cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

asid.c (5467B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Generic ASID allocator.
      4 *
      5 * Based on arch/arm/mm/context.c
      6 *
      7 * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
      8 * Copyright (C) 2012 ARM Ltd.
      9 */
     10
     11#include <linux/slab.h>
     12#include <linux/mm_types.h>
     13
     14#include <asm/asid.h>
     15
     16#define reserved_asid(info, cpu) *per_cpu_ptr((info)->reserved, cpu)
     17
     18#define ASID_MASK(info)			(~GENMASK((info)->bits - 1, 0))
     19#define ASID_FIRST_VERSION(info)	(1UL << ((info)->bits))
     20
     21#define asid2idx(info, asid)		(((asid) & ~ASID_MASK(info)) >> (info)->ctxt_shift)
     22#define idx2asid(info, idx)		(((idx) << (info)->ctxt_shift) & ~ASID_MASK(info))
     23
     24static void flush_context(struct asid_info *info)
     25{
     26	int i;
     27	u64 asid;
     28
     29	/* Update the list of reserved ASIDs and the ASID bitmap. */
     30	bitmap_clear(info->map, 0, NUM_CTXT_ASIDS(info));
     31
     32	for_each_possible_cpu(i) {
     33		asid = atomic64_xchg_relaxed(&active_asid(info, i), 0);
     34		/*
     35		 * If this CPU has already been through a
     36		 * rollover, but hasn't run another task in
     37		 * the meantime, we must preserve its reserved
     38		 * ASID, as this is the only trace we have of
     39		 * the process it is still running.
     40		 */
     41		if (asid == 0)
     42			asid = reserved_asid(info, i);
     43		__set_bit(asid2idx(info, asid), info->map);
     44		reserved_asid(info, i) = asid;
     45	}
     46
     47	/*
     48	 * Queue a TLB invalidation for each CPU to perform on next
     49	 * context-switch
     50	 */
     51	cpumask_setall(&info->flush_pending);
     52}
     53
     54static bool check_update_reserved_asid(struct asid_info *info, u64 asid,
     55				       u64 newasid)
     56{
     57	int cpu;
     58	bool hit = false;
     59
     60	/*
     61	 * Iterate over the set of reserved ASIDs looking for a match.
     62	 * If we find one, then we can update our mm to use newasid
     63	 * (i.e. the same ASID in the current generation) but we can't
     64	 * exit the loop early, since we need to ensure that all copies
     65	 * of the old ASID are updated to reflect the mm. Failure to do
     66	 * so could result in us missing the reserved ASID in a future
     67	 * generation.
     68	 */
     69	for_each_possible_cpu(cpu) {
     70		if (reserved_asid(info, cpu) == asid) {
     71			hit = true;
     72			reserved_asid(info, cpu) = newasid;
     73		}
     74	}
     75
     76	return hit;
     77}
     78
     79static u64 new_context(struct asid_info *info, atomic64_t *pasid,
     80		       struct mm_struct *mm)
     81{
     82	static u32 cur_idx = 1;
     83	u64 asid = atomic64_read(pasid);
     84	u64 generation = atomic64_read(&info->generation);
     85
     86	if (asid != 0) {
     87		u64 newasid = generation | (asid & ~ASID_MASK(info));
     88
     89		/*
     90		 * If our current ASID was active during a rollover, we
     91		 * can continue to use it and this was just a false alarm.
     92		 */
     93		if (check_update_reserved_asid(info, asid, newasid))
     94			return newasid;
     95
     96		/*
     97		 * We had a valid ASID in a previous life, so try to re-use
     98		 * it if possible.
     99		 */
    100		if (!__test_and_set_bit(asid2idx(info, asid), info->map))
    101			return newasid;
    102	}
    103
    104	/*
    105	 * Allocate a free ASID. If we can't find one, take a note of the
    106	 * currently active ASIDs and mark the TLBs as requiring flushes.  We
    107	 * always count from ASID #2 (index 1), as we use ASID #0 when setting
    108	 * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd
    109	 * pairs.
    110	 */
    111	asid = find_next_zero_bit(info->map, NUM_CTXT_ASIDS(info), cur_idx);
    112	if (asid != NUM_CTXT_ASIDS(info))
    113		goto set_asid;
    114
    115	/* We're out of ASIDs, so increment the global generation count */
    116	generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION(info),
    117						 &info->generation);
    118	flush_context(info);
    119
    120	/* We have more ASIDs than CPUs, so this will always succeed */
    121	asid = find_next_zero_bit(info->map, NUM_CTXT_ASIDS(info), 1);
    122
    123set_asid:
    124	__set_bit(asid, info->map);
    125	cur_idx = asid;
    126	cpumask_clear(mm_cpumask(mm));
    127	return idx2asid(info, asid) | generation;
    128}
    129
    130/*
    131 * Generate a new ASID for the context.
    132 *
    133 * @pasid: Pointer to the current ASID batch allocated. It will be updated
    134 * with the new ASID batch.
    135 * @cpu: current CPU ID. Must have been acquired through get_cpu()
    136 */
    137void asid_new_context(struct asid_info *info, atomic64_t *pasid,
    138		      unsigned int cpu, struct mm_struct *mm)
    139{
    140	unsigned long flags;
    141	u64 asid;
    142
    143	raw_spin_lock_irqsave(&info->lock, flags);
    144	/* Check that our ASID belongs to the current generation. */
    145	asid = atomic64_read(pasid);
    146	if ((asid ^ atomic64_read(&info->generation)) >> info->bits) {
    147		asid = new_context(info, pasid, mm);
    148		atomic64_set(pasid, asid);
    149	}
    150
    151	if (cpumask_test_and_clear_cpu(cpu, &info->flush_pending))
    152		info->flush_cpu_ctxt_cb();
    153
    154	atomic64_set(&active_asid(info, cpu), asid);
    155	cpumask_set_cpu(cpu, mm_cpumask(mm));
    156	raw_spin_unlock_irqrestore(&info->lock, flags);
    157}
    158
    159/*
    160 * Initialize the ASID allocator
    161 *
    162 * @info: Pointer to the asid allocator structure
    163 * @bits: Number of ASIDs available
    164 * @asid_per_ctxt: Number of ASIDs to allocate per-context. ASIDs are
    165 * allocated contiguously for a given context. This value should be a power of
    166 * 2.
    167 */
    168int asid_allocator_init(struct asid_info *info,
    169			u32 bits, unsigned int asid_per_ctxt,
    170			void (*flush_cpu_ctxt_cb)(void))
    171{
    172	info->bits = bits;
    173	info->ctxt_shift = ilog2(asid_per_ctxt);
    174	info->flush_cpu_ctxt_cb = flush_cpu_ctxt_cb;
    175	/*
    176	 * Expect allocation after rollover to fail if we don't have at least
    177	 * one more ASID than CPUs. ASID #0 is always reserved.
    178	 */
    179	WARN_ON(NUM_CTXT_ASIDS(info) - 1 <= num_possible_cpus());
    180	atomic64_set(&info->generation, ASID_FIRST_VERSION(info));
    181	info->map = kcalloc(BITS_TO_LONGS(NUM_CTXT_ASIDS(info)),
    182			    sizeof(*info->map), GFP_KERNEL);
    183	if (!info->map)
    184		return -ENOMEM;
    185
    186	raw_spin_lock_init(&info->lock);
    187
    188	return 0;
    189}