (data->parent_data)
    497		data = data->parent_data;
    498
    499	irq->hw = true;
    500	irq->host_irq = host_irq;
    501	irq->hwintid = data->hwirq;
    502	irq->ops = ops;
    503	return 0;
    504}
    505
    506/* @irq->irq_lock must be held */
    507static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
    508{
    509	irq->hw = false;
    510	irq->hwintid = 0;
    511	irq->ops = NULL;
    512}
    513
    514int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
    515			  u32 vintid, struct irq_ops *ops)
    516{
    517	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
    518	unsigned long flags;
    519	int ret;
    520
    521	BUG_ON(!irq);
    522
    523	raw_spin_lock_irqsave(&irq->irq_lock, flags);
    524	ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
    525	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
    526	vgic_put_irq(vcpu->kvm, irq);
    527
    528	return ret;
    529}
    530
    531/**
    532 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
    533 * @vcpu: The VCPU pointer
    534 * @vintid: The INTID of the interrupt
    535 *
    536 * Reset the active and pending states of a mapped interrupt.  Kernel
    537 * subsystems injecting mapped interrupts should reset their interrupt lines
    538 * when we are doing a reset of the VM.
    539 */
    540void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
    541{
    542	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
    543	unsigned long flags;
    544
    545	if (!irq->hw)
    546		goto out;
    547
    548	raw_spin_lock_irqsave(&irq->irq_lock, flags);
    549	irq->active = false;
    550	irq->pending_latch = false;
    551	irq->line_level = false;
    552	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
    553out:
    554	vgic_put_irq(vcpu->kvm, irq);
    555}
    556
    557int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
    558{
    559	struct vgic_irq *irq;
    560	unsigned long flags;
    561
    562	if (!vgic_initialized(vcpu->kvm))
    563		return -EAGAIN;
    564
    565	irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
    566	BUG_ON(!irq);
    567
    568	raw_spin_lock_irqsave(&irq->irq_lock, flags);
    569	kvm_vgic_unmap_irq(irq);
    570	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
    571	vgic_put_irq(vcpu->kvm, irq);
    572
    573	return 0;
    574}
    575
    576/**
    577 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
    578 *
    579 * @vcpu:   Pointer to the VCPU (used for PPIs)
    580 * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
    581 * @owner:  Opaque pointer to the owner
    582 *
    583 * Returns 0 if intid is not already used by another in-kernel device and the
    584 * owner is set, otherwise returns an error code.
    585 */
    586int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
    587{
    588	struct vgic_irq *irq;
    589	unsigned long flags;
    590	int ret = 0;
    591
    592	if (!vgic_initialized(vcpu->kvm))
    593		return -EAGAIN;
    594
    595	/* SGIs and LPIs cannot be wired up to any device */
    596	if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
    597		return -EINVAL;
    598
    599	irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
    600	raw_spin_lock_irqsave(&irq->irq_lock, flags);
    601	if (irq->owner && irq->owner != owner)
    602		ret = -EEXIST;
    603	else
    604		irq->owner = owner;
    605	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
    606
    607	return ret;
    608}
    609
    610/**
    611 * vgic_prune_ap_list - Remove non-relevant interrupts from the list
    612 *
    613 * @vcpu: The VCPU pointer
    614 *
    615 * Go over the list of "interesting" interrupts, and prune those that we
    616 * won't have to consider in the near future.
    617 */
    618static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
    619{
    620	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    621	struct vgic_irq *irq, *tmp;
    622
    623	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
    624
    625retry:
    626	raw_spin_lock(&vgic_cpu->ap_list_lock);
    627
    628	list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
    629		struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
    630		bool target_vcpu_needs_kick = false;
    631
    632		raw_spin_lock(&irq->irq_lock);
    633
    634		BUG_ON(vcpu != irq->vcpu);
    635
    636		target_vcpu = vgic_target_oracle(irq);
    637
    638		if (!target_vcpu) {
    639			/*
    640			 * We don't need to process this interrupt any
    641			 * further, move it off the list.
    642			 */
    643			list_del(&irq->ap_list);
    644			irq->vcpu = NULL;
    645			raw_spin_unlock(&irq->irq_lock);
    646
    647			/*
    648			 * This vgic_put_irq call matches the
    649			 * vgic_get_irq_kref in vgic_queue_irq_unlock,
    650			 * where we added the LPI to the ap_list. As
    651			 * we remove the irq from the list, we drop
    652			 * also drop the refcount.
    653			 */
    654			vgic_put_irq(vcpu->kvm, irq);
    655			continue;
    656		}
    657
    658		if (target_vcpu == vcpu) {
    659			/* We're on the right CPU */
    660			raw_spin_unlock(&irq->irq_lock);
    661			continue;
    662		}
    663
    664		/* This interrupt looks like it has to be migrated. */
    665
    666		raw_spin_unlock(&irq->irq_lock);
    667		raw_spin_unlock(&vgic_cpu->ap_list_lock);
    668
    669		/*
    670		 * Ensure locking order by always locking the smallest
    671		 * ID first.
    672		 */
    673		if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
    674			vcpuA = vcpu;
    675			vcpuB = target_vcpu;
    676		} else {
    677			vcpuA = target_vcpu;
    678			vcpuB = vcpu;
    679		}
    680
    681		raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
    682		raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
    683				      SINGLE_DEPTH_NESTING);
    684		raw_spin_lock(&irq->irq_lock);
    685
    686		/*
    687		 * If the affinity has been preserved, move the
    688		 * interrupt around. Otherwise, it means things have
    689		 * changed while the interrupt was unlocked, and we
    690		 * need to replay this.
    691		 *
    692		 * In all cases, we cannot trust the list not to have
    693		 * changed, so we restart from the beginning.
    694		 */
    695		if (target_vcpu == vgic_target_oracle(irq)) {
    696			struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
    697
    698			list_del(&irq->ap_list);
    699			irq->vcpu = target_vcpu;
    700			list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
    701			target_vcpu_needs_kick = true;
    702		}
    703
    704		raw_spin_unlock(&irq->irq_lock);
    705		raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
    706		raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
    707
    708		if (target_vcpu_needs_kick) {
    709			kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
    710			kvm_vcpu_kick(target_vcpu);
    711		}
    712
    713		goto retry;
    714	}
    715
    716	raw_spin_unlock(&vgic_cpu->ap_list_lock);
    717}
    718
    719static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
    720{
    721	if (kvm_vgic_global_state.type == VGIC_V2)
    722		vgic_v2_fold_lr_state(vcpu);
    723	else
    724		vgic_v3_fold_lr_state(vcpu);
    725}
    726
    727/* Requires the irq_lock to be held. */
    728static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
    729				    struct vgic_irq *irq, int lr)
    730{
    731	lockdep_assert_held(&irq->irq_lock);
    732
    733	if (kvm_vgic_global_state.type == VGIC_V2)
    734		vgic_v2_populate_lr(vcpu, irq, lr);
    735	else
    736		vgic_v3_populate_lr(vcpu, irq, lr);
    737}
    738
    739static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
    740{
    741	if (kvm_vgic_global_state.type == VGIC_V2)
    742		vgic_v2_clear_lr(vcpu, lr);
    743	else
    744		vgic_v3_clear_lr(vcpu, lr);
    745}
    746
    747static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
    748{
    749	if (kvm_vgic_global_state.type == VGIC_V2)
    750		vgic_v2_set_underflow(vcpu);
    751	else
    752		vgic_v3_set_underflow(vcpu);
    753}
    754
    755/* Requires the ap_list_lock to be held. */
    756static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
    757				 bool *multi_sgi)
    758{
    759	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    760	struct vgic_irq *irq;
    761	int count = 0;
    762
    763	*multi_sgi = false;
    764
    765	lockdep_assert_held(&vgic_cpu->ap_list_lock);
    766
    767	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
    768		int w;
    769
    770		raw_spin_lock(&irq->irq_lock);
    771		/* GICv2 SGIs can count for more than one... */
    772		w = vgic_irq_get_lr_count(irq);
    773		raw_spin_unlock(&irq->irq_lock);
    774
    775		count += w;
    776		*multi_sgi |= (w > 1);
    777	}
    778	return count;
    779}
    780
    781/* Requires the VCPU's ap_list_lock to be held. */
    782static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
    783{
    784	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    785	struct vgic_irq *irq;
    786	int count;
    787	bool multi_sgi;
    788	u8 prio = 0xff;
    789	int i = 0;
    790
    791	lockdep_assert_held(&vgic_cpu->ap_list_lock);
    792
    793	count = compute_ap_list_depth(vcpu, &multi_sgi);
    794	if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
    795		vgic_sort_ap_list(vcpu);
    796
    797	count = 0;
    798
    799	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
    800		raw_spin_lock(&irq->irq_lock);
    801
    802		/*
    803		 * If we have multi-SGIs in the pipeline, we need to
    804		 * guarantee that they are all seen before any IRQ of
    805		 * lower priority. In that case, we need to filter out
    806		 * these interrupts by exiting early. This is easy as
    807		 * the AP list has been sorted already.
    808		 */
    809		if (multi_sgi && irq->priority > prio) {
    810			_raw_spin_unlock(&irq->irq_lock);
    811			break;
    812		}
    813
    814		if (likely(vgic_target_oracle(irq) == vcpu)) {
    815			vgic_populate_lr(vcpu, irq, count++);
    816
    817			if (irq->source)
    818				prio = irq->priority;
    819		}
    820
    821		raw_spin_unlock(&irq->irq_lock);
    822
    823		if (count == kvm_vgic_global_state.nr_lr) {
    824			if (!list_is_last(&irq->ap_list,
    825					  &vgic_cpu->ap_list_head))
    826				vgic_set_underflow(vcpu);
    827			break;
    828		}
    829	}
    830
    831	/* Nuke remaining LRs */
    832	for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
    833		vgic_clear_lr(vcpu, i);
    834
    835	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
    836		vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
    837	else
    838		vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
    839}
    840
    841static inline bool can_access_vgic_from_kernel(void)
    842{
    843	/*
    844	 * GICv2 can always be accessed from the kernel because it is
    845	 * memory-mapped, and VHE systems can access GICv3 EL2 system
    846	 * registers.
    847	 */
    848	return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
    849}
    850
    851static inline void vgic_save_state(struct kvm_vcpu *vcpu)
    852{
    853	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
    854		vgic_v2_save_state(vcpu);
    855	else
    856		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
    857}
    858
    859/* Sync back the hardware VGIC state into our emulation after a guest's run. */
    860void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
    861{
    862	int used_lrs;
    863
    864	/* An empty ap_list_head implies used_lrs == 0 */
    865	if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
    866		return;
    867
    868	if (can_access_vgic_from_kernel())
    869		vgic_save_state(vcpu);
    870
    871	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
    872		used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
    873	else
    874		used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
    875
    876	if (used_lrs)
    877		vgic_fold_lr_state(vcpu);
    878	vgic_prune_ap_list(vcpu);
    879}
    880
    881static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
    882{
    883	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
    884		vgic_v2_restore_state(vcpu);
    885	else
    886		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
    887}
    888
    889/* Flush our emulation state into the GIC hardware before entering the guest. */
    890void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
    891{
    892	/*
    893	 * If there are no virtual interrupts active or pending for this
    894	 * VCPU, then there is no work to do and we can bail out without
    895	 * taking any lock.  There is a potential race with someone injecting
    896	 * interrupts to the VCPU, but it is a benign race as the VCPU will
    897	 * either observe the new interrupt before or after doing this check,
    898	 * and introducing additional synchronization mechanism doesn't change
    899	 * this.
    900	 *
    901	 * Note that we still need to go through the whole thing if anything
    902	 * can be directly injected (GICv4).
    903	 */
    904	if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
    905	    !vgic_supports_direct_msis(vcpu->kvm))
    906		return;
    907
    908	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
    909
    910	if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
    911		raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
    912		vgic_flush_lr_state(vcpu);
    913		raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
    914	}
    915
    916	if (can_access_vgic_from_kernel())
    917		vgic_restore_state(vcpu);
    918
    919	if (vgic_supports_direct_msis(vcpu->kvm))
    920		vgic_v4_commit(vcpu);
    921}
    922
    923void kvm_vgic_load(struct kvm_vcpu *vcpu)
    924{
    925	if (unlikely(!vgic_initialized(vcpu->kvm)))
    926		return;
    927
    928	if (kvm_vgic_global_state.type == VGIC_V2)
    929		vgic_v2_load(vcpu);
    930	else
    931		vgic_v3_load(vcpu);
    932}
    933
    934void kvm_vgic_put(struct kvm_vcpu *vcpu)
    935{
    936	if (unlikely(!vgic_initialized(vcpu->kvm)))
    937		return;
    938
    939	if (kvm_vgic_global_state.type == VGIC_V2)
    940		vgic_v2_put(vcpu);
    941	else
    942		vgic_v3_put(vcpu);
    943}
    944
    945void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
    946{
    947	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
    948		return;
    949
    950	if (kvm_vgic_global_state.type == VGIC_V2)
    951		vgic_v2_vmcr_sync(vcpu);
    952	else
    953		vgic_v3_vmcr_sync(vcpu);
    954}
    955
    956int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
    957{
    958	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
    959	struct vgic_irq *irq;
    960	bool pending = false;
    961	unsigned long flags;
    962	struct vgic_vmcr vmcr;
    963
    964	if (!vcpu->kvm->arch.vgic.enabled)
    965		return false;
    966
    967	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
    968		return true;
    969
    970	vgic_get_vmcr(vcpu, &vmcr);
    971
    972	raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
    973
    974	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
    975		raw_spin_lock(&irq->irq_lock);
    976		pending = irq_is_pending(irq) && irq->enabled &&
    977			  !irq->active &&
    978			  irq->priority < vmcr.pmr;
    979		raw_spin_unlock(&irq->irq_lock);
    980
    981		if (pending)
    982			break;
    983	}
    984
    985	raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
    986
    987	return pending;
    988}
    989
    990void vgic_kick_vcpus(struct kvm *kvm)
    991{
    992	struct kvm_vcpu *vcpu;
    993	unsigned long c;
    994
    995	/*
    996	 * We've injected an interrupt, time to find out who deserves
    997	 * a good kick...
    998	 */
    999	kvm_for_each_vcpu(c, vcpu, kvm) {
   1000		if (kvm_vgic_vcpu_pending_irq(vcpu)) {
   1001			kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
   1002			kvm_vcpu_kick(vcpu);
   1003		}
   1004	}
   1005}
   1006
   1007bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
   1008{
   1009	struct vgic_irq *irq;
   1010	bool map_is_active;
   1011	unsigned long flags;
   1012
   1013	if (!vgic_initialized(vcpu->kvm))
   1014		return false;
   1015
   1016	irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
   1017	raw_spin_lock_irqsave(&irq->irq_lock, flags);
   1018	map_is_active = irq->hw && irq->active;
   1019	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
   1020	vgic_put_irq(vcpu->kvm, irq);
   1021
   1022	return map_is_active;
   1023}
   1024
   1025/*
   1026 * Level-triggered mapped IRQs are special because we only observe rising
   1027 * edges as input to the VGIC.
   1028 *
   1029 * If the guest never acked the interrupt we have to sample the physical
   1030 * line and set the line level, because the device state could have changed
   1031 * or we simply need to process the still pending interrupt later.
   1032 *
   1033 * We could also have entered the guest with the interrupt active+pending.
   1034 * On the next exit, we need to re-evaluate the pending state, as it could
   1035 * otherwise result in a spurious interrupt by injecting a now potentially
   1036 * stale pending state.
   1037 *
   1038 * If this causes us to lower the level, we have to also clear the physical
   1039 * active state, since we will otherwise never be told when the interrupt
   1040 * becomes asserted again.
   1041 *
   1042 * Another case is when the interrupt requires a helping hand on
   1043 * deactivation (no HW deactivation, for example).
   1044 */
   1045void vgic_irq_handle_resampling(struct vgic_irq *irq,
   1046				bool lr_deactivated, bool lr_pending)
   1047{
   1048	if (vgic_irq_is_mapped_level(irq)) {
   1049		bool resample = false;
   1050
   1051		if (unlikely(vgic_irq_needs_resampling(irq))) {
   1052			resample = !(irq->active || irq->pending_latch);
   1053		} else if (lr_pending || (lr_deactivated && irq->line_level)) {
   1054			irq->line_level = vgic_get_phys_line_level(irq);
   1055			resample = !irq->line_level;
   1056		}
   1057
   1058		if (resample)
   1059			vgic_irq_set_phys_active(irq, false);
   1060	}
   1061}