pgtable.h (12068B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Page table support for the Hexagon architecture 4 * 5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. 6 */ 7 8#ifndef _ASM_PGTABLE_H 9#define _ASM_PGTABLE_H 10 11/* 12 * Page table definitions for Qualcomm Hexagon processor. 13 */ 14#include <asm/page.h> 15#include <asm-generic/pgtable-nopmd.h> 16 17/* A handy thing to have if one has the RAM. Declared in head.S */ 18extern unsigned long empty_zero_page; 19 20/* 21 * The PTE model described here is that of the Hexagon Virtual Machine, 22 * which autonomously walks 2-level page tables. At a lower level, we 23 * also describe the RISCish software-loaded TLB entry structure of 24 * the underlying Hexagon processor. A kernel built to run on the 25 * virtual machine has no need to know about the underlying hardware. 26 */ 27#include <asm/vm_mmu.h> 28 29/* 30 * To maximize the comfort level for the PTE manipulation macros, 31 * define the "well known" architecture-specific bits. 32 */ 33#define _PAGE_READ __HVM_PTE_R 34#define _PAGE_WRITE __HVM_PTE_W 35#define _PAGE_EXECUTE __HVM_PTE_X 36#define _PAGE_USER __HVM_PTE_U 37 38/* 39 * We have a total of 4 "soft" bits available in the abstract PTE. 40 * The two mandatory software bits are Dirty and Accessed. 41 * To make nonlinear swap work according to the more recent 42 * model, we want a low order "Present" bit to indicate whether 43 * the PTE describes MMU programming or swap space. 44 */ 45#define _PAGE_PRESENT (1<<0) 46#define _PAGE_DIRTY (1<<1) 47#define _PAGE_ACCESSED (1<<2) 48 49/* 50 * For now, let's say that Valid and Present are the same thing. 51 * Alternatively, we could say that it's the "or" of R, W, and X 52 * permissions. 53 */ 54#define _PAGE_VALID _PAGE_PRESENT 55 56/* 57 * We're not defining _PAGE_GLOBAL here, since there's no concept 58 * of global pages or ASIDs exposed to the Hexagon Virtual Machine, 59 * and we want to use the same page table structures and macros in 60 * the native kernel as we do in the virtual machine kernel. 61 * So we'll put up with a bit of inefficiency for now... 62 */ 63 64/* 65 * Top "FOURTH" level (pgd), which for the Hexagon VM is really 66 * only the second from the bottom, pgd and pud both being collapsed. 67 * Each entry represents 4MB of virtual address space, 4K of table 68 * thus maps the full 4GB. 69 */ 70#define PGDIR_SHIFT 22 71#define PTRS_PER_PGD 1024 72 73#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 74#define PGDIR_MASK (~(PGDIR_SIZE-1)) 75 76#ifdef CONFIG_PAGE_SIZE_4KB 77#define PTRS_PER_PTE 1024 78#endif 79 80#ifdef CONFIG_PAGE_SIZE_16KB 81#define PTRS_PER_PTE 256 82#endif 83 84#ifdef CONFIG_PAGE_SIZE_64KB 85#define PTRS_PER_PTE 64 86#endif 87 88#ifdef CONFIG_PAGE_SIZE_256KB 89#define PTRS_PER_PTE 16 90#endif 91 92#ifdef CONFIG_PAGE_SIZE_1MB 93#define PTRS_PER_PTE 4 94#endif 95 96/* Any bigger and the PTE disappears. */ 97#define pgd_ERROR(e) \ 98 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\ 99 pgd_val(e)) 100 101/* 102 * Page Protection Constants. Includes (in this variant) cache attributes. 103 */ 104extern unsigned long _dflt_cache_att; 105 106#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 107 _dflt_cache_att) 108#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 109 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 110#define PAGE_COPY PAGE_READONLY 111#define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 112 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 113#define PAGE_COPY_EXEC PAGE_EXEC 114#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 115 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att) 116#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 117 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att) 118 119 120/* 121 * Aliases for mapping mmap() protection bits to page protections. 122 * These get used for static initialization, so using the _dflt_cache_att 123 * variable for the default cache attribute isn't workable. If the 124 * default gets changed at boot time, the boot option code has to 125 * update data structures like the protaction_map[] array. 126 */ 127#define CACHEDEF (CACHE_DEFAULT << 6) 128 129/* Private (copy-on-write) page protections. */ 130#define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF) 131#define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF) 132#define __P010 __P000 /* Write-only copy-on-write */ 133#define __P011 __P001 /* Read/Write copy-on-write */ 134#define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 135 _PAGE_EXECUTE | CACHEDEF) 136#define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \ 137 _PAGE_READ | CACHEDEF) 138#define __P110 __P100 /* Write/execute copy-on-write */ 139#define __P111 __P101 /* Read/Write/Execute, copy-on-write */ 140 141/* Shared page protections. */ 142#define __S000 __P000 143#define __S001 __P001 144#define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 145 _PAGE_WRITE | CACHEDEF) 146#define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 147 _PAGE_WRITE | CACHEDEF) 148#define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 149 _PAGE_EXECUTE | CACHEDEF) 150#define __S101 __P101 151#define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 152 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 153#define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 154 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 155 156extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */ 157 158/* HUGETLB not working currently */ 159#ifdef CONFIG_HUGETLB_PAGE 160#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE) 161#endif 162 163/* 164 * For now, assume that higher-level code will do TLB/MMU invalidations 165 * and don't insert that overhead into this low-level function. 166 */ 167extern void sync_icache_dcache(pte_t pte); 168 169#define pte_present_exec_user(pte) \ 170 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \ 171 (_PAGE_EXECUTE | _PAGE_USER)) 172 173static inline void set_pte(pte_t *ptep, pte_t pteval) 174{ 175 /* should really be using pte_exec, if it weren't declared later. */ 176 if (pte_present_exec_user(pteval)) 177 sync_icache_dcache(pteval); 178 179 *ptep = pteval; 180} 181 182/* 183 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid 184 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE 185 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7 186 * as a universal null entry, but some of those least significant bits 187 * are interpreted by software. 188 */ 189#define _NULL_PMD 0x7 190#define _NULL_PTE 0x0 191 192static inline void pmd_clear(pmd_t *pmd_entry_ptr) 193{ 194 pmd_val(*pmd_entry_ptr) = _NULL_PMD; 195} 196 197/* 198 * Conveniently, a null PTE value is invalid. 199 */ 200static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 201 pte_t *ptep) 202{ 203 pte_val(*ptep) = _NULL_PTE; 204} 205 206/** 207 * pmd_none - check if pmd_entry is mapped 208 * @pmd_entry: pmd entry 209 * 210 * MIPS checks it against that "invalid pte table" thing. 211 */ 212static inline int pmd_none(pmd_t pmd) 213{ 214 return pmd_val(pmd) == _NULL_PMD; 215} 216 217/** 218 * pmd_present - is there a page table behind this? 219 * Essentially the inverse of pmd_none. We maybe 220 * save an inline instruction by defining it this 221 * way, instead of simply "!pmd_none". 222 */ 223static inline int pmd_present(pmd_t pmd) 224{ 225 return pmd_val(pmd) != (unsigned long)_NULL_PMD; 226} 227 228/** 229 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out. 230 * As we have no known cause of badness, it's null, as it is for many 231 * architectures. 232 */ 233static inline int pmd_bad(pmd_t pmd) 234{ 235 return 0; 236} 237 238/* 239 * pmd_pfn - converts a PMD entry to a page frame number 240 */ 241#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) 242 243/* 244 * pmd_page - converts a PMD entry to a page pointer 245 */ 246#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 247 248/** 249 * pte_none - check if pte is mapped 250 * @pte: pte_t entry 251 */ 252static inline int pte_none(pte_t pte) 253{ 254 return pte_val(pte) == _NULL_PTE; 255}; 256 257/* 258 * pte_present - check if page is present 259 */ 260static inline int pte_present(pte_t pte) 261{ 262 return pte_val(pte) & _PAGE_PRESENT; 263} 264 265/* mk_pte - make a PTE out of a page pointer and protection bits */ 266#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 267 268/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */ 269#define pte_page(x) pfn_to_page(pte_pfn(x)) 270 271/* pte_mkold - mark PTE as not recently accessed */ 272static inline pte_t pte_mkold(pte_t pte) 273{ 274 pte_val(pte) &= ~_PAGE_ACCESSED; 275 return pte; 276} 277 278/* pte_mkyoung - mark PTE as recently accessed */ 279static inline pte_t pte_mkyoung(pte_t pte) 280{ 281 pte_val(pte) |= _PAGE_ACCESSED; 282 return pte; 283} 284 285/* pte_mkclean - mark page as in sync with backing store */ 286static inline pte_t pte_mkclean(pte_t pte) 287{ 288 pte_val(pte) &= ~_PAGE_DIRTY; 289 return pte; 290} 291 292/* pte_mkdirty - mark page as modified */ 293static inline pte_t pte_mkdirty(pte_t pte) 294{ 295 pte_val(pte) |= _PAGE_DIRTY; 296 return pte; 297} 298 299/* pte_young - "is PTE marked as accessed"? */ 300static inline int pte_young(pte_t pte) 301{ 302 return pte_val(pte) & _PAGE_ACCESSED; 303} 304 305/* pte_dirty - "is PTE dirty?" */ 306static inline int pte_dirty(pte_t pte) 307{ 308 return pte_val(pte) & _PAGE_DIRTY; 309} 310 311/* pte_modify - set protection bits on PTE */ 312static inline pte_t pte_modify(pte_t pte, pgprot_t prot) 313{ 314 pte_val(pte) &= PAGE_MASK; 315 pte_val(pte) |= pgprot_val(prot); 316 return pte; 317} 318 319/* pte_wrprotect - mark page as not writable */ 320static inline pte_t pte_wrprotect(pte_t pte) 321{ 322 pte_val(pte) &= ~_PAGE_WRITE; 323 return pte; 324} 325 326/* pte_mkwrite - mark page as writable */ 327static inline pte_t pte_mkwrite(pte_t pte) 328{ 329 pte_val(pte) |= _PAGE_WRITE; 330 return pte; 331} 332 333/* pte_mkexec - mark PTE as executable */ 334static inline pte_t pte_mkexec(pte_t pte) 335{ 336 pte_val(pte) |= _PAGE_EXECUTE; 337 return pte; 338} 339 340/* pte_read - "is PTE marked as readable?" */ 341static inline int pte_read(pte_t pte) 342{ 343 return pte_val(pte) & _PAGE_READ; 344} 345 346/* pte_write - "is PTE marked as writable?" */ 347static inline int pte_write(pte_t pte) 348{ 349 return pte_val(pte) & _PAGE_WRITE; 350} 351 352 353/* pte_exec - "is PTE marked as executable?" */ 354static inline int pte_exec(pte_t pte) 355{ 356 return pte_val(pte) & _PAGE_EXECUTE; 357} 358 359/* __pte_to_swp_entry - extract swap entry from PTE */ 360#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 361 362/* __swp_entry_to_pte - extract PTE from swap entry */ 363#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 364 365/* pfn_pte - convert page number and protection value to page table entry */ 366#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot)) 367 368/* pte_pfn - convert pte to page frame number */ 369#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 370#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval)) 371 372/* 373 * set_pte_at - update page table and do whatever magic may be 374 * necessary to make the underlying hardware/firmware take note. 375 * 376 * VM may require a virtual instruction to alert the MMU. 377 */ 378#define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte) 379 380static inline unsigned long pmd_page_vaddr(pmd_t pmd) 381{ 382 return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK); 383} 384 385/* ZERO_PAGE - returns the globally shared zero page */ 386#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page)) 387 388/* 389 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is 390 * interpreted as swap information. The remaining free bits are interpreted as 391 * swap type/offset tuple. Rather than have the TLB fill handler test 392 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to 393 * all zeros for swap entries, which speeds up the miss handler at the cost of 394 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon 395 * processor architecture and target applications suggest a lot of TLB misses 396 * and not much swap space. 397 * 398 * Format of swap PTE: 399 * bit 0: Present (zero) 400 * bits 1-5: swap type (arch independent layer uses 5 bits max) 401 * bits 6-9: bits 3:0 of offset 402 * bits 10-12: effectively _PAGE_PROTNONE (all zero) 403 * bits 13-31: bits 22:4 of swap offset 404 * 405 * The split offset makes some of the following macros a little gnarly, 406 * but there's plenty of precedent for this sort of thing. 407 */ 408 409/* Used for swap PTEs */ 410#define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f) 411 412#define __swp_offset(swp_pte) \ 413 ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0)) 414 415#define __swp_entry(type, offset) \ 416 ((swp_entry_t) { \ 417 ((type << 1) | \ 418 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) }) 419 420#endif