cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

uv_hub.h (8820B)


      1/*
      2 * This file is subject to the terms and conditions of the GNU General Public
      3 * License.  See the file "COPYING" in the main directory of this archive
      4 * for more details.
      5 *
      6 * SGI UV architectural definitions
      7 *
      8 * Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved.
      9 */
     10
     11#ifndef __ASM_IA64_UV_HUB_H__
     12#define __ASM_IA64_UV_HUB_H__
     13
     14#include <linux/numa.h>
     15#include <linux/percpu.h>
     16#include <asm/types.h>
     17#include <asm/percpu.h>
     18
     19
     20/*
     21 * Addressing Terminology
     22 *
     23 *	M       - The low M bits of a physical address represent the offset
     24 *		  into the blade local memory. RAM memory on a blade is physically
     25 *		  contiguous (although various IO spaces may punch holes in
     26 *		  it)..
     27 *
     28 * 	N	- Number of bits in the node portion of a socket physical
     29 * 		  address.
     30 *
     31 * 	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
     32 * 	 	  routers always have low bit of 1, C/MBricks have low bit
     33 * 		  equal to 0. Most addressing macros that target UV hub chips
     34 * 		  right shift the NASID by 1 to exclude the always-zero bit.
     35 * 		  NASIDs contain up to 15 bits.
     36 *
     37 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
     38 *		  of nasids.
     39 *
     40 * 	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
     41 * 		  of the nasid for socket usage.
     42 *
     43 *
     44 *  NumaLink Global Physical Address Format:
     45 *  +--------------------------------+---------------------+
     46 *  |00..000|      GNODE             |      NodeOffset     |
     47 *  +--------------------------------+---------------------+
     48 *          |<-------53 - M bits --->|<--------M bits ----->
     49 *
     50 *	M - number of node offset bits (35 .. 40)
     51 *
     52 *
     53 *  Memory/UV-HUB Processor Socket Address Format:
     54 *  +----------------+---------------+---------------------+
     55 *  |00..000000000000|   PNODE       |      NodeOffset     |
     56 *  +----------------+---------------+---------------------+
     57 *                   <--- N bits --->|<--------M bits ----->
     58 *
     59 *	M - number of node offset bits (35 .. 40)
     60 *	N - number of PNODE bits (0 .. 10)
     61 *
     62 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
     63 *		The actual values are configuration dependent and are set at
     64 *		boot time. M & N values are set by the hardware/BIOS at boot.
     65 */
     66
     67
     68/*
     69 * Maximum number of bricks in all partitions and in all coherency domains.
     70 * This is the total number of bricks accessible in the numalink fabric. It
     71 * includes all C & M bricks. Routers are NOT included.
     72 *
     73 * This value is also the value of the maximum number of non-router NASIDs
     74 * in the numalink fabric.
     75 *
     76 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
     77 */
     78#define UV_MAX_NUMALINK_BLADES	16384
     79
     80/*
     81 * Maximum number of C/Mbricks within a software SSI (hardware may support
     82 * more).
     83 */
     84#define UV_MAX_SSI_BLADES	1
     85
     86/*
     87 * The largest possible NASID of a C or M brick (+ 2)
     88 */
     89#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_NODES * 2)
     90
     91/*
     92 * The following defines attributes of the HUB chip. These attributes are
     93 * frequently referenced and are kept in the per-cpu data areas of each cpu.
     94 * They are kept together in a struct to minimize cache misses.
     95 */
     96struct uv_hub_info_s {
     97	unsigned long	global_mmr_base;
     98	unsigned long	gpa_mask;
     99	unsigned long	gnode_upper;
    100	unsigned long	lowmem_remap_top;
    101	unsigned long	lowmem_remap_base;
    102	unsigned short	pnode;
    103	unsigned short	pnode_mask;
    104	unsigned short	coherency_domain_number;
    105	unsigned short	numa_blade_id;
    106	unsigned char	blade_processor_id;
    107	unsigned char	m_val;
    108	unsigned char	n_val;
    109};
    110DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
    111#define uv_hub_info 		this_cpu_ptr(&__uv_hub_info)
    112#define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
    113
    114/*
    115 * Local & Global MMR space macros.
    116 * 	Note: macros are intended to be used ONLY by inline functions
    117 * 	in this file - not by other kernel code.
    118 * 		n -  NASID (full 15-bit global nasid)
    119 * 		g -  GNODE (full 15-bit global nasid, right shifted 1)
    120 * 		p -  PNODE (local part of nsids, right shifted 1)
    121 */
    122#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
    123#define UV_PNODE_TO_NASID(p)		(((p) << 1) | uv_hub_info->gnode_upper)
    124
    125#define UV_LOCAL_MMR_BASE		0xf4000000UL
    126#define UV_GLOBAL_MMR32_BASE		0xf8000000UL
    127#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
    128
    129#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
    130#define UV_GLOBAL_MMR64_PNODE_SHIFT	26
    131
    132#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
    133
    134#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
    135	((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
    136
    137/*
    138 * Macros for converting between kernel virtual addresses, socket local physical
    139 * addresses, and UV global physical addresses.
    140 * 	Note: use the standard __pa() & __va() macros for converting
    141 * 	      between socket virtual and socket physical addresses.
    142 */
    143
    144/* socket phys RAM --> UV global physical address */
    145static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
    146{
    147	if (paddr < uv_hub_info->lowmem_remap_top)
    148		paddr += uv_hub_info->lowmem_remap_base;
    149	return paddr | uv_hub_info->gnode_upper;
    150}
    151
    152
    153/* socket virtual --> UV global physical address */
    154static inline unsigned long uv_gpa(void *v)
    155{
    156	return __pa(v) | uv_hub_info->gnode_upper;
    157}
    158
    159/* socket virtual --> UV global physical address */
    160static inline void *uv_vgpa(void *v)
    161{
    162	return (void *)uv_gpa(v);
    163}
    164
    165/* UV global physical address --> socket virtual */
    166static inline void *uv_va(unsigned long gpa)
    167{
    168	return __va(gpa & uv_hub_info->gpa_mask);
    169}
    170
    171/* pnode, offset --> socket virtual */
    172static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
    173{
    174	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
    175}
    176
    177
    178/*
    179 * Access global MMRs using the low memory MMR32 space. This region supports
    180 * faster MMR access but not all MMRs are accessible in this space.
    181 */
    182static inline unsigned long *uv_global_mmr32_address(int pnode,
    183				unsigned long offset)
    184{
    185	return __va(UV_GLOBAL_MMR32_BASE |
    186		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
    187}
    188
    189static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
    190				 unsigned long val)
    191{
    192	*uv_global_mmr32_address(pnode, offset) = val;
    193}
    194
    195static inline unsigned long uv_read_global_mmr32(int pnode,
    196						 unsigned long offset)
    197{
    198	return *uv_global_mmr32_address(pnode, offset);
    199}
    200
    201/*
    202 * Access Global MMR space using the MMR space located at the top of physical
    203 * memory.
    204 */
    205static inline unsigned long *uv_global_mmr64_address(int pnode,
    206				unsigned long offset)
    207{
    208	return __va(UV_GLOBAL_MMR64_BASE |
    209		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
    210}
    211
    212static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
    213				unsigned long val)
    214{
    215	*uv_global_mmr64_address(pnode, offset) = val;
    216}
    217
    218static inline unsigned long uv_read_global_mmr64(int pnode,
    219						 unsigned long offset)
    220{
    221	return *uv_global_mmr64_address(pnode, offset);
    222}
    223
    224/*
    225 * Access hub local MMRs. Faster than using global space but only local MMRs
    226 * are accessible.
    227 */
    228static inline unsigned long *uv_local_mmr_address(unsigned long offset)
    229{
    230	return __va(UV_LOCAL_MMR_BASE | offset);
    231}
    232
    233static inline unsigned long uv_read_local_mmr(unsigned long offset)
    234{
    235	return *uv_local_mmr_address(offset);
    236}
    237
    238static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
    239{
    240	*uv_local_mmr_address(offset) = val;
    241}
    242
    243/*
    244 * Structures and definitions for converting between cpu, node, pnode, and blade
    245 * numbers.
    246 */
    247
    248/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
    249static inline int uv_blade_processor_id(void)
    250{
    251	return smp_processor_id();
    252}
    253
    254/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
    255static inline int uv_numa_blade_id(void)
    256{
    257	return 0;
    258}
    259
    260/* Convert a cpu number to the UV blade number */
    261static inline int uv_cpu_to_blade_id(int cpu)
    262{
    263	return 0;
    264}
    265
    266/* Convert linux node number to the UV blade number */
    267static inline int uv_node_to_blade_id(int nid)
    268{
    269	return 0;
    270}
    271
    272/* Convert a blade id to the PNODE of the blade */
    273static inline int uv_blade_to_pnode(int bid)
    274{
    275	return 0;
    276}
    277
    278/* Determine the number of possible cpus on a blade */
    279static inline int uv_blade_nr_possible_cpus(int bid)
    280{
    281	return num_possible_cpus();
    282}
    283
    284/* Determine the number of online cpus on a blade */
    285static inline int uv_blade_nr_online_cpus(int bid)
    286{
    287	return num_online_cpus();
    288}
    289
    290/* Convert a cpu id to the PNODE of the blade containing the cpu */
    291static inline int uv_cpu_to_pnode(int cpu)
    292{
    293	return 0;
    294}
    295
    296/* Convert a linux node number to the PNODE of the blade */
    297static inline int uv_node_to_pnode(int nid)
    298{
    299	return 0;
    300}
    301
    302/* Maximum possible number of blades */
    303static inline int uv_num_possible_blades(void)
    304{
    305	return 1;
    306}
    307
    308static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
    309{
    310	/* not currently needed on ia64 */
    311}
    312
    313
    314#endif /* __ASM_IA64_UV_HUB__ */
    315