cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmu.c (45146B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Based on arch/arm/mm/mmu.c
      4 *
      5 * Copyright (C) 1995-2005 Russell King
      6 * Copyright (C) 2012 ARM Ltd.
      7 */
      8
      9#include <linux/cache.h>
     10#include <linux/export.h>
     11#include <linux/kernel.h>
     12#include <linux/errno.h>
     13#include <linux/init.h>
     14#include <linux/ioport.h>
     15#include <linux/kexec.h>
     16#include <linux/libfdt.h>
     17#include <linux/mman.h>
     18#include <linux/nodemask.h>
     19#include <linux/memblock.h>
     20#include <linux/memremap.h>
     21#include <linux/memory.h>
     22#include <linux/fs.h>
     23#include <linux/io.h>
     24#include <linux/mm.h>
     25#include <linux/vmalloc.h>
     26#include <linux/set_memory.h>
     27
     28#include <asm/barrier.h>
     29#include <asm/cputype.h>
     30#include <asm/fixmap.h>
     31#include <asm/kasan.h>
     32#include <asm/kernel-pgtable.h>
     33#include <asm/sections.h>
     34#include <asm/setup.h>
     35#include <linux/sizes.h>
     36#include <asm/tlb.h>
     37#include <asm/mmu_context.h>
     38#include <asm/ptdump.h>
     39#include <asm/tlbflush.h>
     40#include <asm/pgalloc.h>
     41
     42#define NO_BLOCK_MAPPINGS	BIT(0)
     43#define NO_CONT_MAPPINGS	BIT(1)
     44#define NO_EXEC_MAPPINGS	BIT(2)	/* assumes FEAT_HPDS is not used */
     45
     46u64 idmap_t0sz = TCR_T0SZ(VA_BITS_MIN);
     47u64 idmap_ptrs_per_pgd = PTRS_PER_PGD;
     48
     49u64 __section(".mmuoff.data.write") vabits_actual;
     50EXPORT_SYMBOL(vabits_actual);
     51
     52u64 kimage_voffset __ro_after_init;
     53EXPORT_SYMBOL(kimage_voffset);
     54
     55/*
     56 * Empty_zero_page is a special page that is used for zero-initialized data
     57 * and COW.
     58 */
     59unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
     60EXPORT_SYMBOL(empty_zero_page);
     61
     62static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
     63static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
     64static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
     65
     66static DEFINE_SPINLOCK(swapper_pgdir_lock);
     67static DEFINE_MUTEX(fixmap_lock);
     68
     69void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
     70{
     71	pgd_t *fixmap_pgdp;
     72
     73	spin_lock(&swapper_pgdir_lock);
     74	fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
     75	WRITE_ONCE(*fixmap_pgdp, pgd);
     76	/*
     77	 * We need dsb(ishst) here to ensure the page-table-walker sees
     78	 * our new entry before set_p?d() returns. The fixmap's
     79	 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
     80	 */
     81	pgd_clear_fixmap();
     82	spin_unlock(&swapper_pgdir_lock);
     83}
     84
     85pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
     86			      unsigned long size, pgprot_t vma_prot)
     87{
     88	if (!pfn_is_map_memory(pfn))
     89		return pgprot_noncached(vma_prot);
     90	else if (file->f_flags & O_SYNC)
     91		return pgprot_writecombine(vma_prot);
     92	return vma_prot;
     93}
     94EXPORT_SYMBOL(phys_mem_access_prot);
     95
     96static phys_addr_t __init early_pgtable_alloc(int shift)
     97{
     98	phys_addr_t phys;
     99	void *ptr;
    100
    101	phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
    102					 MEMBLOCK_ALLOC_NOLEAKTRACE);
    103	if (!phys)
    104		panic("Failed to allocate page table page\n");
    105
    106	/*
    107	 * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
    108	 * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
    109	 * any level of table.
    110	 */
    111	ptr = pte_set_fixmap(phys);
    112
    113	memset(ptr, 0, PAGE_SIZE);
    114
    115	/*
    116	 * Implicit barriers also ensure the zeroed page is visible to the page
    117	 * table walker
    118	 */
    119	pte_clear_fixmap();
    120
    121	return phys;
    122}
    123
    124static bool pgattr_change_is_safe(u64 old, u64 new)
    125{
    126	/*
    127	 * The following mapping attributes may be updated in live
    128	 * kernel mappings without the need for break-before-make.
    129	 */
    130	pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
    131
    132	/* creating or taking down mappings is always safe */
    133	if (old == 0 || new == 0)
    134		return true;
    135
    136	/* live contiguous mappings may not be manipulated at all */
    137	if ((old | new) & PTE_CONT)
    138		return false;
    139
    140	/* Transitioning from Non-Global to Global is unsafe */
    141	if (old & ~new & PTE_NG)
    142		return false;
    143
    144	/*
    145	 * Changing the memory type between Normal and Normal-Tagged is safe
    146	 * since Tagged is considered a permission attribute from the
    147	 * mismatched attribute aliases perspective.
    148	 */
    149	if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
    150	     (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
    151	    ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
    152	     (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
    153		mask |= PTE_ATTRINDX_MASK;
    154
    155	return ((old ^ new) & ~mask) == 0;
    156}
    157
    158static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
    159		     phys_addr_t phys, pgprot_t prot)
    160{
    161	pte_t *ptep;
    162
    163	ptep = pte_set_fixmap_offset(pmdp, addr);
    164	do {
    165		pte_t old_pte = READ_ONCE(*ptep);
    166
    167		set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
    168
    169		/*
    170		 * After the PTE entry has been populated once, we
    171		 * only allow updates to the permission attributes.
    172		 */
    173		BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
    174					      READ_ONCE(pte_val(*ptep))));
    175
    176		phys += PAGE_SIZE;
    177	} while (ptep++, addr += PAGE_SIZE, addr != end);
    178
    179	pte_clear_fixmap();
    180}
    181
    182static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
    183				unsigned long end, phys_addr_t phys,
    184				pgprot_t prot,
    185				phys_addr_t (*pgtable_alloc)(int),
    186				int flags)
    187{
    188	unsigned long next;
    189	pmd_t pmd = READ_ONCE(*pmdp);
    190
    191	BUG_ON(pmd_sect(pmd));
    192	if (pmd_none(pmd)) {
    193		pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN;
    194		phys_addr_t pte_phys;
    195
    196		if (flags & NO_EXEC_MAPPINGS)
    197			pmdval |= PMD_TABLE_PXN;
    198		BUG_ON(!pgtable_alloc);
    199		pte_phys = pgtable_alloc(PAGE_SHIFT);
    200		__pmd_populate(pmdp, pte_phys, pmdval);
    201		pmd = READ_ONCE(*pmdp);
    202	}
    203	BUG_ON(pmd_bad(pmd));
    204
    205	do {
    206		pgprot_t __prot = prot;
    207
    208		next = pte_cont_addr_end(addr, end);
    209
    210		/* use a contiguous mapping if the range is suitably aligned */
    211		if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
    212		    (flags & NO_CONT_MAPPINGS) == 0)
    213			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
    214
    215		init_pte(pmdp, addr, next, phys, __prot);
    216
    217		phys += next - addr;
    218	} while (addr = next, addr != end);
    219}
    220
    221static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
    222		     phys_addr_t phys, pgprot_t prot,
    223		     phys_addr_t (*pgtable_alloc)(int), int flags)
    224{
    225	unsigned long next;
    226	pmd_t *pmdp;
    227
    228	pmdp = pmd_set_fixmap_offset(pudp, addr);
    229	do {
    230		pmd_t old_pmd = READ_ONCE(*pmdp);
    231
    232		next = pmd_addr_end(addr, end);
    233
    234		/* try section mapping first */
    235		if (((addr | next | phys) & ~PMD_MASK) == 0 &&
    236		    (flags & NO_BLOCK_MAPPINGS) == 0) {
    237			pmd_set_huge(pmdp, phys, prot);
    238
    239			/*
    240			 * After the PMD entry has been populated once, we
    241			 * only allow updates to the permission attributes.
    242			 */
    243			BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
    244						      READ_ONCE(pmd_val(*pmdp))));
    245		} else {
    246			alloc_init_cont_pte(pmdp, addr, next, phys, prot,
    247					    pgtable_alloc, flags);
    248
    249			BUG_ON(pmd_val(old_pmd) != 0 &&
    250			       pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
    251		}
    252		phys += next - addr;
    253	} while (pmdp++, addr = next, addr != end);
    254
    255	pmd_clear_fixmap();
    256}
    257
    258static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
    259				unsigned long end, phys_addr_t phys,
    260				pgprot_t prot,
    261				phys_addr_t (*pgtable_alloc)(int), int flags)
    262{
    263	unsigned long next;
    264	pud_t pud = READ_ONCE(*pudp);
    265
    266	/*
    267	 * Check for initial section mappings in the pgd/pud.
    268	 */
    269	BUG_ON(pud_sect(pud));
    270	if (pud_none(pud)) {
    271		pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN;
    272		phys_addr_t pmd_phys;
    273
    274		if (flags & NO_EXEC_MAPPINGS)
    275			pudval |= PUD_TABLE_PXN;
    276		BUG_ON(!pgtable_alloc);
    277		pmd_phys = pgtable_alloc(PMD_SHIFT);
    278		__pud_populate(pudp, pmd_phys, pudval);
    279		pud = READ_ONCE(*pudp);
    280	}
    281	BUG_ON(pud_bad(pud));
    282
    283	do {
    284		pgprot_t __prot = prot;
    285
    286		next = pmd_cont_addr_end(addr, end);
    287
    288		/* use a contiguous mapping if the range is suitably aligned */
    289		if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
    290		    (flags & NO_CONT_MAPPINGS) == 0)
    291			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
    292
    293		init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
    294
    295		phys += next - addr;
    296	} while (addr = next, addr != end);
    297}
    298
    299static void alloc_init_pud(pgd_t *pgdp, unsigned long addr, unsigned long end,
    300			   phys_addr_t phys, pgprot_t prot,
    301			   phys_addr_t (*pgtable_alloc)(int),
    302			   int flags)
    303{
    304	unsigned long next;
    305	pud_t *pudp;
    306	p4d_t *p4dp = p4d_offset(pgdp, addr);
    307	p4d_t p4d = READ_ONCE(*p4dp);
    308
    309	if (p4d_none(p4d)) {
    310		p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN;
    311		phys_addr_t pud_phys;
    312
    313		if (flags & NO_EXEC_MAPPINGS)
    314			p4dval |= P4D_TABLE_PXN;
    315		BUG_ON(!pgtable_alloc);
    316		pud_phys = pgtable_alloc(PUD_SHIFT);
    317		__p4d_populate(p4dp, pud_phys, p4dval);
    318		p4d = READ_ONCE(*p4dp);
    319	}
    320	BUG_ON(p4d_bad(p4d));
    321
    322	/*
    323	 * No need for locking during early boot. And it doesn't work as
    324	 * expected with KASLR enabled.
    325	 */
    326	if (system_state != SYSTEM_BOOTING)
    327		mutex_lock(&fixmap_lock);
    328	pudp = pud_set_fixmap_offset(p4dp, addr);
    329	do {
    330		pud_t old_pud = READ_ONCE(*pudp);
    331
    332		next = pud_addr_end(addr, end);
    333
    334		/*
    335		 * For 4K granule only, attempt to put down a 1GB block
    336		 */
    337		if (pud_sect_supported() &&
    338		   ((addr | next | phys) & ~PUD_MASK) == 0 &&
    339		    (flags & NO_BLOCK_MAPPINGS) == 0) {
    340			pud_set_huge(pudp, phys, prot);
    341
    342			/*
    343			 * After the PUD entry has been populated once, we
    344			 * only allow updates to the permission attributes.
    345			 */
    346			BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
    347						      READ_ONCE(pud_val(*pudp))));
    348		} else {
    349			alloc_init_cont_pmd(pudp, addr, next, phys, prot,
    350					    pgtable_alloc, flags);
    351
    352			BUG_ON(pud_val(old_pud) != 0 &&
    353			       pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
    354		}
    355		phys += next - addr;
    356	} while (pudp++, addr = next, addr != end);
    357
    358	pud_clear_fixmap();
    359	if (system_state != SYSTEM_BOOTING)
    360		mutex_unlock(&fixmap_lock);
    361}
    362
    363static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
    364				 unsigned long virt, phys_addr_t size,
    365				 pgprot_t prot,
    366				 phys_addr_t (*pgtable_alloc)(int),
    367				 int flags)
    368{
    369	unsigned long addr, end, next;
    370	pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
    371
    372	/*
    373	 * If the virtual and physical address don't have the same offset
    374	 * within a page, we cannot map the region as the caller expects.
    375	 */
    376	if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
    377		return;
    378
    379	phys &= PAGE_MASK;
    380	addr = virt & PAGE_MASK;
    381	end = PAGE_ALIGN(virt + size);
    382
    383	do {
    384		next = pgd_addr_end(addr, end);
    385		alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,
    386			       flags);
    387		phys += next - addr;
    388	} while (pgdp++, addr = next, addr != end);
    389}
    390
    391static phys_addr_t __pgd_pgtable_alloc(int shift)
    392{
    393	void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
    394	BUG_ON(!ptr);
    395
    396	/* Ensure the zeroed page is visible to the page table walker */
    397	dsb(ishst);
    398	return __pa(ptr);
    399}
    400
    401static phys_addr_t pgd_pgtable_alloc(int shift)
    402{
    403	phys_addr_t pa = __pgd_pgtable_alloc(shift);
    404
    405	/*
    406	 * Call proper page table ctor in case later we need to
    407	 * call core mm functions like apply_to_page_range() on
    408	 * this pre-allocated page table.
    409	 *
    410	 * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
    411	 * folded, and if so pgtable_pmd_page_ctor() becomes nop.
    412	 */
    413	if (shift == PAGE_SHIFT)
    414		BUG_ON(!pgtable_pte_page_ctor(phys_to_page(pa)));
    415	else if (shift == PMD_SHIFT)
    416		BUG_ON(!pgtable_pmd_page_ctor(phys_to_page(pa)));
    417
    418	return pa;
    419}
    420
    421/*
    422 * This function can only be used to modify existing table entries,
    423 * without allocating new levels of table. Note that this permits the
    424 * creation of new section or page entries.
    425 */
    426static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
    427				  phys_addr_t size, pgprot_t prot)
    428{
    429	if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
    430		pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
    431			&phys, virt);
    432		return;
    433	}
    434	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
    435			     NO_CONT_MAPPINGS);
    436}
    437
    438void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
    439			       unsigned long virt, phys_addr_t size,
    440			       pgprot_t prot, bool page_mappings_only)
    441{
    442	int flags = 0;
    443
    444	BUG_ON(mm == &init_mm);
    445
    446	if (page_mappings_only)
    447		flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
    448
    449	__create_pgd_mapping(mm->pgd, phys, virt, size, prot,
    450			     pgd_pgtable_alloc, flags);
    451}
    452
    453static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
    454				phys_addr_t size, pgprot_t prot)
    455{
    456	if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
    457		pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
    458			&phys, virt);
    459		return;
    460	}
    461
    462	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
    463			     NO_CONT_MAPPINGS);
    464
    465	/* flush the TLBs after updating live kernel mappings */
    466	flush_tlb_kernel_range(virt, virt + size);
    467}
    468
    469static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
    470				  phys_addr_t end, pgprot_t prot, int flags)
    471{
    472	__create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
    473			     prot, early_pgtable_alloc, flags);
    474}
    475
    476void __init mark_linear_text_alias_ro(void)
    477{
    478	/*
    479	 * Remove the write permissions from the linear alias of .text/.rodata
    480	 */
    481	update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
    482			    (unsigned long)__init_begin - (unsigned long)_stext,
    483			    PAGE_KERNEL_RO);
    484}
    485
    486static bool crash_mem_map __initdata;
    487
    488static int __init enable_crash_mem_map(char *arg)
    489{
    490	/*
    491	 * Proper parameter parsing is done by reserve_crashkernel(). We only
    492	 * need to know if the linear map has to avoid block mappings so that
    493	 * the crashkernel reservations can be unmapped later.
    494	 */
    495	crash_mem_map = true;
    496
    497	return 0;
    498}
    499early_param("crashkernel", enable_crash_mem_map);
    500
    501static void __init map_mem(pgd_t *pgdp)
    502{
    503	static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
    504	phys_addr_t kernel_start = __pa_symbol(_stext);
    505	phys_addr_t kernel_end = __pa_symbol(__init_begin);
    506	phys_addr_t start, end;
    507	int flags = NO_EXEC_MAPPINGS;
    508	u64 i;
    509
    510	/*
    511	 * Setting hierarchical PXNTable attributes on table entries covering
    512	 * the linear region is only possible if it is guaranteed that no table
    513	 * entries at any level are being shared between the linear region and
    514	 * the vmalloc region. Check whether this is true for the PGD level, in
    515	 * which case it is guaranteed to be true for all other levels as well.
    516	 */
    517	BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end));
    518
    519	if (can_set_direct_map() || IS_ENABLED(CONFIG_KFENCE))
    520		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
    521
    522	/*
    523	 * Take care not to create a writable alias for the
    524	 * read-only text and rodata sections of the kernel image.
    525	 * So temporarily mark them as NOMAP to skip mappings in
    526	 * the following for-loop
    527	 */
    528	memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
    529
    530#ifdef CONFIG_KEXEC_CORE
    531	if (crash_mem_map) {
    532		if (IS_ENABLED(CONFIG_ZONE_DMA) ||
    533		    IS_ENABLED(CONFIG_ZONE_DMA32))
    534			flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
    535		else if (crashk_res.end)
    536			memblock_mark_nomap(crashk_res.start,
    537			    resource_size(&crashk_res));
    538	}
    539#endif
    540
    541	/* map all the memory banks */
    542	for_each_mem_range(i, &start, &end) {
    543		if (start >= end)
    544			break;
    545		/*
    546		 * The linear map must allow allocation tags reading/writing
    547		 * if MTE is present. Otherwise, it has the same attributes as
    548		 * PAGE_KERNEL.
    549		 */
    550		__map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
    551			       flags);
    552	}
    553
    554	/*
    555	 * Map the linear alias of the [_stext, __init_begin) interval
    556	 * as non-executable now, and remove the write permission in
    557	 * mark_linear_text_alias_ro() below (which will be called after
    558	 * alternative patching has completed). This makes the contents
    559	 * of the region accessible to subsystems such as hibernate,
    560	 * but protects it from inadvertent modification or execution.
    561	 * Note that contiguous mappings cannot be remapped in this way,
    562	 * so we should avoid them here.
    563	 */
    564	__map_memblock(pgdp, kernel_start, kernel_end,
    565		       PAGE_KERNEL, NO_CONT_MAPPINGS);
    566	memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
    567
    568	/*
    569	 * Use page-level mappings here so that we can shrink the region
    570	 * in page granularity and put back unused memory to buddy system
    571	 * through /sys/kernel/kexec_crash_size interface.
    572	 */
    573#ifdef CONFIG_KEXEC_CORE
    574	if (crash_mem_map &&
    575	    !IS_ENABLED(CONFIG_ZONE_DMA) && !IS_ENABLED(CONFIG_ZONE_DMA32)) {
    576		if (crashk_res.end) {
    577			__map_memblock(pgdp, crashk_res.start,
    578				       crashk_res.end + 1,
    579				       PAGE_KERNEL,
    580				       NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
    581			memblock_clear_nomap(crashk_res.start,
    582					     resource_size(&crashk_res));
    583		}
    584	}
    585#endif
    586}
    587
    588void mark_rodata_ro(void)
    589{
    590	unsigned long section_size;
    591
    592	/*
    593	 * mark .rodata as read only. Use __init_begin rather than __end_rodata
    594	 * to cover NOTES and EXCEPTION_TABLE.
    595	 */
    596	section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
    597	update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
    598			    section_size, PAGE_KERNEL_RO);
    599
    600	debug_checkwx();
    601}
    602
    603static void __init map_kernel_segment(pgd_t *pgdp, void *va_start, void *va_end,
    604				      pgprot_t prot, struct vm_struct *vma,
    605				      int flags, unsigned long vm_flags)
    606{
    607	phys_addr_t pa_start = __pa_symbol(va_start);
    608	unsigned long size = va_end - va_start;
    609
    610	BUG_ON(!PAGE_ALIGNED(pa_start));
    611	BUG_ON(!PAGE_ALIGNED(size));
    612
    613	__create_pgd_mapping(pgdp, pa_start, (unsigned long)va_start, size, prot,
    614			     early_pgtable_alloc, flags);
    615
    616	if (!(vm_flags & VM_NO_GUARD))
    617		size += PAGE_SIZE;
    618
    619	vma->addr	= va_start;
    620	vma->phys_addr	= pa_start;
    621	vma->size	= size;
    622	vma->flags	= VM_MAP | vm_flags;
    623	vma->caller	= __builtin_return_address(0);
    624
    625	vm_area_add_early(vma);
    626}
    627
    628static int __init parse_rodata(char *arg)
    629{
    630	int ret = strtobool(arg, &rodata_enabled);
    631	if (!ret) {
    632		rodata_full = false;
    633		return 0;
    634	}
    635
    636	/* permit 'full' in addition to boolean options */
    637	if (strcmp(arg, "full"))
    638		return -EINVAL;
    639
    640	rodata_enabled = true;
    641	rodata_full = true;
    642	return 0;
    643}
    644early_param("rodata", parse_rodata);
    645
    646#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
    647static int __init map_entry_trampoline(void)
    648{
    649	int i;
    650
    651	pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
    652	phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
    653
    654	/* The trampoline is always mapped and can therefore be global */
    655	pgprot_val(prot) &= ~PTE_NG;
    656
    657	/* Map only the text into the trampoline page table */
    658	memset(tramp_pg_dir, 0, PGD_SIZE);
    659	__create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
    660			     entry_tramp_text_size(), prot,
    661			     __pgd_pgtable_alloc, NO_BLOCK_MAPPINGS);
    662
    663	/* Map both the text and data into the kernel page table */
    664	for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
    665		__set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
    666			     pa_start + i * PAGE_SIZE, prot);
    667
    668	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
    669		extern char __entry_tramp_data_start[];
    670
    671		__set_fixmap(FIX_ENTRY_TRAMP_DATA,
    672			     __pa_symbol(__entry_tramp_data_start),
    673			     PAGE_KERNEL_RO);
    674	}
    675
    676	return 0;
    677}
    678core_initcall(map_entry_trampoline);
    679#endif
    680
    681/*
    682 * Open coded check for BTI, only for use to determine configuration
    683 * for early mappings for before the cpufeature code has run.
    684 */
    685static bool arm64_early_this_cpu_has_bti(void)
    686{
    687	u64 pfr1;
    688
    689	if (!IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
    690		return false;
    691
    692	pfr1 = __read_sysreg_by_encoding(SYS_ID_AA64PFR1_EL1);
    693	return cpuid_feature_extract_unsigned_field(pfr1,
    694						    ID_AA64PFR1_BT_SHIFT);
    695}
    696
    697/*
    698 * Create fine-grained mappings for the kernel.
    699 */
    700static void __init map_kernel(pgd_t *pgdp)
    701{
    702	static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
    703				vmlinux_initdata, vmlinux_data;
    704
    705	/*
    706	 * External debuggers may need to write directly to the text
    707	 * mapping to install SW breakpoints. Allow this (only) when
    708	 * explicitly requested with rodata=off.
    709	 */
    710	pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
    711
    712	/*
    713	 * If we have a CPU that supports BTI and a kernel built for
    714	 * BTI then mark the kernel executable text as guarded pages
    715	 * now so we don't have to rewrite the page tables later.
    716	 */
    717	if (arm64_early_this_cpu_has_bti())
    718		text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
    719
    720	/*
    721	 * Only rodata will be remapped with different permissions later on,
    722	 * all other segments are allowed to use contiguous mappings.
    723	 */
    724	map_kernel_segment(pgdp, _stext, _etext, text_prot, &vmlinux_text, 0,
    725			   VM_NO_GUARD);
    726	map_kernel_segment(pgdp, __start_rodata, __inittext_begin, PAGE_KERNEL,
    727			   &vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
    728	map_kernel_segment(pgdp, __inittext_begin, __inittext_end, text_prot,
    729			   &vmlinux_inittext, 0, VM_NO_GUARD);
    730	map_kernel_segment(pgdp, __initdata_begin, __initdata_end, PAGE_KERNEL,
    731			   &vmlinux_initdata, 0, VM_NO_GUARD);
    732	map_kernel_segment(pgdp, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
    733
    734	if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdp, FIXADDR_START)))) {
    735		/*
    736		 * The fixmap falls in a separate pgd to the kernel, and doesn't
    737		 * live in the carveout for the swapper_pg_dir. We can simply
    738		 * re-use the existing dir for the fixmap.
    739		 */
    740		set_pgd(pgd_offset_pgd(pgdp, FIXADDR_START),
    741			READ_ONCE(*pgd_offset_k(FIXADDR_START)));
    742	} else if (CONFIG_PGTABLE_LEVELS > 3) {
    743		pgd_t *bm_pgdp;
    744		p4d_t *bm_p4dp;
    745		pud_t *bm_pudp;
    746		/*
    747		 * The fixmap shares its top level pgd entry with the kernel
    748		 * mapping. This can really only occur when we are running
    749		 * with 16k/4 levels, so we can simply reuse the pud level
    750		 * entry instead.
    751		 */
    752		BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
    753		bm_pgdp = pgd_offset_pgd(pgdp, FIXADDR_START);
    754		bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_START);
    755		bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_START);
    756		pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
    757		pud_clear_fixmap();
    758	} else {
    759		BUG();
    760	}
    761
    762	kasan_copy_shadow(pgdp);
    763}
    764
    765void __init paging_init(void)
    766{
    767	pgd_t *pgdp = pgd_set_fixmap(__pa_symbol(swapper_pg_dir));
    768
    769	map_kernel(pgdp);
    770	map_mem(pgdp);
    771
    772	pgd_clear_fixmap();
    773
    774	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
    775	init_mm.pgd = swapper_pg_dir;
    776
    777	memblock_phys_free(__pa_symbol(init_pg_dir),
    778			   __pa_symbol(init_pg_end) - __pa_symbol(init_pg_dir));
    779
    780	memblock_allow_resize();
    781}
    782
    783/*
    784 * Check whether a kernel address is valid (derived from arch/x86/).
    785 */
    786int kern_addr_valid(unsigned long addr)
    787{
    788	pgd_t *pgdp;
    789	p4d_t *p4dp;
    790	pud_t *pudp, pud;
    791	pmd_t *pmdp, pmd;
    792	pte_t *ptep, pte;
    793
    794	addr = arch_kasan_reset_tag(addr);
    795	if ((((long)addr) >> VA_BITS) != -1UL)
    796		return 0;
    797
    798	pgdp = pgd_offset_k(addr);
    799	if (pgd_none(READ_ONCE(*pgdp)))
    800		return 0;
    801
    802	p4dp = p4d_offset(pgdp, addr);
    803	if (p4d_none(READ_ONCE(*p4dp)))
    804		return 0;
    805
    806	pudp = pud_offset(p4dp, addr);
    807	pud = READ_ONCE(*pudp);
    808	if (pud_none(pud))
    809		return 0;
    810
    811	if (pud_sect(pud))
    812		return pfn_valid(pud_pfn(pud));
    813
    814	pmdp = pmd_offset(pudp, addr);
    815	pmd = READ_ONCE(*pmdp);
    816	if (pmd_none(pmd))
    817		return 0;
    818
    819	if (pmd_sect(pmd))
    820		return pfn_valid(pmd_pfn(pmd));
    821
    822	ptep = pte_offset_kernel(pmdp, addr);
    823	pte = READ_ONCE(*ptep);
    824	if (pte_none(pte))
    825		return 0;
    826
    827	return pfn_valid(pte_pfn(pte));
    828}
    829
    830#ifdef CONFIG_MEMORY_HOTPLUG
    831static void free_hotplug_page_range(struct page *page, size_t size,
    832				    struct vmem_altmap *altmap)
    833{
    834	if (altmap) {
    835		vmem_altmap_free(altmap, size >> PAGE_SHIFT);
    836	} else {
    837		WARN_ON(PageReserved(page));
    838		free_pages((unsigned long)page_address(page), get_order(size));
    839	}
    840}
    841
    842static void free_hotplug_pgtable_page(struct page *page)
    843{
    844	free_hotplug_page_range(page, PAGE_SIZE, NULL);
    845}
    846
    847static bool pgtable_range_aligned(unsigned long start, unsigned long end,
    848				  unsigned long floor, unsigned long ceiling,
    849				  unsigned long mask)
    850{
    851	start &= mask;
    852	if (start < floor)
    853		return false;
    854
    855	if (ceiling) {
    856		ceiling &= mask;
    857		if (!ceiling)
    858			return false;
    859	}
    860
    861	if (end - 1 > ceiling - 1)
    862		return false;
    863	return true;
    864}
    865
    866static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
    867				    unsigned long end, bool free_mapped,
    868				    struct vmem_altmap *altmap)
    869{
    870	pte_t *ptep, pte;
    871
    872	do {
    873		ptep = pte_offset_kernel(pmdp, addr);
    874		pte = READ_ONCE(*ptep);
    875		if (pte_none(pte))
    876			continue;
    877
    878		WARN_ON(!pte_present(pte));
    879		pte_clear(&init_mm, addr, ptep);
    880		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
    881		if (free_mapped)
    882			free_hotplug_page_range(pte_page(pte),
    883						PAGE_SIZE, altmap);
    884	} while (addr += PAGE_SIZE, addr < end);
    885}
    886
    887static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
    888				    unsigned long end, bool free_mapped,
    889				    struct vmem_altmap *altmap)
    890{
    891	unsigned long next;
    892	pmd_t *pmdp, pmd;
    893
    894	do {
    895		next = pmd_addr_end(addr, end);
    896		pmdp = pmd_offset(pudp, addr);
    897		pmd = READ_ONCE(*pmdp);
    898		if (pmd_none(pmd))
    899			continue;
    900
    901		WARN_ON(!pmd_present(pmd));
    902		if (pmd_sect(pmd)) {
    903			pmd_clear(pmdp);
    904
    905			/*
    906			 * One TLBI should be sufficient here as the PMD_SIZE
    907			 * range is mapped with a single block entry.
    908			 */
    909			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
    910			if (free_mapped)
    911				free_hotplug_page_range(pmd_page(pmd),
    912							PMD_SIZE, altmap);
    913			continue;
    914		}
    915		WARN_ON(!pmd_table(pmd));
    916		unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
    917	} while (addr = next, addr < end);
    918}
    919
    920static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
    921				    unsigned long end, bool free_mapped,
    922				    struct vmem_altmap *altmap)
    923{
    924	unsigned long next;
    925	pud_t *pudp, pud;
    926
    927	do {
    928		next = pud_addr_end(addr, end);
    929		pudp = pud_offset(p4dp, addr);
    930		pud = READ_ONCE(*pudp);
    931		if (pud_none(pud))
    932			continue;
    933
    934		WARN_ON(!pud_present(pud));
    935		if (pud_sect(pud)) {
    936			pud_clear(pudp);
    937
    938			/*
    939			 * One TLBI should be sufficient here as the PUD_SIZE
    940			 * range is mapped with a single block entry.
    941			 */
    942			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
    943			if (free_mapped)
    944				free_hotplug_page_range(pud_page(pud),
    945							PUD_SIZE, altmap);
    946			continue;
    947		}
    948		WARN_ON(!pud_table(pud));
    949		unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
    950	} while (addr = next, addr < end);
    951}
    952
    953static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
    954				    unsigned long end, bool free_mapped,
    955				    struct vmem_altmap *altmap)
    956{
    957	unsigned long next;
    958	p4d_t *p4dp, p4d;
    959
    960	do {
    961		next = p4d_addr_end(addr, end);
    962		p4dp = p4d_offset(pgdp, addr);
    963		p4d = READ_ONCE(*p4dp);
    964		if (p4d_none(p4d))
    965			continue;
    966
    967		WARN_ON(!p4d_present(p4d));
    968		unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
    969	} while (addr = next, addr < end);
    970}
    971
    972static void unmap_hotplug_range(unsigned long addr, unsigned long end,
    973				bool free_mapped, struct vmem_altmap *altmap)
    974{
    975	unsigned long next;
    976	pgd_t *pgdp, pgd;
    977
    978	/*
    979	 * altmap can only be used as vmemmap mapping backing memory.
    980	 * In case the backing memory itself is not being freed, then
    981	 * altmap is irrelevant. Warn about this inconsistency when
    982	 * encountered.
    983	 */
    984	WARN_ON(!free_mapped && altmap);
    985
    986	do {
    987		next = pgd_addr_end(addr, end);
    988		pgdp = pgd_offset_k(addr);
    989		pgd = READ_ONCE(*pgdp);
    990		if (pgd_none(pgd))
    991			continue;
    992
    993		WARN_ON(!pgd_present(pgd));
    994		unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
    995	} while (addr = next, addr < end);
    996}
    997
    998static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
    999				 unsigned long end, unsigned long floor,
   1000				 unsigned long ceiling)
   1001{
   1002	pte_t *ptep, pte;
   1003	unsigned long i, start = addr;
   1004
   1005	do {
   1006		ptep = pte_offset_kernel(pmdp, addr);
   1007		pte = READ_ONCE(*ptep);
   1008
   1009		/*
   1010		 * This is just a sanity check here which verifies that
   1011		 * pte clearing has been done by earlier unmap loops.
   1012		 */
   1013		WARN_ON(!pte_none(pte));
   1014	} while (addr += PAGE_SIZE, addr < end);
   1015
   1016	if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
   1017		return;
   1018
   1019	/*
   1020	 * Check whether we can free the pte page if the rest of the
   1021	 * entries are empty. Overlap with other regions have been
   1022	 * handled by the floor/ceiling check.
   1023	 */
   1024	ptep = pte_offset_kernel(pmdp, 0UL);
   1025	for (i = 0; i < PTRS_PER_PTE; i++) {
   1026		if (!pte_none(READ_ONCE(ptep[i])))
   1027			return;
   1028	}
   1029
   1030	pmd_clear(pmdp);
   1031	__flush_tlb_kernel_pgtable(start);
   1032	free_hotplug_pgtable_page(virt_to_page(ptep));
   1033}
   1034
   1035static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
   1036				 unsigned long end, unsigned long floor,
   1037				 unsigned long ceiling)
   1038{
   1039	pmd_t *pmdp, pmd;
   1040	unsigned long i, next, start = addr;
   1041
   1042	do {
   1043		next = pmd_addr_end(addr, end);
   1044		pmdp = pmd_offset(pudp, addr);
   1045		pmd = READ_ONCE(*pmdp);
   1046		if (pmd_none(pmd))
   1047			continue;
   1048
   1049		WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
   1050		free_empty_pte_table(pmdp, addr, next, floor, ceiling);
   1051	} while (addr = next, addr < end);
   1052
   1053	if (CONFIG_PGTABLE_LEVELS <= 2)
   1054		return;
   1055
   1056	if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
   1057		return;
   1058
   1059	/*
   1060	 * Check whether we can free the pmd page if the rest of the
   1061	 * entries are empty. Overlap with other regions have been
   1062	 * handled by the floor/ceiling check.
   1063	 */
   1064	pmdp = pmd_offset(pudp, 0UL);
   1065	for (i = 0; i < PTRS_PER_PMD; i++) {
   1066		if (!pmd_none(READ_ONCE(pmdp[i])))
   1067			return;
   1068	}
   1069
   1070	pud_clear(pudp);
   1071	__flush_tlb_kernel_pgtable(start);
   1072	free_hotplug_pgtable_page(virt_to_page(pmdp));
   1073}
   1074
   1075static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
   1076				 unsigned long end, unsigned long floor,
   1077				 unsigned long ceiling)
   1078{
   1079	pud_t *pudp, pud;
   1080	unsigned long i, next, start = addr;
   1081
   1082	do {
   1083		next = pud_addr_end(addr, end);
   1084		pudp = pud_offset(p4dp, addr);
   1085		pud = READ_ONCE(*pudp);
   1086		if (pud_none(pud))
   1087			continue;
   1088
   1089		WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
   1090		free_empty_pmd_table(pudp, addr, next, floor, ceiling);
   1091	} while (addr = next, addr < end);
   1092
   1093	if (CONFIG_PGTABLE_LEVELS <= 3)
   1094		return;
   1095
   1096	if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
   1097		return;
   1098
   1099	/*
   1100	 * Check whether we can free the pud page if the rest of the
   1101	 * entries are empty. Overlap with other regions have been
   1102	 * handled by the floor/ceiling check.
   1103	 */
   1104	pudp = pud_offset(p4dp, 0UL);
   1105	for (i = 0; i < PTRS_PER_PUD; i++) {
   1106		if (!pud_none(READ_ONCE(pudp[i])))
   1107			return;
   1108	}
   1109
   1110	p4d_clear(p4dp);
   1111	__flush_tlb_kernel_pgtable(start);
   1112	free_hotplug_pgtable_page(virt_to_page(pudp));
   1113}
   1114
   1115static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
   1116				 unsigned long end, unsigned long floor,
   1117				 unsigned long ceiling)
   1118{
   1119	unsigned long next;
   1120	p4d_t *p4dp, p4d;
   1121
   1122	do {
   1123		next = p4d_addr_end(addr, end);
   1124		p4dp = p4d_offset(pgdp, addr);
   1125		p4d = READ_ONCE(*p4dp);
   1126		if (p4d_none(p4d))
   1127			continue;
   1128
   1129		WARN_ON(!p4d_present(p4d));
   1130		free_empty_pud_table(p4dp, addr, next, floor, ceiling);
   1131	} while (addr = next, addr < end);
   1132}
   1133
   1134static void free_empty_tables(unsigned long addr, unsigned long end,
   1135			      unsigned long floor, unsigned long ceiling)
   1136{
   1137	unsigned long next;
   1138	pgd_t *pgdp, pgd;
   1139
   1140	do {
   1141		next = pgd_addr_end(addr, end);
   1142		pgdp = pgd_offset_k(addr);
   1143		pgd = READ_ONCE(*pgdp);
   1144		if (pgd_none(pgd))
   1145			continue;
   1146
   1147		WARN_ON(!pgd_present(pgd));
   1148		free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
   1149	} while (addr = next, addr < end);
   1150}
   1151#endif
   1152
   1153#if !ARM64_KERNEL_USES_PMD_MAPS
   1154int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
   1155		struct vmem_altmap *altmap)
   1156{
   1157	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
   1158	return vmemmap_populate_basepages(start, end, node, altmap);
   1159}
   1160#else	/* !ARM64_KERNEL_USES_PMD_MAPS */
   1161int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
   1162		struct vmem_altmap *altmap)
   1163{
   1164	unsigned long addr = start;
   1165	unsigned long next;
   1166	pgd_t *pgdp;
   1167	p4d_t *p4dp;
   1168	pud_t *pudp;
   1169	pmd_t *pmdp;
   1170
   1171	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
   1172	do {
   1173		next = pmd_addr_end(addr, end);
   1174
   1175		pgdp = vmemmap_pgd_populate(addr, node);
   1176		if (!pgdp)
   1177			return -ENOMEM;
   1178
   1179		p4dp = vmemmap_p4d_populate(pgdp, addr, node);
   1180		if (!p4dp)
   1181			return -ENOMEM;
   1182
   1183		pudp = vmemmap_pud_populate(p4dp, addr, node);
   1184		if (!pudp)
   1185			return -ENOMEM;
   1186
   1187		pmdp = pmd_offset(pudp, addr);
   1188		if (pmd_none(READ_ONCE(*pmdp))) {
   1189			void *p = NULL;
   1190
   1191			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
   1192			if (!p) {
   1193				if (vmemmap_populate_basepages(addr, next, node, altmap))
   1194					return -ENOMEM;
   1195				continue;
   1196			}
   1197
   1198			pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
   1199		} else
   1200			vmemmap_verify((pte_t *)pmdp, node, addr, next);
   1201	} while (addr = next, addr != end);
   1202
   1203	return 0;
   1204}
   1205#endif	/* !ARM64_KERNEL_USES_PMD_MAPS */
   1206
   1207#ifdef CONFIG_MEMORY_HOTPLUG
   1208void vmemmap_free(unsigned long start, unsigned long end,
   1209		struct vmem_altmap *altmap)
   1210{
   1211	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
   1212
   1213	unmap_hotplug_range(start, end, true, altmap);
   1214	free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
   1215}
   1216#endif /* CONFIG_MEMORY_HOTPLUG */
   1217
   1218static inline pud_t *fixmap_pud(unsigned long addr)
   1219{
   1220	pgd_t *pgdp = pgd_offset_k(addr);
   1221	p4d_t *p4dp = p4d_offset(pgdp, addr);
   1222	p4d_t p4d = READ_ONCE(*p4dp);
   1223
   1224	BUG_ON(p4d_none(p4d) || p4d_bad(p4d));
   1225
   1226	return pud_offset_kimg(p4dp, addr);
   1227}
   1228
   1229static inline pmd_t *fixmap_pmd(unsigned long addr)
   1230{
   1231	pud_t *pudp = fixmap_pud(addr);
   1232	pud_t pud = READ_ONCE(*pudp);
   1233
   1234	BUG_ON(pud_none(pud) || pud_bad(pud));
   1235
   1236	return pmd_offset_kimg(pudp, addr);
   1237}
   1238
   1239static inline pte_t *fixmap_pte(unsigned long addr)
   1240{
   1241	return &bm_pte[pte_index(addr)];
   1242}
   1243
   1244/*
   1245 * The p*d_populate functions call virt_to_phys implicitly so they can't be used
   1246 * directly on kernel symbols (bm_p*d). This function is called too early to use
   1247 * lm_alias so __p*d_populate functions must be used to populate with the
   1248 * physical address from __pa_symbol.
   1249 */
   1250void __init early_fixmap_init(void)
   1251{
   1252	pgd_t *pgdp;
   1253	p4d_t *p4dp, p4d;
   1254	pud_t *pudp;
   1255	pmd_t *pmdp;
   1256	unsigned long addr = FIXADDR_START;
   1257
   1258	pgdp = pgd_offset_k(addr);
   1259	p4dp = p4d_offset(pgdp, addr);
   1260	p4d = READ_ONCE(*p4dp);
   1261	if (CONFIG_PGTABLE_LEVELS > 3 &&
   1262	    !(p4d_none(p4d) || p4d_page_paddr(p4d) == __pa_symbol(bm_pud))) {
   1263		/*
   1264		 * We only end up here if the kernel mapping and the fixmap
   1265		 * share the top level pgd entry, which should only happen on
   1266		 * 16k/4 levels configurations.
   1267		 */
   1268		BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
   1269		pudp = pud_offset_kimg(p4dp, addr);
   1270	} else {
   1271		if (p4d_none(p4d))
   1272			__p4d_populate(p4dp, __pa_symbol(bm_pud), P4D_TYPE_TABLE);
   1273		pudp = fixmap_pud(addr);
   1274	}
   1275	if (pud_none(READ_ONCE(*pudp)))
   1276		__pud_populate(pudp, __pa_symbol(bm_pmd), PUD_TYPE_TABLE);
   1277	pmdp = fixmap_pmd(addr);
   1278	__pmd_populate(pmdp, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
   1279
   1280	/*
   1281	 * The boot-ioremap range spans multiple pmds, for which
   1282	 * we are not prepared:
   1283	 */
   1284	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
   1285		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
   1286
   1287	if ((pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
   1288	     || pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
   1289		WARN_ON(1);
   1290		pr_warn("pmdp %p != %p, %p\n",
   1291			pmdp, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
   1292			fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
   1293		pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
   1294			fix_to_virt(FIX_BTMAP_BEGIN));
   1295		pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
   1296			fix_to_virt(FIX_BTMAP_END));
   1297
   1298		pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
   1299		pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
   1300	}
   1301}
   1302
   1303/*
   1304 * Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
   1305 * ever need to use IPIs for TLB broadcasting, then we're in trouble here.
   1306 */
   1307void __set_fixmap(enum fixed_addresses idx,
   1308			       phys_addr_t phys, pgprot_t flags)
   1309{
   1310	unsigned long addr = __fix_to_virt(idx);
   1311	pte_t *ptep;
   1312
   1313	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
   1314
   1315	ptep = fixmap_pte(addr);
   1316
   1317	if (pgprot_val(flags)) {
   1318		set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, flags));
   1319	} else {
   1320		pte_clear(&init_mm, addr, ptep);
   1321		flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
   1322	}
   1323}
   1324
   1325void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
   1326{
   1327	const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
   1328	int offset;
   1329	void *dt_virt;
   1330
   1331	/*
   1332	 * Check whether the physical FDT address is set and meets the minimum
   1333	 * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
   1334	 * at least 8 bytes so that we can always access the magic and size
   1335	 * fields of the FDT header after mapping the first chunk, double check
   1336	 * here if that is indeed the case.
   1337	 */
   1338	BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
   1339	if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
   1340		return NULL;
   1341
   1342	/*
   1343	 * Make sure that the FDT region can be mapped without the need to
   1344	 * allocate additional translation table pages, so that it is safe
   1345	 * to call create_mapping_noalloc() this early.
   1346	 *
   1347	 * On 64k pages, the FDT will be mapped using PTEs, so we need to
   1348	 * be in the same PMD as the rest of the fixmap.
   1349	 * On 4k pages, we'll use section mappings for the FDT so we only
   1350	 * have to be in the same PUD.
   1351	 */
   1352	BUILD_BUG_ON(dt_virt_base % SZ_2M);
   1353
   1354	BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
   1355		     __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
   1356
   1357	offset = dt_phys % SWAPPER_BLOCK_SIZE;
   1358	dt_virt = (void *)dt_virt_base + offset;
   1359
   1360	/* map the first chunk so we can read the size from the header */
   1361	create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
   1362			dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
   1363
   1364	if (fdt_magic(dt_virt) != FDT_MAGIC)
   1365		return NULL;
   1366
   1367	*size = fdt_totalsize(dt_virt);
   1368	if (*size > MAX_FDT_SIZE)
   1369		return NULL;
   1370
   1371	if (offset + *size > SWAPPER_BLOCK_SIZE)
   1372		create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
   1373			       round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
   1374
   1375	return dt_virt;
   1376}
   1377
   1378int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
   1379{
   1380	pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
   1381
   1382	/* Only allow permission changes for now */
   1383	if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
   1384				   pud_val(new_pud)))
   1385		return 0;
   1386
   1387	VM_BUG_ON(phys & ~PUD_MASK);
   1388	set_pud(pudp, new_pud);
   1389	return 1;
   1390}
   1391
   1392int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
   1393{
   1394	pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
   1395
   1396	/* Only allow permission changes for now */
   1397	if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
   1398				   pmd_val(new_pmd)))
   1399		return 0;
   1400
   1401	VM_BUG_ON(phys & ~PMD_MASK);
   1402	set_pmd(pmdp, new_pmd);
   1403	return 1;
   1404}
   1405
   1406int pud_clear_huge(pud_t *pudp)
   1407{
   1408	if (!pud_sect(READ_ONCE(*pudp)))
   1409		return 0;
   1410	pud_clear(pudp);
   1411	return 1;
   1412}
   1413
   1414int pmd_clear_huge(pmd_t *pmdp)
   1415{
   1416	if (!pmd_sect(READ_ONCE(*pmdp)))
   1417		return 0;
   1418	pmd_clear(pmdp);
   1419	return 1;
   1420}
   1421
   1422int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
   1423{
   1424	pte_t *table;
   1425	pmd_t pmd;
   1426
   1427	pmd = READ_ONCE(*pmdp);
   1428
   1429	if (!pmd_table(pmd)) {
   1430		VM_WARN_ON(1);
   1431		return 1;
   1432	}
   1433
   1434	table = pte_offset_kernel(pmdp, addr);
   1435	pmd_clear(pmdp);
   1436	__flush_tlb_kernel_pgtable(addr);
   1437	pte_free_kernel(NULL, table);
   1438	return 1;
   1439}
   1440
   1441int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
   1442{
   1443	pmd_t *table;
   1444	pmd_t *pmdp;
   1445	pud_t pud;
   1446	unsigned long next, end;
   1447
   1448	pud = READ_ONCE(*pudp);
   1449
   1450	if (!pud_table(pud)) {
   1451		VM_WARN_ON(1);
   1452		return 1;
   1453	}
   1454
   1455	table = pmd_offset(pudp, addr);
   1456	pmdp = table;
   1457	next = addr;
   1458	end = addr + PUD_SIZE;
   1459	do {
   1460		pmd_free_pte_page(pmdp, next);
   1461	} while (pmdp++, next += PMD_SIZE, next != end);
   1462
   1463	pud_clear(pudp);
   1464	__flush_tlb_kernel_pgtable(addr);
   1465	pmd_free(NULL, table);
   1466	return 1;
   1467}
   1468
   1469#ifdef CONFIG_MEMORY_HOTPLUG
   1470static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
   1471{
   1472	unsigned long end = start + size;
   1473
   1474	WARN_ON(pgdir != init_mm.pgd);
   1475	WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
   1476
   1477	unmap_hotplug_range(start, end, false, NULL);
   1478	free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
   1479}
   1480
   1481struct range arch_get_mappable_range(void)
   1482{
   1483	struct range mhp_range;
   1484	u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
   1485	u64 end_linear_pa = __pa(PAGE_END - 1);
   1486
   1487	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
   1488		/*
   1489		 * Check for a wrap, it is possible because of randomized linear
   1490		 * mapping the start physical address is actually bigger than
   1491		 * the end physical address. In this case set start to zero
   1492		 * because [0, end_linear_pa] range must still be able to cover
   1493		 * all addressable physical addresses.
   1494		 */
   1495		if (start_linear_pa > end_linear_pa)
   1496			start_linear_pa = 0;
   1497	}
   1498
   1499	WARN_ON(start_linear_pa > end_linear_pa);
   1500
   1501	/*
   1502	 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
   1503	 * accommodating both its ends but excluding PAGE_END. Max physical
   1504	 * range which can be mapped inside this linear mapping range, must
   1505	 * also be derived from its end points.
   1506	 */
   1507	mhp_range.start = start_linear_pa;
   1508	mhp_range.end =  end_linear_pa;
   1509
   1510	return mhp_range;
   1511}
   1512
   1513int arch_add_memory(int nid, u64 start, u64 size,
   1514		    struct mhp_params *params)
   1515{
   1516	int ret, flags = NO_EXEC_MAPPINGS;
   1517
   1518	VM_BUG_ON(!mhp_range_allowed(start, size, true));
   1519
   1520	/*
   1521	 * KFENCE requires linear map to be mapped at page granularity, so that
   1522	 * it is possible to protect/unprotect single pages in the KFENCE pool.
   1523	 */
   1524	if (can_set_direct_map() || IS_ENABLED(CONFIG_KFENCE))
   1525		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
   1526
   1527	__create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
   1528			     size, params->pgprot, __pgd_pgtable_alloc,
   1529			     flags);
   1530
   1531	memblock_clear_nomap(start, size);
   1532
   1533	ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
   1534			   params);
   1535	if (ret)
   1536		__remove_pgd_mapping(swapper_pg_dir,
   1537				     __phys_to_virt(start), size);
   1538	else {
   1539		max_pfn = PFN_UP(start + size);
   1540		max_low_pfn = max_pfn;
   1541	}
   1542
   1543	return ret;
   1544}
   1545
   1546void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
   1547{
   1548	unsigned long start_pfn = start >> PAGE_SHIFT;
   1549	unsigned long nr_pages = size >> PAGE_SHIFT;
   1550
   1551	__remove_pages(start_pfn, nr_pages, altmap);
   1552	__remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
   1553}
   1554
   1555/*
   1556 * This memory hotplug notifier helps prevent boot memory from being
   1557 * inadvertently removed as it blocks pfn range offlining process in
   1558 * __offline_pages(). Hence this prevents both offlining as well as
   1559 * removal process for boot memory which is initially always online.
   1560 * In future if and when boot memory could be removed, this notifier
   1561 * should be dropped and free_hotplug_page_range() should handle any
   1562 * reserved pages allocated during boot.
   1563 */
   1564static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
   1565					   unsigned long action, void *data)
   1566{
   1567	struct mem_section *ms;
   1568	struct memory_notify *arg = data;
   1569	unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
   1570	unsigned long pfn = arg->start_pfn;
   1571
   1572	if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
   1573		return NOTIFY_OK;
   1574
   1575	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
   1576		unsigned long start = PFN_PHYS(pfn);
   1577		unsigned long end = start + (1UL << PA_SECTION_SHIFT);
   1578
   1579		ms = __pfn_to_section(pfn);
   1580		if (!early_section(ms))
   1581			continue;
   1582
   1583		if (action == MEM_GOING_OFFLINE) {
   1584			/*
   1585			 * Boot memory removal is not supported. Prevent
   1586			 * it via blocking any attempted offline request
   1587			 * for the boot memory and just report it.
   1588			 */
   1589			pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
   1590			return NOTIFY_BAD;
   1591		} else if (action == MEM_OFFLINE) {
   1592			/*
   1593			 * This should have never happened. Boot memory
   1594			 * offlining should have been prevented by this
   1595			 * very notifier. Probably some memory removal
   1596			 * procedure might have changed which would then
   1597			 * require further debug.
   1598			 */
   1599			pr_err("Boot memory [%lx %lx] offlined\n", start, end);
   1600
   1601			/*
   1602			 * Core memory hotplug does not process a return
   1603			 * code from the notifier for MEM_OFFLINE events.
   1604			 * The error condition has been reported. Return
   1605			 * from here as if ignored.
   1606			 */
   1607			return NOTIFY_DONE;
   1608		}
   1609	}
   1610	return NOTIFY_OK;
   1611}
   1612
   1613static struct notifier_block prevent_bootmem_remove_nb = {
   1614	.notifier_call = prevent_bootmem_remove_notifier,
   1615};
   1616
   1617/*
   1618 * This ensures that boot memory sections on the platform are online
   1619 * from early boot. Memory sections could not be prevented from being
   1620 * offlined, unless for some reason they are not online to begin with.
   1621 * This helps validate the basic assumption on which the above memory
   1622 * event notifier works to prevent boot memory section offlining and
   1623 * its possible removal.
   1624 */
   1625static void validate_bootmem_online(void)
   1626{
   1627	phys_addr_t start, end, addr;
   1628	struct mem_section *ms;
   1629	u64 i;
   1630
   1631	/*
   1632	 * Scanning across all memblock might be expensive
   1633	 * on some big memory systems. Hence enable this
   1634	 * validation only with DEBUG_VM.
   1635	 */
   1636	if (!IS_ENABLED(CONFIG_DEBUG_VM))
   1637		return;
   1638
   1639	for_each_mem_range(i, &start, &end) {
   1640		for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
   1641			ms = __pfn_to_section(PHYS_PFN(addr));
   1642
   1643			/*
   1644			 * All memory ranges in the system at this point
   1645			 * should have been marked as early sections.
   1646			 */
   1647			WARN_ON(!early_section(ms));
   1648
   1649			/*
   1650			 * Memory notifier mechanism here to prevent boot
   1651			 * memory offlining depends on the fact that each
   1652			 * early section memory on the system is initially
   1653			 * online. Otherwise a given memory section which
   1654			 * is already offline will be overlooked and can
   1655			 * be removed completely. Call out such sections.
   1656			 */
   1657			if (!online_section(ms))
   1658				pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
   1659					addr, addr + (1UL << PA_SECTION_SHIFT));
   1660		}
   1661	}
   1662}
   1663
   1664static int __init prevent_bootmem_remove_init(void)
   1665{
   1666	int ret = 0;
   1667
   1668	if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
   1669		return ret;
   1670
   1671	validate_bootmem_online();
   1672	ret = register_memory_notifier(&prevent_bootmem_remove_nb);
   1673	if (ret)
   1674		pr_err("%s: Notifier registration failed %d\n", __func__, ret);
   1675
   1676	return ret;
   1677}
   1678early_initcall(prevent_bootmem_remove_init);
   1679#endif