cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

strnlen.S (4252B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * Copyright (C) 2013 ARM Ltd.
      4 * Copyright (C) 2013 Linaro.
      5 *
      6 * This code is based on glibc cortex strings work originally authored by Linaro
      7 * be found @
      8 *
      9 * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
     10 * files/head:/src/aarch64/
     11 */
     12
     13#include <linux/linkage.h>
     14#include <asm/assembler.h>
     15
     16/*
     17 * determine the length of a fixed-size string
     18 *
     19 * Parameters:
     20 *	x0 - const string pointer
     21 *	x1 - maximal string length
     22 * Returns:
     23 *	x0 - the return length of specific string
     24 */
     25
     26/* Arguments and results.  */
     27srcin		.req	x0
     28len		.req	x0
     29limit		.req	x1
     30
     31/* Locals and temporaries.  */
     32src		.req	x2
     33data1		.req	x3
     34data2		.req	x4
     35data2a		.req	x5
     36has_nul1	.req	x6
     37has_nul2	.req	x7
     38tmp1		.req	x8
     39tmp2		.req	x9
     40tmp3		.req	x10
     41tmp4		.req	x11
     42zeroones	.req	x12
     43pos		.req	x13
     44limit_wd	.req	x14
     45
     46#define REP8_01 0x0101010101010101
     47#define REP8_7f 0x7f7f7f7f7f7f7f7f
     48#define REP8_80 0x8080808080808080
     49
     50SYM_FUNC_START(__pi_strnlen)
     51	cbz	limit, .Lhit_limit
     52	mov	zeroones, #REP8_01
     53	bic	src, srcin, #15
     54	ands	tmp1, srcin, #15
     55	b.ne	.Lmisaligned
     56	/* Calculate the number of full and partial words -1.  */
     57	sub	limit_wd, limit, #1 /* Limit != 0, so no underflow.  */
     58	lsr	limit_wd, limit_wd, #4  /* Convert to Qwords.  */
     59
     60	/*
     61	* NUL detection works on the principle that (X - 1) & (~X) & 0x80
     62	* (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
     63	* can be done in parallel across the entire word.
     64	*/
     65	/*
     66	* The inner loop deals with two Dwords at a time.  This has a
     67	* slightly higher start-up cost, but we should win quite quickly,
     68	* especially on cores with a high number of issue slots per
     69	* cycle, as we get much better parallelism out of the operations.
     70	*/
     71.Lloop:
     72	ldp	data1, data2, [src], #16
     73.Lrealigned:
     74	sub	tmp1, data1, zeroones
     75	orr	tmp2, data1, #REP8_7f
     76	sub	tmp3, data2, zeroones
     77	orr	tmp4, data2, #REP8_7f
     78	bic	has_nul1, tmp1, tmp2
     79	bic	has_nul2, tmp3, tmp4
     80	subs	limit_wd, limit_wd, #1
     81	orr	tmp1, has_nul1, has_nul2
     82	ccmp	tmp1, #0, #0, pl    /* NZCV = 0000  */
     83	b.eq	.Lloop
     84
     85	cbz	tmp1, .Lhit_limit   /* No null in final Qword.  */
     86
     87	/*
     88	* We know there's a null in the final Qword. The easiest thing
     89	* to do now is work out the length of the string and return
     90	* MIN (len, limit).
     91	*/
     92	sub	len, src, srcin
     93	cbz	has_nul1, .Lnul_in_data2
     94CPU_BE( mov	data2, data1 )	/*perpare data to re-calculate the syndrome*/
     95
     96	sub	len, len, #8
     97	mov	has_nul2, has_nul1
     98.Lnul_in_data2:
     99	/*
    100	* For big-endian, carry propagation (if the final byte in the
    101	* string is 0x01) means we cannot use has_nul directly.  The
    102	* easiest way to get the correct byte is to byte-swap the data
    103	* and calculate the syndrome a second time.
    104	*/
    105CPU_BE( rev	data2, data2 )
    106CPU_BE( sub	tmp1, data2, zeroones )
    107CPU_BE( orr	tmp2, data2, #REP8_7f )
    108CPU_BE( bic	has_nul2, tmp1, tmp2 )
    109
    110	sub	len, len, #8
    111	rev	has_nul2, has_nul2
    112	clz	pos, has_nul2
    113	add	len, len, pos, lsr #3       /* Bits to bytes.  */
    114	cmp	len, limit
    115	csel	len, len, limit, ls     /* Return the lower value.  */
    116	ret
    117
    118.Lmisaligned:
    119	/*
    120	* Deal with a partial first word.
    121	* We're doing two things in parallel here;
    122	* 1) Calculate the number of words (but avoiding overflow if
    123	* limit is near ULONG_MAX) - to do this we need to work out
    124	* limit + tmp1 - 1 as a 65-bit value before shifting it;
    125	* 2) Load and mask the initial data words - we force the bytes
    126	* before the ones we are interested in to 0xff - this ensures
    127	* early bytes will not hit any zero detection.
    128	*/
    129	ldp	data1, data2, [src], #16
    130
    131	sub	limit_wd, limit, #1
    132	and	tmp3, limit_wd, #15
    133	lsr	limit_wd, limit_wd, #4
    134
    135	add	tmp3, tmp3, tmp1
    136	add	limit_wd, limit_wd, tmp3, lsr #4
    137
    138	neg	tmp4, tmp1
    139	lsl	tmp4, tmp4, #3  /* Bytes beyond alignment -> bits.  */
    140
    141	mov	tmp2, #~0
    142	/* Big-endian.  Early bytes are at MSB.  */
    143CPU_BE( lsl	tmp2, tmp2, tmp4 )	/* Shift (tmp1 & 63).  */
    144	/* Little-endian.  Early bytes are at LSB.  */
    145CPU_LE( lsr	tmp2, tmp2, tmp4 )	/* Shift (tmp1 & 63).  */
    146
    147	cmp	tmp1, #8
    148
    149	orr	data1, data1, tmp2
    150	orr	data2a, data2, tmp2
    151
    152	csinv	data1, data1, xzr, le
    153	csel	data2, data2, data2a, le
    154	b	.Lrealigned
    155
    156.Lhit_limit:
    157	mov	len, limit
    158	ret
    159SYM_FUNC_END(__pi_strnlen)
    160
    161SYM_FUNC_ALIAS_WEAK(strnlen, __pi_strnlen)
    162EXPORT_SYMBOL_NOKASAN(strnlen)