cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pgtable.h (19912B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef _ASM_IA64_PGTABLE_H
      3#define _ASM_IA64_PGTABLE_H
      4
      5/*
      6 * This file contains the functions and defines necessary to modify and use
      7 * the IA-64 page table tree.
      8 *
      9 * This hopefully works with any (fixed) IA-64 page-size, as defined
     10 * in <asm/page.h>.
     11 *
     12 * Copyright (C) 1998-2005 Hewlett-Packard Co
     13 *	David Mosberger-Tang <davidm@hpl.hp.com>
     14 */
     15
     16
     17#include <asm/mman.h>
     18#include <asm/page.h>
     19#include <asm/processor.h>
     20#include <asm/types.h>
     21
     22#define IA64_MAX_PHYS_BITS	50	/* max. number of physical address bits (architected) */
     23
     24/*
     25 * First, define the various bits in a PTE.  Note that the PTE format
     26 * matches the VHPT short format, the firt doubleword of the VHPD long
     27 * format, and the first doubleword of the TLB insertion format.
     28 */
     29#define _PAGE_P_BIT		0
     30#define _PAGE_A_BIT		5
     31#define _PAGE_D_BIT		6
     32
     33#define _PAGE_P			(1 << _PAGE_P_BIT)	/* page present bit */
     34#define _PAGE_MA_WB		(0x0 <<  2)	/* write back memory attribute */
     35#define _PAGE_MA_UC		(0x4 <<  2)	/* uncacheable memory attribute */
     36#define _PAGE_MA_UCE		(0x5 <<  2)	/* UC exported attribute */
     37#define _PAGE_MA_WC		(0x6 <<  2)	/* write coalescing memory attribute */
     38#define _PAGE_MA_NAT		(0x7 <<  2)	/* not-a-thing attribute */
     39#define _PAGE_MA_MASK		(0x7 <<  2)
     40#define _PAGE_PL_0		(0 <<  7)	/* privilege level 0 (kernel) */
     41#define _PAGE_PL_1		(1 <<  7)	/* privilege level 1 (unused) */
     42#define _PAGE_PL_2		(2 <<  7)	/* privilege level 2 (unused) */
     43#define _PAGE_PL_3		(3 <<  7)	/* privilege level 3 (user) */
     44#define _PAGE_PL_MASK		(3 <<  7)
     45#define _PAGE_AR_R		(0 <<  9)	/* read only */
     46#define _PAGE_AR_RX		(1 <<  9)	/* read & execute */
     47#define _PAGE_AR_RW		(2 <<  9)	/* read & write */
     48#define _PAGE_AR_RWX		(3 <<  9)	/* read, write & execute */
     49#define _PAGE_AR_R_RW		(4 <<  9)	/* read / read & write */
     50#define _PAGE_AR_RX_RWX		(5 <<  9)	/* read & exec / read, write & exec */
     51#define _PAGE_AR_RWX_RW		(6 <<  9)	/* read, write & exec / read & write */
     52#define _PAGE_AR_X_RX		(7 <<  9)	/* exec & promote / read & exec */
     53#define _PAGE_AR_MASK		(7 <<  9)
     54#define _PAGE_AR_SHIFT		9
     55#define _PAGE_A			(1 << _PAGE_A_BIT)	/* page accessed bit */
     56#define _PAGE_D			(1 << _PAGE_D_BIT)	/* page dirty bit */
     57#define _PAGE_PPN_MASK		(((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
     58#define _PAGE_ED		(__IA64_UL(1) << 52)	/* exception deferral */
     59#define _PAGE_PROTNONE		(__IA64_UL(1) << 63)
     60
     61#define _PFN_MASK		_PAGE_PPN_MASK
     62/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */
     63#define _PAGE_CHG_MASK	(_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)
     64
     65#define _PAGE_SIZE_4K	12
     66#define _PAGE_SIZE_8K	13
     67#define _PAGE_SIZE_16K	14
     68#define _PAGE_SIZE_64K	16
     69#define _PAGE_SIZE_256K	18
     70#define _PAGE_SIZE_1M	20
     71#define _PAGE_SIZE_4M	22
     72#define _PAGE_SIZE_16M	24
     73#define _PAGE_SIZE_64M	26
     74#define _PAGE_SIZE_256M	28
     75#define _PAGE_SIZE_1G	30
     76#define _PAGE_SIZE_4G	32
     77
     78#define __ACCESS_BITS		_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
     79#define __DIRTY_BITS_NO_ED	_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
     80#define __DIRTY_BITS		_PAGE_ED | __DIRTY_BITS_NO_ED
     81
     82/*
     83 * How many pointers will a page table level hold expressed in shift
     84 */
     85#define PTRS_PER_PTD_SHIFT	(PAGE_SHIFT-3)
     86
     87/*
     88 * Definitions for fourth level:
     89 */
     90#define PTRS_PER_PTE	(__IA64_UL(1) << (PTRS_PER_PTD_SHIFT))
     91
     92/*
     93 * Definitions for third level:
     94 *
     95 * PMD_SHIFT determines the size of the area a third-level page table
     96 * can map.
     97 */
     98#define PMD_SHIFT	(PAGE_SHIFT + (PTRS_PER_PTD_SHIFT))
     99#define PMD_SIZE	(1UL << PMD_SHIFT)
    100#define PMD_MASK	(~(PMD_SIZE-1))
    101#define PTRS_PER_PMD	(1UL << (PTRS_PER_PTD_SHIFT))
    102
    103#if CONFIG_PGTABLE_LEVELS == 4
    104/*
    105 * Definitions for second level:
    106 *
    107 * PUD_SHIFT determines the size of the area a second-level page table
    108 * can map.
    109 */
    110#define PUD_SHIFT	(PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
    111#define PUD_SIZE	(1UL << PUD_SHIFT)
    112#define PUD_MASK	(~(PUD_SIZE-1))
    113#define PTRS_PER_PUD	(1UL << (PTRS_PER_PTD_SHIFT))
    114#endif
    115
    116/*
    117 * Definitions for first level:
    118 *
    119 * PGDIR_SHIFT determines what a first-level page table entry can map.
    120 */
    121#if CONFIG_PGTABLE_LEVELS == 4
    122#define PGDIR_SHIFT		(PUD_SHIFT + (PTRS_PER_PTD_SHIFT))
    123#else
    124#define PGDIR_SHIFT		(PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
    125#endif
    126#define PGDIR_SIZE		(__IA64_UL(1) << PGDIR_SHIFT)
    127#define PGDIR_MASK		(~(PGDIR_SIZE-1))
    128#define PTRS_PER_PGD_SHIFT	PTRS_PER_PTD_SHIFT
    129#define PTRS_PER_PGD		(1UL << PTRS_PER_PGD_SHIFT)
    130#define USER_PTRS_PER_PGD	(5*PTRS_PER_PGD/8)	/* regions 0-4 are user regions */
    131
    132/*
    133 * All the normal masks have the "page accessed" bits on, as any time
    134 * they are used, the page is accessed. They are cleared only by the
    135 * page-out routines.
    136 */
    137#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_A)
    138#define PAGE_SHARED	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
    139#define PAGE_READONLY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
    140#define PAGE_COPY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
    141#define PAGE_COPY_EXEC	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
    142#define PAGE_GATE	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
    143#define PAGE_KERNEL	__pgprot(__DIRTY_BITS  | _PAGE_PL_0 | _PAGE_AR_RWX)
    144#define PAGE_KERNELRX	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
    145#define PAGE_KERNEL_UC	__pgprot(__DIRTY_BITS  | _PAGE_PL_0 | _PAGE_AR_RWX | \
    146				 _PAGE_MA_UC)
    147
    148# ifndef __ASSEMBLY__
    149
    150#include <linux/sched/mm.h>	/* for mm_struct */
    151#include <linux/bitops.h>
    152#include <asm/cacheflush.h>
    153#include <asm/mmu_context.h>
    154
    155/*
    156 * Next come the mappings that determine how mmap() protection bits
    157 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented.  The
    158 * _P version gets used for a private shared memory segment, the _S
    159 * version gets used for a shared memory segment with MAP_SHARED on.
    160 * In a private shared memory segment, we do a copy-on-write if a task
    161 * attempts to write to the page.
    162 */
    163	/* xwr */
    164#define __P000	PAGE_NONE
    165#define __P001	PAGE_READONLY
    166#define __P010	PAGE_READONLY	/* write to priv pg -> copy & make writable */
    167#define __P011	PAGE_READONLY	/* ditto */
    168#define __P100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
    169#define __P101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
    170#define __P110	PAGE_COPY_EXEC
    171#define __P111	PAGE_COPY_EXEC
    172
    173#define __S000	PAGE_NONE
    174#define __S001	PAGE_READONLY
    175#define __S010	PAGE_SHARED	/* we don't have (and don't need) write-only */
    176#define __S011	PAGE_SHARED
    177#define __S100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
    178#define __S101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
    179#define __S110	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
    180#define __S111	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
    181
    182#define pgd_ERROR(e)	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
    183#if CONFIG_PGTABLE_LEVELS == 4
    184#define pud_ERROR(e)	printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
    185#endif
    186#define pmd_ERROR(e)	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
    187#define pte_ERROR(e)	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
    188
    189
    190/*
    191 * Some definitions to translate between mem_map, PTEs, and page addresses:
    192 */
    193
    194
    195/* Quick test to see if ADDR is a (potentially) valid physical address. */
    196static inline long
    197ia64_phys_addr_valid (unsigned long addr)
    198{
    199	return (addr & (local_cpu_data->unimpl_pa_mask)) == 0;
    200}
    201
    202/*
    203 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
    204 * memory.  For the return value to be meaningful, ADDR must be >=
    205 * PAGE_OFFSET.  This operation can be relatively expensive (e.g.,
    206 * require a hash-, or multi-level tree-lookup or something of that
    207 * sort) but it guarantees to return TRUE only if accessing the page
    208 * at that address does not cause an error.  Note that there may be
    209 * addresses for which kern_addr_valid() returns FALSE even though an
    210 * access would not cause an error (e.g., this is typically true for
    211 * memory mapped I/O regions.
    212 *
    213 * XXX Need to implement this for IA-64.
    214 */
    215#define kern_addr_valid(addr)	(1)
    216
    217
    218/*
    219 * Now come the defines and routines to manage and access the three-level
    220 * page table.
    221 */
    222
    223
    224#define VMALLOC_START		(RGN_BASE(RGN_GATE) + 0x200000000UL)
    225#if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP)
    226/* SPARSEMEM_VMEMMAP uses half of vmalloc... */
    227# define VMALLOC_END		(RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10)))
    228# define vmemmap		((struct page *)VMALLOC_END)
    229#else
    230# define VMALLOC_END		(RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
    231#endif
    232
    233/* fs/proc/kcore.c */
    234#define	kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE))
    235#define	kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE))
    236
    237#define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3)
    238#define RGN_MAP_LIMIT	((1UL << RGN_MAP_SHIFT) - PAGE_SIZE)	/* per region addr limit */
    239
    240/*
    241 * Conversion functions: convert page frame number (pfn) and a protection value to a page
    242 * table entry (pte).
    243 */
    244#define pfn_pte(pfn, pgprot) \
    245({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; })
    246
    247/* Extract pfn from pte.  */
    248#define pte_pfn(_pte)		((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT)
    249
    250#define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
    251
    252/* This takes a physical page address that is used by the remapping functions */
    253#define mk_pte_phys(physpage, pgprot) \
    254({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
    255
    256#define pte_modify(_pte, newprot) \
    257	(__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK)))
    258
    259#define pte_none(pte) 			(!pte_val(pte))
    260#define pte_present(pte)		(pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
    261#define pte_clear(mm,addr,pte)		(pte_val(*(pte)) = 0UL)
    262/* pte_page() returns the "struct page *" corresponding to the PTE: */
    263#define pte_page(pte)			virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET))
    264
    265#define pmd_none(pmd)			(!pmd_val(pmd))
    266#define pmd_bad(pmd)			(!ia64_phys_addr_valid(pmd_val(pmd)))
    267#define pmd_present(pmd)		(pmd_val(pmd) != 0UL)
    268#define pmd_clear(pmdp)			(pmd_val(*(pmdp)) = 0UL)
    269#define pmd_page_vaddr(pmd)		((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
    270#define pmd_pfn(pmd)			((pmd_val(pmd) & _PFN_MASK) >> PAGE_SHIFT)
    271#define pmd_page(pmd)			virt_to_page((pmd_val(pmd) + PAGE_OFFSET))
    272
    273#define pud_none(pud)			(!pud_val(pud))
    274#define pud_bad(pud)			(!ia64_phys_addr_valid(pud_val(pud)))
    275#define pud_present(pud)		(pud_val(pud) != 0UL)
    276#define pud_clear(pudp)			(pud_val(*(pudp)) = 0UL)
    277#define pud_pgtable(pud)		((pmd_t *) __va(pud_val(pud) & _PFN_MASK))
    278#define pud_page(pud)			virt_to_page((pud_val(pud) + PAGE_OFFSET))
    279
    280#if CONFIG_PGTABLE_LEVELS == 4
    281#define p4d_none(p4d)			(!p4d_val(p4d))
    282#define p4d_bad(p4d)			(!ia64_phys_addr_valid(p4d_val(p4d)))
    283#define p4d_present(p4d)		(p4d_val(p4d) != 0UL)
    284#define p4d_clear(p4dp)			(p4d_val(*(p4dp)) = 0UL)
    285#define p4d_pgtable(p4d)		((pud_t *) __va(p4d_val(p4d) & _PFN_MASK))
    286#define p4d_page(p4d)			virt_to_page((p4d_val(p4d) + PAGE_OFFSET))
    287#endif
    288
    289/*
    290 * The following have defined behavior only work if pte_present() is true.
    291 */
    292#define pte_write(pte)	((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4)
    293#define pte_exec(pte)		((pte_val(pte) & _PAGE_AR_RX) != 0)
    294#define pte_dirty(pte)		((pte_val(pte) & _PAGE_D) != 0)
    295#define pte_young(pte)		((pte_val(pte) & _PAGE_A) != 0)
    296
    297/*
    298 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the
    299 * access rights:
    300 */
    301#define pte_wrprotect(pte)	(__pte(pte_val(pte) & ~_PAGE_AR_RW))
    302#define pte_mkwrite(pte)	(__pte(pte_val(pte) | _PAGE_AR_RW))
    303#define pte_mkold(pte)		(__pte(pte_val(pte) & ~_PAGE_A))
    304#define pte_mkyoung(pte)	(__pte(pte_val(pte) | _PAGE_A))
    305#define pte_mkclean(pte)	(__pte(pte_val(pte) & ~_PAGE_D))
    306#define pte_mkdirty(pte)	(__pte(pte_val(pte) | _PAGE_D))
    307#define pte_mkhuge(pte)		(__pte(pte_val(pte)))
    308
    309/*
    310 * Because ia64's Icache and Dcache is not coherent (on a cpu), we need to
    311 * sync icache and dcache when we insert *new* executable page.
    312 *  __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache
    313 * if necessary.
    314 *
    315 *  set_pte() is also called by the kernel, but we can expect that the kernel
    316 *  flushes icache explicitly if necessary.
    317 */
    318#define pte_present_exec_user(pte)\
    319	((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \
    320		(_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX))
    321
    322extern void __ia64_sync_icache_dcache(pte_t pteval);
    323static inline void set_pte(pte_t *ptep, pte_t pteval)
    324{
    325	/* page is present && page is user  && page is executable
    326	 * && (page swapin or new page or page migration
    327	 *	|| copy_on_write with page copying.)
    328	 */
    329	if (pte_present_exec_user(pteval) &&
    330	    (!pte_present(*ptep) ||
    331		pte_pfn(*ptep) != pte_pfn(pteval)))
    332		/* load_module() calles flush_icache_range() explicitly*/
    333		__ia64_sync_icache_dcache(pteval);
    334	*ptep = pteval;
    335}
    336
    337#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
    338
    339/*
    340 * Make page protection values cacheable, uncacheable, or write-
    341 * combining.  Note that "protection" is really a misnomer here as the
    342 * protection value contains the memory attribute bits, dirty bits, and
    343 * various other bits as well.
    344 */
    345#define pgprot_cacheable(prot)		__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB)
    346#define pgprot_noncached(prot)		__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
    347#define pgprot_writecombine(prot)	__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
    348
    349struct file;
    350extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
    351				     unsigned long size, pgprot_t vma_prot);
    352#define __HAVE_PHYS_MEM_ACCESS_PROT
    353
    354static inline unsigned long
    355pgd_index (unsigned long address)
    356{
    357	unsigned long region = address >> 61;
    358	unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
    359
    360	return (region << (PAGE_SHIFT - 6)) | l1index;
    361}
    362#define pgd_index pgd_index
    363
    364/*
    365 * In the kernel's mapped region we know everything is in region number 5, so
    366 * as an optimisation its PGD already points to the area for that region.
    367 * However, this also means that we cannot use pgd_index() and we must
    368 * never add the region here.
    369 */
    370#define pgd_offset_k(addr) \
    371	(init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
    372
    373/* Look up a pgd entry in the gate area.  On IA-64, the gate-area
    374   resides in the kernel-mapped segment, hence we use pgd_offset_k()
    375   here.  */
    376#define pgd_offset_gate(mm, addr)	pgd_offset_k(addr)
    377
    378/* atomic versions of the some PTE manipulations: */
    379
    380static inline int
    381ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
    382{
    383#ifdef CONFIG_SMP
    384	if (!pte_young(*ptep))
    385		return 0;
    386	return test_and_clear_bit(_PAGE_A_BIT, ptep);
    387#else
    388	pte_t pte = *ptep;
    389	if (!pte_young(pte))
    390		return 0;
    391	set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
    392	return 1;
    393#endif
    394}
    395
    396static inline pte_t
    397ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
    398{
    399#ifdef CONFIG_SMP
    400	return __pte(xchg((long *) ptep, 0));
    401#else
    402	pte_t pte = *ptep;
    403	pte_clear(mm, addr, ptep);
    404	return pte;
    405#endif
    406}
    407
    408static inline void
    409ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
    410{
    411#ifdef CONFIG_SMP
    412	unsigned long new, old;
    413
    414	do {
    415		old = pte_val(*ptep);
    416		new = pte_val(pte_wrprotect(__pte (old)));
    417	} while (cmpxchg((unsigned long *) ptep, old, new) != old);
    418#else
    419	pte_t old_pte = *ptep;
    420	set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
    421#endif
    422}
    423
    424static inline int
    425pte_same (pte_t a, pte_t b)
    426{
    427	return pte_val(a) == pte_val(b);
    428}
    429
    430#define update_mmu_cache(vma, address, ptep) do { } while (0)
    431
    432extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
    433extern void paging_init (void);
    434
    435/*
    436 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of
    437 *	 bits in the swap-type field of the swap pte.  It would be nice to
    438 *	 enforce that, but we can't easily include <linux/swap.h> here.
    439 *	 (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...).
    440 *
    441 * Format of swap pte:
    442 *	bit   0   : present bit (must be zero)
    443 *	bits  1- 7: swap-type
    444 *	bits  8-62: swap offset
    445 *	bit  63   : _PAGE_PROTNONE bit
    446 */
    447#define __swp_type(entry)		(((entry).val >> 1) & 0x7f)
    448#define __swp_offset(entry)		(((entry).val << 1) >> 9)
    449#define __swp_entry(type,offset)	((swp_entry_t) { ((type) << 1) | ((long) (offset) << 8) })
    450#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
    451#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
    452
    453/*
    454 * ZERO_PAGE is a global shared page that is always zero: used
    455 * for zero-mapped memory areas etc..
    456 */
    457extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
    458extern struct page *zero_page_memmap_ptr;
    459#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr)
    460
    461/* We provide our own get_unmapped_area to cope with VA holes for userland */
    462#define HAVE_ARCH_UNMAPPED_AREA
    463
    464#ifdef CONFIG_HUGETLB_PAGE
    465#define HUGETLB_PGDIR_SHIFT	(HPAGE_SHIFT + 2*(PAGE_SHIFT-3))
    466#define HUGETLB_PGDIR_SIZE	(__IA64_UL(1) << HUGETLB_PGDIR_SHIFT)
    467#define HUGETLB_PGDIR_MASK	(~(HUGETLB_PGDIR_SIZE-1))
    468#endif
    469
    470
    471#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
    472/*
    473 * Update PTEP with ENTRY, which is guaranteed to be a less
    474 * restrictive PTE.  That is, ENTRY may have the ACCESSED, DIRTY, and
    475 * WRITABLE bits turned on, when the value at PTEP did not.  The
    476 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE.
    477 *
    478 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without
    479 * having to worry about races.  On SMP machines, there are only two
    480 * cases where this is true:
    481 *
    482 *	(1) *PTEP has the PRESENT bit turned OFF
    483 *	(2) ENTRY has the DIRTY bit turned ON
    484 *
    485 * On ia64, we could implement this routine with a cmpxchg()-loop
    486 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY.
    487 * However, like on x86, we can get a more streamlined version by
    488 * observing that it is OK to drop ACCESSED bit updates when
    489 * SAFELY_WRITABLE is FALSE.  Besides being rare, all that would do is
    490 * result in an extra Access-bit fault, which would then turn on the
    491 * ACCESSED bit in the low-level fault handler (iaccess_bit or
    492 * daccess_bit in ivt.S).
    493 */
    494#ifdef CONFIG_SMP
    495# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
    496({									\
    497	int __changed = !pte_same(*(__ptep), __entry);			\
    498	if (__changed && __safely_writable) {				\
    499		set_pte(__ptep, __entry);				\
    500		flush_tlb_page(__vma, __addr);				\
    501	}								\
    502	__changed;							\
    503})
    504#else
    505# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
    506({									\
    507	int __changed = !pte_same(*(__ptep), __entry);			\
    508	if (__changed) {						\
    509		set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry);	\
    510		flush_tlb_page(__vma, __addr);				\
    511	}								\
    512	__changed;							\
    513})
    514#endif
    515# endif /* !__ASSEMBLY__ */
    516
    517/*
    518 * Identity-mapped regions use a large page size.  We'll call such large pages
    519 * "granules".  If you can think of a better name that's unambiguous, let me
    520 * know...
    521 */
    522#if defined(CONFIG_IA64_GRANULE_64MB)
    523# define IA64_GRANULE_SHIFT	_PAGE_SIZE_64M
    524#elif defined(CONFIG_IA64_GRANULE_16MB)
    525# define IA64_GRANULE_SHIFT	_PAGE_SIZE_16M
    526#endif
    527#define IA64_GRANULE_SIZE	(1 << IA64_GRANULE_SHIFT)
    528/*
    529 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL):
    530 */
    531#define KERNEL_TR_PAGE_SHIFT	_PAGE_SIZE_64M
    532#define KERNEL_TR_PAGE_SIZE	(1 << KERNEL_TR_PAGE_SHIFT)
    533
    534/* These tell get_user_pages() that the first gate page is accessible from user-level.  */
    535#define FIXADDR_USER_START	GATE_ADDR
    536#ifdef HAVE_BUGGY_SEGREL
    537# define FIXADDR_USER_END	(GATE_ADDR + 2*PAGE_SIZE)
    538#else
    539# define FIXADDR_USER_END	(GATE_ADDR + 2*PERCPU_PAGE_SIZE)
    540#endif
    541
    542#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
    543#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
    544#define __HAVE_ARCH_PTEP_SET_WRPROTECT
    545#define __HAVE_ARCH_PTE_SAME
    546#define __HAVE_ARCH_PGD_OFFSET_GATE
    547
    548
    549#if CONFIG_PGTABLE_LEVELS == 3
    550#include <asm-generic/pgtable-nopud.h>
    551#endif
    552#include <asm-generic/pgtable-nop4d.h>
    553
    554#endif /* _ASM_IA64_PGTABLE_H */