pgtable.h (19912B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_IA64_PGTABLE_H 3#define _ASM_IA64_PGTABLE_H 4 5/* 6 * This file contains the functions and defines necessary to modify and use 7 * the IA-64 page table tree. 8 * 9 * This hopefully works with any (fixed) IA-64 page-size, as defined 10 * in <asm/page.h>. 11 * 12 * Copyright (C) 1998-2005 Hewlett-Packard Co 13 * David Mosberger-Tang <davidm@hpl.hp.com> 14 */ 15 16 17#include <asm/mman.h> 18#include <asm/page.h> 19#include <asm/processor.h> 20#include <asm/types.h> 21 22#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */ 23 24/* 25 * First, define the various bits in a PTE. Note that the PTE format 26 * matches the VHPT short format, the firt doubleword of the VHPD long 27 * format, and the first doubleword of the TLB insertion format. 28 */ 29#define _PAGE_P_BIT 0 30#define _PAGE_A_BIT 5 31#define _PAGE_D_BIT 6 32 33#define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */ 34#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */ 35#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */ 36#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */ 37#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */ 38#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */ 39#define _PAGE_MA_MASK (0x7 << 2) 40#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */ 41#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */ 42#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */ 43#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */ 44#define _PAGE_PL_MASK (3 << 7) 45#define _PAGE_AR_R (0 << 9) /* read only */ 46#define _PAGE_AR_RX (1 << 9) /* read & execute */ 47#define _PAGE_AR_RW (2 << 9) /* read & write */ 48#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */ 49#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */ 50#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */ 51#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */ 52#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */ 53#define _PAGE_AR_MASK (7 << 9) 54#define _PAGE_AR_SHIFT 9 55#define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */ 56#define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */ 57#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL) 58#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */ 59#define _PAGE_PROTNONE (__IA64_UL(1) << 63) 60 61#define _PFN_MASK _PAGE_PPN_MASK 62/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */ 63#define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED) 64 65#define _PAGE_SIZE_4K 12 66#define _PAGE_SIZE_8K 13 67#define _PAGE_SIZE_16K 14 68#define _PAGE_SIZE_64K 16 69#define _PAGE_SIZE_256K 18 70#define _PAGE_SIZE_1M 20 71#define _PAGE_SIZE_4M 22 72#define _PAGE_SIZE_16M 24 73#define _PAGE_SIZE_64M 26 74#define _PAGE_SIZE_256M 28 75#define _PAGE_SIZE_1G 30 76#define _PAGE_SIZE_4G 32 77 78#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB 79#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB 80#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED 81 82/* 83 * How many pointers will a page table level hold expressed in shift 84 */ 85#define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3) 86 87/* 88 * Definitions for fourth level: 89 */ 90#define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT)) 91 92/* 93 * Definitions for third level: 94 * 95 * PMD_SHIFT determines the size of the area a third-level page table 96 * can map. 97 */ 98#define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT)) 99#define PMD_SIZE (1UL << PMD_SHIFT) 100#define PMD_MASK (~(PMD_SIZE-1)) 101#define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT)) 102 103#if CONFIG_PGTABLE_LEVELS == 4 104/* 105 * Definitions for second level: 106 * 107 * PUD_SHIFT determines the size of the area a second-level page table 108 * can map. 109 */ 110#define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) 111#define PUD_SIZE (1UL << PUD_SHIFT) 112#define PUD_MASK (~(PUD_SIZE-1)) 113#define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT)) 114#endif 115 116/* 117 * Definitions for first level: 118 * 119 * PGDIR_SHIFT determines what a first-level page table entry can map. 120 */ 121#if CONFIG_PGTABLE_LEVELS == 4 122#define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT)) 123#else 124#define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) 125#endif 126#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT) 127#define PGDIR_MASK (~(PGDIR_SIZE-1)) 128#define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT 129#define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT) 130#define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */ 131 132/* 133 * All the normal masks have the "page accessed" bits on, as any time 134 * they are used, the page is accessed. They are cleared only by the 135 * page-out routines. 136 */ 137#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A) 138#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW) 139#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 140#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 141#define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 142#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX) 143#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX) 144#define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX) 145#define PAGE_KERNEL_UC __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX | \ 146 _PAGE_MA_UC) 147 148# ifndef __ASSEMBLY__ 149 150#include <linux/sched/mm.h> /* for mm_struct */ 151#include <linux/bitops.h> 152#include <asm/cacheflush.h> 153#include <asm/mmu_context.h> 154 155/* 156 * Next come the mappings that determine how mmap() protection bits 157 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The 158 * _P version gets used for a private shared memory segment, the _S 159 * version gets used for a shared memory segment with MAP_SHARED on. 160 * In a private shared memory segment, we do a copy-on-write if a task 161 * attempts to write to the page. 162 */ 163 /* xwr */ 164#define __P000 PAGE_NONE 165#define __P001 PAGE_READONLY 166#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */ 167#define __P011 PAGE_READONLY /* ditto */ 168#define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 169#define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 170#define __P110 PAGE_COPY_EXEC 171#define __P111 PAGE_COPY_EXEC 172 173#define __S000 PAGE_NONE 174#define __S001 PAGE_READONLY 175#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */ 176#define __S011 PAGE_SHARED 177#define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 178#define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 179#define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 180#define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 181 182#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 183#if CONFIG_PGTABLE_LEVELS == 4 184#define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) 185#endif 186#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 187#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 188 189 190/* 191 * Some definitions to translate between mem_map, PTEs, and page addresses: 192 */ 193 194 195/* Quick test to see if ADDR is a (potentially) valid physical address. */ 196static inline long 197ia64_phys_addr_valid (unsigned long addr) 198{ 199 return (addr & (local_cpu_data->unimpl_pa_mask)) == 0; 200} 201 202/* 203 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 204 * memory. For the return value to be meaningful, ADDR must be >= 205 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 206 * require a hash-, or multi-level tree-lookup or something of that 207 * sort) but it guarantees to return TRUE only if accessing the page 208 * at that address does not cause an error. Note that there may be 209 * addresses for which kern_addr_valid() returns FALSE even though an 210 * access would not cause an error (e.g., this is typically true for 211 * memory mapped I/O regions. 212 * 213 * XXX Need to implement this for IA-64. 214 */ 215#define kern_addr_valid(addr) (1) 216 217 218/* 219 * Now come the defines and routines to manage and access the three-level 220 * page table. 221 */ 222 223 224#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL) 225#if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP) 226/* SPARSEMEM_VMEMMAP uses half of vmalloc... */ 227# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10))) 228# define vmemmap ((struct page *)VMALLOC_END) 229#else 230# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 231#endif 232 233/* fs/proc/kcore.c */ 234#define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE)) 235#define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE)) 236 237#define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3) 238#define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */ 239 240/* 241 * Conversion functions: convert page frame number (pfn) and a protection value to a page 242 * table entry (pte). 243 */ 244#define pfn_pte(pfn, pgprot) \ 245({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; }) 246 247/* Extract pfn from pte. */ 248#define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT) 249 250#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 251 252/* This takes a physical page address that is used by the remapping functions */ 253#define mk_pte_phys(physpage, pgprot) \ 254({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) 255 256#define pte_modify(_pte, newprot) \ 257 (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK))) 258 259#define pte_none(pte) (!pte_val(pte)) 260#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) 261#define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL) 262/* pte_page() returns the "struct page *" corresponding to the PTE: */ 263#define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET)) 264 265#define pmd_none(pmd) (!pmd_val(pmd)) 266#define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd))) 267#define pmd_present(pmd) (pmd_val(pmd) != 0UL) 268#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) 269#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) 270#define pmd_pfn(pmd) ((pmd_val(pmd) & _PFN_MASK) >> PAGE_SHIFT) 271#define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET)) 272 273#define pud_none(pud) (!pud_val(pud)) 274#define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud))) 275#define pud_present(pud) (pud_val(pud) != 0UL) 276#define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) 277#define pud_pgtable(pud) ((pmd_t *) __va(pud_val(pud) & _PFN_MASK)) 278#define pud_page(pud) virt_to_page((pud_val(pud) + PAGE_OFFSET)) 279 280#if CONFIG_PGTABLE_LEVELS == 4 281#define p4d_none(p4d) (!p4d_val(p4d)) 282#define p4d_bad(p4d) (!ia64_phys_addr_valid(p4d_val(p4d))) 283#define p4d_present(p4d) (p4d_val(p4d) != 0UL) 284#define p4d_clear(p4dp) (p4d_val(*(p4dp)) = 0UL) 285#define p4d_pgtable(p4d) ((pud_t *) __va(p4d_val(p4d) & _PFN_MASK)) 286#define p4d_page(p4d) virt_to_page((p4d_val(p4d) + PAGE_OFFSET)) 287#endif 288 289/* 290 * The following have defined behavior only work if pte_present() is true. 291 */ 292#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4) 293#define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0) 294#define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0) 295#define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0) 296 297/* 298 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the 299 * access rights: 300 */ 301#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW)) 302#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW)) 303#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A)) 304#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A)) 305#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D)) 306#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D)) 307#define pte_mkhuge(pte) (__pte(pte_val(pte))) 308 309/* 310 * Because ia64's Icache and Dcache is not coherent (on a cpu), we need to 311 * sync icache and dcache when we insert *new* executable page. 312 * __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache 313 * if necessary. 314 * 315 * set_pte() is also called by the kernel, but we can expect that the kernel 316 * flushes icache explicitly if necessary. 317 */ 318#define pte_present_exec_user(pte)\ 319 ((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \ 320 (_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)) 321 322extern void __ia64_sync_icache_dcache(pte_t pteval); 323static inline void set_pte(pte_t *ptep, pte_t pteval) 324{ 325 /* page is present && page is user && page is executable 326 * && (page swapin or new page or page migration 327 * || copy_on_write with page copying.) 328 */ 329 if (pte_present_exec_user(pteval) && 330 (!pte_present(*ptep) || 331 pte_pfn(*ptep) != pte_pfn(pteval))) 332 /* load_module() calles flush_icache_range() explicitly*/ 333 __ia64_sync_icache_dcache(pteval); 334 *ptep = pteval; 335} 336 337#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 338 339/* 340 * Make page protection values cacheable, uncacheable, or write- 341 * combining. Note that "protection" is really a misnomer here as the 342 * protection value contains the memory attribute bits, dirty bits, and 343 * various other bits as well. 344 */ 345#define pgprot_cacheable(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB) 346#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) 347#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC) 348 349struct file; 350extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 351 unsigned long size, pgprot_t vma_prot); 352#define __HAVE_PHYS_MEM_ACCESS_PROT 353 354static inline unsigned long 355pgd_index (unsigned long address) 356{ 357 unsigned long region = address >> 61; 358 unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); 359 360 return (region << (PAGE_SHIFT - 6)) | l1index; 361} 362#define pgd_index pgd_index 363 364/* 365 * In the kernel's mapped region we know everything is in region number 5, so 366 * as an optimisation its PGD already points to the area for that region. 367 * However, this also means that we cannot use pgd_index() and we must 368 * never add the region here. 369 */ 370#define pgd_offset_k(addr) \ 371 (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) 372 373/* Look up a pgd entry in the gate area. On IA-64, the gate-area 374 resides in the kernel-mapped segment, hence we use pgd_offset_k() 375 here. */ 376#define pgd_offset_gate(mm, addr) pgd_offset_k(addr) 377 378/* atomic versions of the some PTE manipulations: */ 379 380static inline int 381ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 382{ 383#ifdef CONFIG_SMP 384 if (!pte_young(*ptep)) 385 return 0; 386 return test_and_clear_bit(_PAGE_A_BIT, ptep); 387#else 388 pte_t pte = *ptep; 389 if (!pte_young(pte)) 390 return 0; 391 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); 392 return 1; 393#endif 394} 395 396static inline pte_t 397ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 398{ 399#ifdef CONFIG_SMP 400 return __pte(xchg((long *) ptep, 0)); 401#else 402 pte_t pte = *ptep; 403 pte_clear(mm, addr, ptep); 404 return pte; 405#endif 406} 407 408static inline void 409ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 410{ 411#ifdef CONFIG_SMP 412 unsigned long new, old; 413 414 do { 415 old = pte_val(*ptep); 416 new = pte_val(pte_wrprotect(__pte (old))); 417 } while (cmpxchg((unsigned long *) ptep, old, new) != old); 418#else 419 pte_t old_pte = *ptep; 420 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); 421#endif 422} 423 424static inline int 425pte_same (pte_t a, pte_t b) 426{ 427 return pte_val(a) == pte_val(b); 428} 429 430#define update_mmu_cache(vma, address, ptep) do { } while (0) 431 432extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 433extern void paging_init (void); 434 435/* 436 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of 437 * bits in the swap-type field of the swap pte. It would be nice to 438 * enforce that, but we can't easily include <linux/swap.h> here. 439 * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...). 440 * 441 * Format of swap pte: 442 * bit 0 : present bit (must be zero) 443 * bits 1- 7: swap-type 444 * bits 8-62: swap offset 445 * bit 63 : _PAGE_PROTNONE bit 446 */ 447#define __swp_type(entry) (((entry).val >> 1) & 0x7f) 448#define __swp_offset(entry) (((entry).val << 1) >> 9) 449#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 1) | ((long) (offset) << 8) }) 450#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 451#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 452 453/* 454 * ZERO_PAGE is a global shared page that is always zero: used 455 * for zero-mapped memory areas etc.. 456 */ 457extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; 458extern struct page *zero_page_memmap_ptr; 459#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr) 460 461/* We provide our own get_unmapped_area to cope with VA holes for userland */ 462#define HAVE_ARCH_UNMAPPED_AREA 463 464#ifdef CONFIG_HUGETLB_PAGE 465#define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3)) 466#define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT) 467#define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1)) 468#endif 469 470 471#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 472/* 473 * Update PTEP with ENTRY, which is guaranteed to be a less 474 * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and 475 * WRITABLE bits turned on, when the value at PTEP did not. The 476 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE. 477 * 478 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without 479 * having to worry about races. On SMP machines, there are only two 480 * cases where this is true: 481 * 482 * (1) *PTEP has the PRESENT bit turned OFF 483 * (2) ENTRY has the DIRTY bit turned ON 484 * 485 * On ia64, we could implement this routine with a cmpxchg()-loop 486 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY. 487 * However, like on x86, we can get a more streamlined version by 488 * observing that it is OK to drop ACCESSED bit updates when 489 * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is 490 * result in an extra Access-bit fault, which would then turn on the 491 * ACCESSED bit in the low-level fault handler (iaccess_bit or 492 * daccess_bit in ivt.S). 493 */ 494#ifdef CONFIG_SMP 495# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 496({ \ 497 int __changed = !pte_same(*(__ptep), __entry); \ 498 if (__changed && __safely_writable) { \ 499 set_pte(__ptep, __entry); \ 500 flush_tlb_page(__vma, __addr); \ 501 } \ 502 __changed; \ 503}) 504#else 505# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 506({ \ 507 int __changed = !pte_same(*(__ptep), __entry); \ 508 if (__changed) { \ 509 set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry); \ 510 flush_tlb_page(__vma, __addr); \ 511 } \ 512 __changed; \ 513}) 514#endif 515# endif /* !__ASSEMBLY__ */ 516 517/* 518 * Identity-mapped regions use a large page size. We'll call such large pages 519 * "granules". If you can think of a better name that's unambiguous, let me 520 * know... 521 */ 522#if defined(CONFIG_IA64_GRANULE_64MB) 523# define IA64_GRANULE_SHIFT _PAGE_SIZE_64M 524#elif defined(CONFIG_IA64_GRANULE_16MB) 525# define IA64_GRANULE_SHIFT _PAGE_SIZE_16M 526#endif 527#define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT) 528/* 529 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL): 530 */ 531#define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M 532#define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT) 533 534/* These tell get_user_pages() that the first gate page is accessible from user-level. */ 535#define FIXADDR_USER_START GATE_ADDR 536#ifdef HAVE_BUGGY_SEGREL 537# define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE) 538#else 539# define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE) 540#endif 541 542#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 543#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 544#define __HAVE_ARCH_PTEP_SET_WRPROTECT 545#define __HAVE_ARCH_PTE_SAME 546#define __HAVE_ARCH_PGD_OFFSET_GATE 547 548 549#if CONFIG_PGTABLE_LEVELS == 3 550#include <asm-generic/pgtable-nopud.h> 551#endif 552#include <asm-generic/pgtable-nop4d.h> 553 554#endif /* _ASM_IA64_PGTABLE_H */