vgic.c (28172B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) 2015, 2016 ARM Ltd. 4 */ 5 6#include <linux/interrupt.h> 7#include <linux/irq.h> 8#include <linux/kvm.h> 9#include <linux/kvm_host.h> 10#include <linux/list_sort.h> 11#include <linux/nospec.h> 12 13#include <asm/kvm_hyp.h> 14 15#include "vgic.h" 16 17#define CREATE_TRACE_POINTS 18#include "trace.h" 19 20struct vgic_global kvm_vgic_global_state __ro_after_init = { 21 .gicv3_cpuif = STATIC_KEY_FALSE_INIT, 22}; 23 24/* 25 * Locking order is always: 26 * kvm->lock (mutex) 27 * its->cmd_lock (mutex) 28 * its->its_lock (mutex) 29 * vgic_cpu->ap_list_lock must be taken with IRQs disabled 30 * kvm->lpi_list_lock must be taken with IRQs disabled 31 * vgic_irq->irq_lock must be taken with IRQs disabled 32 * 33 * As the ap_list_lock might be taken from the timer interrupt handler, 34 * we have to disable IRQs before taking this lock and everything lower 35 * than it. 36 * 37 * If you need to take multiple locks, always take the upper lock first, 38 * then the lower ones, e.g. first take the its_lock, then the irq_lock. 39 * If you are already holding a lock and need to take a higher one, you 40 * have to drop the lower ranking lock first and re-acquire it after having 41 * taken the upper one. 42 * 43 * When taking more than one ap_list_lock at the same time, always take the 44 * lowest numbered VCPU's ap_list_lock first, so: 45 * vcpuX->vcpu_id < vcpuY->vcpu_id: 46 * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock); 47 * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock); 48 * 49 * Since the VGIC must support injecting virtual interrupts from ISRs, we have 50 * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer 51 * spinlocks for any lock that may be taken while injecting an interrupt. 52 */ 53 54/* 55 * Iterate over the VM's list of mapped LPIs to find the one with a 56 * matching interrupt ID and return a reference to the IRQ structure. 57 */ 58static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid) 59{ 60 struct vgic_dist *dist = &kvm->arch.vgic; 61 struct vgic_irq *irq = NULL; 62 unsigned long flags; 63 64 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 65 66 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 67 if (irq->intid != intid) 68 continue; 69 70 /* 71 * This increases the refcount, the caller is expected to 72 * call vgic_put_irq() later once it's finished with the IRQ. 73 */ 74 vgic_get_irq_kref(irq); 75 goto out_unlock; 76 } 77 irq = NULL; 78 79out_unlock: 80 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 81 82 return irq; 83} 84 85/* 86 * This looks up the virtual interrupt ID to get the corresponding 87 * struct vgic_irq. It also increases the refcount, so any caller is expected 88 * to call vgic_put_irq() once it's finished with this IRQ. 89 */ 90struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, 91 u32 intid) 92{ 93 /* SGIs and PPIs */ 94 if (intid <= VGIC_MAX_PRIVATE) { 95 intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1); 96 return &vcpu->arch.vgic_cpu.private_irqs[intid]; 97 } 98 99 /* SPIs */ 100 if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) { 101 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS); 102 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS]; 103 } 104 105 /* LPIs */ 106 if (intid >= VGIC_MIN_LPI) 107 return vgic_get_lpi(kvm, intid); 108 109 return NULL; 110} 111 112/* 113 * We can't do anything in here, because we lack the kvm pointer to 114 * lock and remove the item from the lpi_list. So we keep this function 115 * empty and use the return value of kref_put() to trigger the freeing. 116 */ 117static void vgic_irq_release(struct kref *ref) 118{ 119} 120 121/* 122 * Drop the refcount on the LPI. Must be called with lpi_list_lock held. 123 */ 124void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq) 125{ 126 struct vgic_dist *dist = &kvm->arch.vgic; 127 128 if (!kref_put(&irq->refcount, vgic_irq_release)) 129 return; 130 131 list_del(&irq->lpi_list); 132 dist->lpi_list_count--; 133 134 kfree(irq); 135} 136 137void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq) 138{ 139 struct vgic_dist *dist = &kvm->arch.vgic; 140 unsigned long flags; 141 142 if (irq->intid < VGIC_MIN_LPI) 143 return; 144 145 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 146 __vgic_put_lpi_locked(kvm, irq); 147 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 148} 149 150void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu) 151{ 152 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 153 struct vgic_irq *irq, *tmp; 154 unsigned long flags; 155 156 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); 157 158 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { 159 if (irq->intid >= VGIC_MIN_LPI) { 160 raw_spin_lock(&irq->irq_lock); 161 list_del(&irq->ap_list); 162 irq->vcpu = NULL; 163 raw_spin_unlock(&irq->irq_lock); 164 vgic_put_irq(vcpu->kvm, irq); 165 } 166 } 167 168 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); 169} 170 171void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending) 172{ 173 WARN_ON(irq_set_irqchip_state(irq->host_irq, 174 IRQCHIP_STATE_PENDING, 175 pending)); 176} 177 178bool vgic_get_phys_line_level(struct vgic_irq *irq) 179{ 180 bool line_level; 181 182 BUG_ON(!irq->hw); 183 184 if (irq->ops && irq->ops->get_input_level) 185 return irq->ops->get_input_level(irq->intid); 186 187 WARN_ON(irq_get_irqchip_state(irq->host_irq, 188 IRQCHIP_STATE_PENDING, 189 &line_level)); 190 return line_level; 191} 192 193/* Set/Clear the physical active state */ 194void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active) 195{ 196 197 BUG_ON(!irq->hw); 198 WARN_ON(irq_set_irqchip_state(irq->host_irq, 199 IRQCHIP_STATE_ACTIVE, 200 active)); 201} 202 203/** 204 * kvm_vgic_target_oracle - compute the target vcpu for an irq 205 * 206 * @irq: The irq to route. Must be already locked. 207 * 208 * Based on the current state of the interrupt (enabled, pending, 209 * active, vcpu and target_vcpu), compute the next vcpu this should be 210 * given to. Return NULL if this shouldn't be injected at all. 211 * 212 * Requires the IRQ lock to be held. 213 */ 214static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq) 215{ 216 lockdep_assert_held(&irq->irq_lock); 217 218 /* If the interrupt is active, it must stay on the current vcpu */ 219 if (irq->active) 220 return irq->vcpu ? : irq->target_vcpu; 221 222 /* 223 * If the IRQ is not active but enabled and pending, we should direct 224 * it to its configured target VCPU. 225 * If the distributor is disabled, pending interrupts shouldn't be 226 * forwarded. 227 */ 228 if (irq->enabled && irq_is_pending(irq)) { 229 if (unlikely(irq->target_vcpu && 230 !irq->target_vcpu->kvm->arch.vgic.enabled)) 231 return NULL; 232 233 return irq->target_vcpu; 234 } 235 236 /* If neither active nor pending and enabled, then this IRQ should not 237 * be queued to any VCPU. 238 */ 239 return NULL; 240} 241 242/* 243 * The order of items in the ap_lists defines how we'll pack things in LRs as 244 * well, the first items in the list being the first things populated in the 245 * LRs. 246 * 247 * A hard rule is that active interrupts can never be pushed out of the LRs 248 * (and therefore take priority) since we cannot reliably trap on deactivation 249 * of IRQs and therefore they have to be present in the LRs. 250 * 251 * Otherwise things should be sorted by the priority field and the GIC 252 * hardware support will take care of preemption of priority groups etc. 253 * 254 * Return negative if "a" sorts before "b", 0 to preserve order, and positive 255 * to sort "b" before "a". 256 */ 257static int vgic_irq_cmp(void *priv, const struct list_head *a, 258 const struct list_head *b) 259{ 260 struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list); 261 struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list); 262 bool penda, pendb; 263 int ret; 264 265 /* 266 * list_sort may call this function with the same element when 267 * the list is fairly long. 268 */ 269 if (unlikely(irqa == irqb)) 270 return 0; 271 272 raw_spin_lock(&irqa->irq_lock); 273 raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING); 274 275 if (irqa->active || irqb->active) { 276 ret = (int)irqb->active - (int)irqa->active; 277 goto out; 278 } 279 280 penda = irqa->enabled && irq_is_pending(irqa); 281 pendb = irqb->enabled && irq_is_pending(irqb); 282 283 if (!penda || !pendb) { 284 ret = (int)pendb - (int)penda; 285 goto out; 286 } 287 288 /* Both pending and enabled, sort by priority */ 289 ret = irqa->priority - irqb->priority; 290out: 291 raw_spin_unlock(&irqb->irq_lock); 292 raw_spin_unlock(&irqa->irq_lock); 293 return ret; 294} 295 296/* Must be called with the ap_list_lock held */ 297static void vgic_sort_ap_list(struct kvm_vcpu *vcpu) 298{ 299 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 300 301 lockdep_assert_held(&vgic_cpu->ap_list_lock); 302 303 list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp); 304} 305 306/* 307 * Only valid injection if changing level for level-triggered IRQs or for a 308 * rising edge, and in-kernel connected IRQ lines can only be controlled by 309 * their owner. 310 */ 311static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner) 312{ 313 if (irq->owner != owner) 314 return false; 315 316 switch (irq->config) { 317 case VGIC_CONFIG_LEVEL: 318 return irq->line_level != level; 319 case VGIC_CONFIG_EDGE: 320 return level; 321 } 322 323 return false; 324} 325 326/* 327 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list. 328 * Do the queuing if necessary, taking the right locks in the right order. 329 * Returns true when the IRQ was queued, false otherwise. 330 * 331 * Needs to be entered with the IRQ lock already held, but will return 332 * with all locks dropped. 333 */ 334bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq, 335 unsigned long flags) 336{ 337 struct kvm_vcpu *vcpu; 338 339 lockdep_assert_held(&irq->irq_lock); 340 341retry: 342 vcpu = vgic_target_oracle(irq); 343 if (irq->vcpu || !vcpu) { 344 /* 345 * If this IRQ is already on a VCPU's ap_list, then it 346 * cannot be moved or modified and there is no more work for 347 * us to do. 348 * 349 * Otherwise, if the irq is not pending and enabled, it does 350 * not need to be inserted into an ap_list and there is also 351 * no more work for us to do. 352 */ 353 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 354 355 /* 356 * We have to kick the VCPU here, because we could be 357 * queueing an edge-triggered interrupt for which we 358 * get no EOI maintenance interrupt. In that case, 359 * while the IRQ is already on the VCPU's AP list, the 360 * VCPU could have EOI'ed the original interrupt and 361 * won't see this one until it exits for some other 362 * reason. 363 */ 364 if (vcpu) { 365 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 366 kvm_vcpu_kick(vcpu); 367 } 368 return false; 369 } 370 371 /* 372 * We must unlock the irq lock to take the ap_list_lock where 373 * we are going to insert this new pending interrupt. 374 */ 375 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 376 377 /* someone can do stuff here, which we re-check below */ 378 379 raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags); 380 raw_spin_lock(&irq->irq_lock); 381 382 /* 383 * Did something change behind our backs? 384 * 385 * There are two cases: 386 * 1) The irq lost its pending state or was disabled behind our 387 * backs and/or it was queued to another VCPU's ap_list. 388 * 2) Someone changed the affinity on this irq behind our 389 * backs and we are now holding the wrong ap_list_lock. 390 * 391 * In both cases, drop the locks and retry. 392 */ 393 394 if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) { 395 raw_spin_unlock(&irq->irq_lock); 396 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, 397 flags); 398 399 raw_spin_lock_irqsave(&irq->irq_lock, flags); 400 goto retry; 401 } 402 403 /* 404 * Grab a reference to the irq to reflect the fact that it is 405 * now in the ap_list. 406 */ 407 vgic_get_irq_kref(irq); 408 list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head); 409 irq->vcpu = vcpu; 410 411 raw_spin_unlock(&irq->irq_lock); 412 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags); 413 414 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 415 kvm_vcpu_kick(vcpu); 416 417 return true; 418} 419 420/** 421 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic 422 * @kvm: The VM structure pointer 423 * @cpuid: The CPU for PPIs 424 * @intid: The INTID to inject a new state to. 425 * @level: Edge-triggered: true: to trigger the interrupt 426 * false: to ignore the call 427 * Level-sensitive true: raise the input signal 428 * false: lower the input signal 429 * @owner: The opaque pointer to the owner of the IRQ being raised to verify 430 * that the caller is allowed to inject this IRQ. Userspace 431 * injections will have owner == NULL. 432 * 433 * The VGIC is not concerned with devices being active-LOW or active-HIGH for 434 * level-sensitive interrupts. You can think of the level parameter as 1 435 * being HIGH and 0 being LOW and all devices being active-HIGH. 436 */ 437int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid, 438 bool level, void *owner) 439{ 440 struct kvm_vcpu *vcpu; 441 struct vgic_irq *irq; 442 unsigned long flags; 443 int ret; 444 445 trace_vgic_update_irq_pending(cpuid, intid, level); 446 447 ret = vgic_lazy_init(kvm); 448 if (ret) 449 return ret; 450 451 vcpu = kvm_get_vcpu(kvm, cpuid); 452 if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS) 453 return -EINVAL; 454 455 irq = vgic_get_irq(kvm, vcpu, intid); 456 if (!irq) 457 return -EINVAL; 458 459 raw_spin_lock_irqsave(&irq->irq_lock, flags); 460 461 if (!vgic_validate_injection(irq, level, owner)) { 462 /* Nothing to see here, move along... */ 463 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 464 vgic_put_irq(kvm, irq); 465 return 0; 466 } 467 468 if (irq->config == VGIC_CONFIG_LEVEL) 469 irq->line_level = level; 470 else 471 irq->pending_latch = true; 472 473 vgic_queue_irq_unlock(kvm, irq, flags); 474 vgic_put_irq(kvm, irq); 475 476 return 0; 477} 478 479/* @irq->irq_lock must be held */ 480static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq, 481 unsigned int host_irq, 482 struct irq_ops *ops) 483{ 484 struct irq_desc *desc; 485 struct irq_data *data; 486 487 /* 488 * Find the physical IRQ number corresponding to @host_irq 489 */ 490 desc = irq_to_desc(host_irq); 491 if (!desc) { 492 kvm_err("%s: no interrupt descriptor\n", __func__); 493 return -EINVAL; 494 } 495 data = irq_desc_get_irq_data(desc); 496 while (data->parent_data) 497 data = data->parent_data; 498 499 irq->hw = true; 500 irq->host_irq = host_irq; 501 irq->hwintid = data->hwirq; 502 irq->ops = ops; 503 return 0; 504} 505 506/* @irq->irq_lock must be held */ 507static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq) 508{ 509 irq->hw = false; 510 irq->hwintid = 0; 511 irq->ops = NULL; 512} 513 514int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq, 515 u32 vintid, struct irq_ops *ops) 516{ 517 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 518 unsigned long flags; 519 int ret; 520 521 BUG_ON(!irq); 522 523 raw_spin_lock_irqsave(&irq->irq_lock, flags); 524 ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops); 525 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 526 vgic_put_irq(vcpu->kvm, irq); 527 528 return ret; 529} 530 531/** 532 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ 533 * @vcpu: The VCPU pointer 534 * @vintid: The INTID of the interrupt 535 * 536 * Reset the active and pending states of a mapped interrupt. Kernel 537 * subsystems injecting mapped interrupts should reset their interrupt lines 538 * when we are doing a reset of the VM. 539 */ 540void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid) 541{ 542 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 543 unsigned long flags; 544 545 if (!irq->hw) 546 goto out; 547 548 raw_spin_lock_irqsave(&irq->irq_lock, flags); 549 irq->active = false; 550 irq->pending_latch = false; 551 irq->line_level = false; 552 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 553out: 554 vgic_put_irq(vcpu->kvm, irq); 555} 556 557int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid) 558{ 559 struct vgic_irq *irq; 560 unsigned long flags; 561 562 if (!vgic_initialized(vcpu->kvm)) 563 return -EAGAIN; 564 565 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 566 BUG_ON(!irq); 567 568 raw_spin_lock_irqsave(&irq->irq_lock, flags); 569 kvm_vgic_unmap_irq(irq); 570 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 571 vgic_put_irq(vcpu->kvm, irq); 572 573 return 0; 574} 575 576/** 577 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM 578 * 579 * @vcpu: Pointer to the VCPU (used for PPIs) 580 * @intid: The virtual INTID identifying the interrupt (PPI or SPI) 581 * @owner: Opaque pointer to the owner 582 * 583 * Returns 0 if intid is not already used by another in-kernel device and the 584 * owner is set, otherwise returns an error code. 585 */ 586int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner) 587{ 588 struct vgic_irq *irq; 589 unsigned long flags; 590 int ret = 0; 591 592 if (!vgic_initialized(vcpu->kvm)) 593 return -EAGAIN; 594 595 /* SGIs and LPIs cannot be wired up to any device */ 596 if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid)) 597 return -EINVAL; 598 599 irq = vgic_get_irq(vcpu->kvm, vcpu, intid); 600 raw_spin_lock_irqsave(&irq->irq_lock, flags); 601 if (irq->owner && irq->owner != owner) 602 ret = -EEXIST; 603 else 604 irq->owner = owner; 605 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 606 607 return ret; 608} 609 610/** 611 * vgic_prune_ap_list - Remove non-relevant interrupts from the list 612 * 613 * @vcpu: The VCPU pointer 614 * 615 * Go over the list of "interesting" interrupts, and prune those that we 616 * won't have to consider in the near future. 617 */ 618static void vgic_prune_ap_list(struct kvm_vcpu *vcpu) 619{ 620 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 621 struct vgic_irq *irq, *tmp; 622 623 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 624 625retry: 626 raw_spin_lock(&vgic_cpu->ap_list_lock); 627 628 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { 629 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB; 630 bool target_vcpu_needs_kick = false; 631 632 raw_spin_lock(&irq->irq_lock); 633 634 BUG_ON(vcpu != irq->vcpu); 635 636 target_vcpu = vgic_target_oracle(irq); 637 638 if (!target_vcpu) { 639 /* 640 * We don't need to process this interrupt any 641 * further, move it off the list. 642 */ 643 list_del(&irq->ap_list); 644 irq->vcpu = NULL; 645 raw_spin_unlock(&irq->irq_lock); 646 647 /* 648 * This vgic_put_irq call matches the 649 * vgic_get_irq_kref in vgic_queue_irq_unlock, 650 * where we added the LPI to the ap_list. As 651 * we remove the irq from the list, we drop 652 * also drop the refcount. 653 */ 654 vgic_put_irq(vcpu->kvm, irq); 655 continue; 656 } 657 658 if (target_vcpu == vcpu) { 659 /* We're on the right CPU */ 660 raw_spin_unlock(&irq->irq_lock); 661 continue; 662 } 663 664 /* This interrupt looks like it has to be migrated. */ 665 666 raw_spin_unlock(&irq->irq_lock); 667 raw_spin_unlock(&vgic_cpu->ap_list_lock); 668 669 /* 670 * Ensure locking order by always locking the smallest 671 * ID first. 672 */ 673 if (vcpu->vcpu_id < target_vcpu->vcpu_id) { 674 vcpuA = vcpu; 675 vcpuB = target_vcpu; 676 } else { 677 vcpuA = target_vcpu; 678 vcpuB = vcpu; 679 } 680 681 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock); 682 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock, 683 SINGLE_DEPTH_NESTING); 684 raw_spin_lock(&irq->irq_lock); 685 686 /* 687 * If the affinity has been preserved, move the 688 * interrupt around. Otherwise, it means things have 689 * changed while the interrupt was unlocked, and we 690 * need to replay this. 691 * 692 * In all cases, we cannot trust the list not to have 693 * changed, so we restart from the beginning. 694 */ 695 if (target_vcpu == vgic_target_oracle(irq)) { 696 struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu; 697 698 list_del(&irq->ap_list); 699 irq->vcpu = target_vcpu; 700 list_add_tail(&irq->ap_list, &new_cpu->ap_list_head); 701 target_vcpu_needs_kick = true; 702 } 703 704 raw_spin_unlock(&irq->irq_lock); 705 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock); 706 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock); 707 708 if (target_vcpu_needs_kick) { 709 kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu); 710 kvm_vcpu_kick(target_vcpu); 711 } 712 713 goto retry; 714 } 715 716 raw_spin_unlock(&vgic_cpu->ap_list_lock); 717} 718 719static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu) 720{ 721 if (kvm_vgic_global_state.type == VGIC_V2) 722 vgic_v2_fold_lr_state(vcpu); 723 else 724 vgic_v3_fold_lr_state(vcpu); 725} 726 727/* Requires the irq_lock to be held. */ 728static inline void vgic_populate_lr(struct kvm_vcpu *vcpu, 729 struct vgic_irq *irq, int lr) 730{ 731 lockdep_assert_held(&irq->irq_lock); 732 733 if (kvm_vgic_global_state.type == VGIC_V2) 734 vgic_v2_populate_lr(vcpu, irq, lr); 735 else 736 vgic_v3_populate_lr(vcpu, irq, lr); 737} 738 739static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr) 740{ 741 if (kvm_vgic_global_state.type == VGIC_V2) 742 vgic_v2_clear_lr(vcpu, lr); 743 else 744 vgic_v3_clear_lr(vcpu, lr); 745} 746 747static inline void vgic_set_underflow(struct kvm_vcpu *vcpu) 748{ 749 if (kvm_vgic_global_state.type == VGIC_V2) 750 vgic_v2_set_underflow(vcpu); 751 else 752 vgic_v3_set_underflow(vcpu); 753} 754 755/* Requires the ap_list_lock to be held. */ 756static int compute_ap_list_depth(struct kvm_vcpu *vcpu, 757 bool *multi_sgi) 758{ 759 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 760 struct vgic_irq *irq; 761 int count = 0; 762 763 *multi_sgi = false; 764 765 lockdep_assert_held(&vgic_cpu->ap_list_lock); 766 767 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { 768 int w; 769 770 raw_spin_lock(&irq->irq_lock); 771 /* GICv2 SGIs can count for more than one... */ 772 w = vgic_irq_get_lr_count(irq); 773 raw_spin_unlock(&irq->irq_lock); 774 775 count += w; 776 *multi_sgi |= (w > 1); 777 } 778 return count; 779} 780 781/* Requires the VCPU's ap_list_lock to be held. */ 782static void vgic_flush_lr_state(struct kvm_vcpu *vcpu) 783{ 784 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 785 struct vgic_irq *irq; 786 int count; 787 bool multi_sgi; 788 u8 prio = 0xff; 789 int i = 0; 790 791 lockdep_assert_held(&vgic_cpu->ap_list_lock); 792 793 count = compute_ap_list_depth(vcpu, &multi_sgi); 794 if (count > kvm_vgic_global_state.nr_lr || multi_sgi) 795 vgic_sort_ap_list(vcpu); 796 797 count = 0; 798 799 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { 800 raw_spin_lock(&irq->irq_lock); 801 802 /* 803 * If we have multi-SGIs in the pipeline, we need to 804 * guarantee that they are all seen before any IRQ of 805 * lower priority. In that case, we need to filter out 806 * these interrupts by exiting early. This is easy as 807 * the AP list has been sorted already. 808 */ 809 if (multi_sgi && irq->priority > prio) { 810 _raw_spin_unlock(&irq->irq_lock); 811 break; 812 } 813 814 if (likely(vgic_target_oracle(irq) == vcpu)) { 815 vgic_populate_lr(vcpu, irq, count++); 816 817 if (irq->source) 818 prio = irq->priority; 819 } 820 821 raw_spin_unlock(&irq->irq_lock); 822 823 if (count == kvm_vgic_global_state.nr_lr) { 824 if (!list_is_last(&irq->ap_list, 825 &vgic_cpu->ap_list_head)) 826 vgic_set_underflow(vcpu); 827 break; 828 } 829 } 830 831 /* Nuke remaining LRs */ 832 for (i = count ; i < kvm_vgic_global_state.nr_lr; i++) 833 vgic_clear_lr(vcpu, i); 834 835 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) 836 vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count; 837 else 838 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count; 839} 840 841static inline bool can_access_vgic_from_kernel(void) 842{ 843 /* 844 * GICv2 can always be accessed from the kernel because it is 845 * memory-mapped, and VHE systems can access GICv3 EL2 system 846 * registers. 847 */ 848 return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe(); 849} 850 851static inline void vgic_save_state(struct kvm_vcpu *vcpu) 852{ 853 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) 854 vgic_v2_save_state(vcpu); 855 else 856 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); 857} 858 859/* Sync back the hardware VGIC state into our emulation after a guest's run. */ 860void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) 861{ 862 int used_lrs; 863 864 /* An empty ap_list_head implies used_lrs == 0 */ 865 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) 866 return; 867 868 if (can_access_vgic_from_kernel()) 869 vgic_save_state(vcpu); 870 871 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) 872 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs; 873 else 874 used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs; 875 876 if (used_lrs) 877 vgic_fold_lr_state(vcpu); 878 vgic_prune_ap_list(vcpu); 879} 880 881static inline void vgic_restore_state(struct kvm_vcpu *vcpu) 882{ 883 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) 884 vgic_v2_restore_state(vcpu); 885 else 886 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); 887} 888 889/* Flush our emulation state into the GIC hardware before entering the guest. */ 890void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) 891{ 892 /* 893 * If there are no virtual interrupts active or pending for this 894 * VCPU, then there is no work to do and we can bail out without 895 * taking any lock. There is a potential race with someone injecting 896 * interrupts to the VCPU, but it is a benign race as the VCPU will 897 * either observe the new interrupt before or after doing this check, 898 * and introducing additional synchronization mechanism doesn't change 899 * this. 900 * 901 * Note that we still need to go through the whole thing if anything 902 * can be directly injected (GICv4). 903 */ 904 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) && 905 !vgic_supports_direct_msis(vcpu->kvm)) 906 return; 907 908 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 909 910 if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) { 911 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock); 912 vgic_flush_lr_state(vcpu); 913 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock); 914 } 915 916 if (can_access_vgic_from_kernel()) 917 vgic_restore_state(vcpu); 918 919 if (vgic_supports_direct_msis(vcpu->kvm)) 920 vgic_v4_commit(vcpu); 921} 922 923void kvm_vgic_load(struct kvm_vcpu *vcpu) 924{ 925 if (unlikely(!vgic_initialized(vcpu->kvm))) 926 return; 927 928 if (kvm_vgic_global_state.type == VGIC_V2) 929 vgic_v2_load(vcpu); 930 else 931 vgic_v3_load(vcpu); 932} 933 934void kvm_vgic_put(struct kvm_vcpu *vcpu) 935{ 936 if (unlikely(!vgic_initialized(vcpu->kvm))) 937 return; 938 939 if (kvm_vgic_global_state.type == VGIC_V2) 940 vgic_v2_put(vcpu); 941 else 942 vgic_v3_put(vcpu); 943} 944 945void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu) 946{ 947 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 948 return; 949 950 if (kvm_vgic_global_state.type == VGIC_V2) 951 vgic_v2_vmcr_sync(vcpu); 952 else 953 vgic_v3_vmcr_sync(vcpu); 954} 955 956int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) 957{ 958 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 959 struct vgic_irq *irq; 960 bool pending = false; 961 unsigned long flags; 962 struct vgic_vmcr vmcr; 963 964 if (!vcpu->kvm->arch.vgic.enabled) 965 return false; 966 967 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last) 968 return true; 969 970 vgic_get_vmcr(vcpu, &vmcr); 971 972 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); 973 974 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { 975 raw_spin_lock(&irq->irq_lock); 976 pending = irq_is_pending(irq) && irq->enabled && 977 !irq->active && 978 irq->priority < vmcr.pmr; 979 raw_spin_unlock(&irq->irq_lock); 980 981 if (pending) 982 break; 983 } 984 985 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); 986 987 return pending; 988} 989 990void vgic_kick_vcpus(struct kvm *kvm) 991{ 992 struct kvm_vcpu *vcpu; 993 unsigned long c; 994 995 /* 996 * We've injected an interrupt, time to find out who deserves 997 * a good kick... 998 */ 999 kvm_for_each_vcpu(c, vcpu, kvm) { 1000 if (kvm_vgic_vcpu_pending_irq(vcpu)) { 1001 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 1002 kvm_vcpu_kick(vcpu); 1003 } 1004 } 1005} 1006 1007bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid) 1008{ 1009 struct vgic_irq *irq; 1010 bool map_is_active; 1011 unsigned long flags; 1012 1013 if (!vgic_initialized(vcpu->kvm)) 1014 return false; 1015 1016 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 1017 raw_spin_lock_irqsave(&irq->irq_lock, flags); 1018 map_is_active = irq->hw && irq->active; 1019 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 1020 vgic_put_irq(vcpu->kvm, irq); 1021 1022 return map_is_active; 1023} 1024 1025/* 1026 * Level-triggered mapped IRQs are special because we only observe rising 1027 * edges as input to the VGIC. 1028 * 1029 * If the guest never acked the interrupt we have to sample the physical 1030 * line and set the line level, because the device state could have changed 1031 * or we simply need to process the still pending interrupt later. 1032 * 1033 * We could also have entered the guest with the interrupt active+pending. 1034 * On the next exit, we need to re-evaluate the pending state, as it could 1035 * otherwise result in a spurious interrupt by injecting a now potentially 1036 * stale pending state. 1037 * 1038 * If this causes us to lower the level, we have to also clear the physical 1039 * active state, since we will otherwise never be told when the interrupt 1040 * becomes asserted again. 1041 * 1042 * Another case is when the interrupt requires a helping hand on 1043 * deactivation (no HW deactivation, for example). 1044 */ 1045void vgic_irq_handle_resampling(struct vgic_irq *irq, 1046 bool lr_deactivated, bool lr_pending) 1047{ 1048 if (vgic_irq_is_mapped_level(irq)) { 1049 bool resample = false; 1050 1051 if (unlikely(vgic_irq_needs_resampling(irq))) { 1052 resample = !(irq->active || irq->pending_latch); 1053 } else if (lr_pending || (lr_deactivated && irq->line_level)) { 1054 irq->line_level = vgic_get_phys_line_level(irq); 1055 resample = !irq->line_level; 1056 } 1057 1058 if (resample) 1059 vgic_irq_set_phys_active(irq, false); 1060 } 1061}