cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

efi.c (36463B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Extensible Firmware Interface
      4 *
      5 * Based on Extensible Firmware Interface Specification version 0.9
      6 * April 30, 1999
      7 *
      8 * Copyright (C) 1999 VA Linux Systems
      9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
     10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
     11 *	David Mosberger-Tang <davidm@hpl.hp.com>
     12 *	Stephane Eranian <eranian@hpl.hp.com>
     13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
     14 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
     15 *
     16 * All EFI Runtime Services are not implemented yet as EFI only
     17 * supports physical mode addressing on SoftSDV. This is to be fixed
     18 * in a future version.  --drummond 1999-07-20
     19 *
     20 * Implemented EFI runtime services and virtual mode calls.  --davidm
     21 *
     22 * Goutham Rao: <goutham.rao@intel.com>
     23 *	Skip non-WB memory and ignore empty memory ranges.
     24 */
     25#include <linux/module.h>
     26#include <linux/memblock.h>
     27#include <linux/crash_dump.h>
     28#include <linux/kernel.h>
     29#include <linux/init.h>
     30#include <linux/types.h>
     31#include <linux/slab.h>
     32#include <linux/time.h>
     33#include <linux/efi.h>
     34#include <linux/kexec.h>
     35#include <linux/mm.h>
     36
     37#include <asm/efi.h>
     38#include <asm/io.h>
     39#include <asm/kregs.h>
     40#include <asm/meminit.h>
     41#include <asm/processor.h>
     42#include <asm/mca.h>
     43#include <asm/sal.h>
     44#include <asm/setup.h>
     45#include <asm/tlbflush.h>
     46
     47#define EFI_DEBUG	0
     48
     49#define ESI_TABLE_GUID					\
     50    EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3,		\
     51	     0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
     52
     53static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
     54static __initdata unsigned long palo_phys;
     55
     56unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
     57unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
     58unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
     59
     60static const efi_config_table_type_t arch_tables[] __initconst = {
     61	{ESI_TABLE_GUID,				&esi_phys,		"ESI"		},
     62	{HCDP_TABLE_GUID,				&hcdp_phys,		"HCDP"		},
     63	{MPS_TABLE_GUID,				&mps_phys,		"MPS"		},
     64	{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID,	&palo_phys,		"PALO"		},
     65	{SAL_SYSTEM_TABLE_GUID,				&sal_systab_phys,	"SALsystab"	},
     66	{},
     67};
     68
     69extern efi_status_t efi_call_phys (void *, ...);
     70
     71static efi_runtime_services_t *runtime;
     72static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
     73
     74#define efi_call_virt(f, args...)	(*(f))(args)
     75
     76#define STUB_GET_TIME(prefix, adjust_arg)				       \
     77static efi_status_t							       \
     78prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
     79{									       \
     80	struct ia64_fpreg fr[6];					       \
     81	efi_time_cap_t *atc = NULL;					       \
     82	efi_status_t ret;						       \
     83									       \
     84	if (tc)								       \
     85		atc = adjust_arg(tc);					       \
     86	ia64_save_scratch_fpregs(fr);					       \
     87	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
     88				adjust_arg(tm), atc);			       \
     89	ia64_load_scratch_fpregs(fr);					       \
     90	return ret;							       \
     91}
     92
     93#define STUB_SET_TIME(prefix, adjust_arg)				       \
     94static efi_status_t							       \
     95prefix##_set_time (efi_time_t *tm)					       \
     96{									       \
     97	struct ia64_fpreg fr[6];					       \
     98	efi_status_t ret;						       \
     99									       \
    100	ia64_save_scratch_fpregs(fr);					       \
    101	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
    102				adjust_arg(tm));			       \
    103	ia64_load_scratch_fpregs(fr);					       \
    104	return ret;							       \
    105}
    106
    107#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
    108static efi_status_t							       \
    109prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
    110			  efi_time_t *tm)				       \
    111{									       \
    112	struct ia64_fpreg fr[6];					       \
    113	efi_status_t ret;						       \
    114									       \
    115	ia64_save_scratch_fpregs(fr);					       \
    116	ret = efi_call_##prefix(					       \
    117		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
    118		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
    119	ia64_load_scratch_fpregs(fr);					       \
    120	return ret;							       \
    121}
    122
    123#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
    124static efi_status_t							       \
    125prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
    126{									       \
    127	struct ia64_fpreg fr[6];					       \
    128	efi_time_t *atm = NULL;						       \
    129	efi_status_t ret;						       \
    130									       \
    131	if (tm)								       \
    132		atm = adjust_arg(tm);					       \
    133	ia64_save_scratch_fpregs(fr);					       \
    134	ret = efi_call_##prefix(					       \
    135		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
    136		enabled, atm);						       \
    137	ia64_load_scratch_fpregs(fr);					       \
    138	return ret;							       \
    139}
    140
    141#define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
    142static efi_status_t							       \
    143prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
    144		       unsigned long *data_size, void *data)		       \
    145{									       \
    146	struct ia64_fpreg fr[6];					       \
    147	u32 *aattr = NULL;						       \
    148	efi_status_t ret;						       \
    149									       \
    150	if (attr)							       \
    151		aattr = adjust_arg(attr);				       \
    152	ia64_save_scratch_fpregs(fr);					       \
    153	ret = efi_call_##prefix(					       \
    154		(efi_get_variable_t *) __va(runtime->get_variable),	       \
    155		adjust_arg(name), adjust_arg(vendor), aattr,		       \
    156		adjust_arg(data_size), adjust_arg(data));		       \
    157	ia64_load_scratch_fpregs(fr);					       \
    158	return ret;							       \
    159}
    160
    161#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
    162static efi_status_t							       \
    163prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
    164			    efi_guid_t *vendor)				       \
    165{									       \
    166	struct ia64_fpreg fr[6];					       \
    167	efi_status_t ret;						       \
    168									       \
    169	ia64_save_scratch_fpregs(fr);					       \
    170	ret = efi_call_##prefix(					       \
    171		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
    172		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
    173	ia64_load_scratch_fpregs(fr);					       \
    174	return ret;							       \
    175}
    176
    177#define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
    178static efi_status_t							       \
    179prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
    180		       u32 attr, unsigned long data_size,		       \
    181		       void *data)					       \
    182{									       \
    183	struct ia64_fpreg fr[6];					       \
    184	efi_status_t ret;						       \
    185									       \
    186	ia64_save_scratch_fpregs(fr);					       \
    187	ret = efi_call_##prefix(					       \
    188		(efi_set_variable_t *) __va(runtime->set_variable),	       \
    189		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
    190		adjust_arg(data));					       \
    191	ia64_load_scratch_fpregs(fr);					       \
    192	return ret;							       \
    193}
    194
    195#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
    196static efi_status_t							       \
    197prefix##_get_next_high_mono_count (u32 *count)				       \
    198{									       \
    199	struct ia64_fpreg fr[6];					       \
    200	efi_status_t ret;						       \
    201									       \
    202	ia64_save_scratch_fpregs(fr);					       \
    203	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
    204				__va(runtime->get_next_high_mono_count),       \
    205				adjust_arg(count));			       \
    206	ia64_load_scratch_fpregs(fr);					       \
    207	return ret;							       \
    208}
    209
    210#define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
    211static void								       \
    212prefix##_reset_system (int reset_type, efi_status_t status,		       \
    213		       unsigned long data_size, efi_char16_t *data)	       \
    214{									       \
    215	struct ia64_fpreg fr[6];					       \
    216	efi_char16_t *adata = NULL;					       \
    217									       \
    218	if (data)							       \
    219		adata = adjust_arg(data);				       \
    220									       \
    221	ia64_save_scratch_fpregs(fr);					       \
    222	efi_call_##prefix(						       \
    223		(efi_reset_system_t *) __va(runtime->reset_system),	       \
    224		reset_type, status, data_size, adata);			       \
    225	/* should not return, but just in case... */			       \
    226	ia64_load_scratch_fpregs(fr);					       \
    227}
    228
    229#define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
    230
    231STUB_GET_TIME(phys, phys_ptr)
    232STUB_SET_TIME(phys, phys_ptr)
    233STUB_GET_WAKEUP_TIME(phys, phys_ptr)
    234STUB_SET_WAKEUP_TIME(phys, phys_ptr)
    235STUB_GET_VARIABLE(phys, phys_ptr)
    236STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
    237STUB_SET_VARIABLE(phys, phys_ptr)
    238STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
    239STUB_RESET_SYSTEM(phys, phys_ptr)
    240
    241#define id(arg)	arg
    242
    243STUB_GET_TIME(virt, id)
    244STUB_SET_TIME(virt, id)
    245STUB_GET_WAKEUP_TIME(virt, id)
    246STUB_SET_WAKEUP_TIME(virt, id)
    247STUB_GET_VARIABLE(virt, id)
    248STUB_GET_NEXT_VARIABLE(virt, id)
    249STUB_SET_VARIABLE(virt, id)
    250STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
    251STUB_RESET_SYSTEM(virt, id)
    252
    253void
    254efi_gettimeofday (struct timespec64 *ts)
    255{
    256	efi_time_t tm;
    257
    258	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
    259		memset(ts, 0, sizeof(*ts));
    260		return;
    261	}
    262
    263	ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
    264			    tm.hour, tm.minute, tm.second);
    265	ts->tv_nsec = tm.nanosecond;
    266}
    267
    268static int
    269is_memory_available (efi_memory_desc_t *md)
    270{
    271	if (!(md->attribute & EFI_MEMORY_WB))
    272		return 0;
    273
    274	switch (md->type) {
    275	      case EFI_LOADER_CODE:
    276	      case EFI_LOADER_DATA:
    277	      case EFI_BOOT_SERVICES_CODE:
    278	      case EFI_BOOT_SERVICES_DATA:
    279	      case EFI_CONVENTIONAL_MEMORY:
    280		return 1;
    281	}
    282	return 0;
    283}
    284
    285typedef struct kern_memdesc {
    286	u64 attribute;
    287	u64 start;
    288	u64 num_pages;
    289} kern_memdesc_t;
    290
    291static kern_memdesc_t *kern_memmap;
    292
    293#define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
    294
    295static inline u64
    296kmd_end(kern_memdesc_t *kmd)
    297{
    298	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
    299}
    300
    301static inline u64
    302efi_md_end(efi_memory_desc_t *md)
    303{
    304	return (md->phys_addr + efi_md_size(md));
    305}
    306
    307static inline int
    308efi_wb(efi_memory_desc_t *md)
    309{
    310	return (md->attribute & EFI_MEMORY_WB);
    311}
    312
    313static inline int
    314efi_uc(efi_memory_desc_t *md)
    315{
    316	return (md->attribute & EFI_MEMORY_UC);
    317}
    318
    319static void
    320walk (efi_freemem_callback_t callback, void *arg, u64 attr)
    321{
    322	kern_memdesc_t *k;
    323	u64 start, end, voff;
    324
    325	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
    326	for (k = kern_memmap; k->start != ~0UL; k++) {
    327		if (k->attribute != attr)
    328			continue;
    329		start = PAGE_ALIGN(k->start);
    330		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
    331		if (start < end)
    332			if ((*callback)(start + voff, end + voff, arg) < 0)
    333				return;
    334	}
    335}
    336
    337/*
    338 * Walk the EFI memory map and call CALLBACK once for each EFI memory
    339 * descriptor that has memory that is available for OS use.
    340 */
    341void
    342efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
    343{
    344	walk(callback, arg, EFI_MEMORY_WB);
    345}
    346
    347/*
    348 * Walk the EFI memory map and call CALLBACK once for each EFI memory
    349 * descriptor that has memory that is available for uncached allocator.
    350 */
    351void
    352efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
    353{
    354	walk(callback, arg, EFI_MEMORY_UC);
    355}
    356
    357/*
    358 * Look for the PAL_CODE region reported by EFI and map it using an
    359 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
    360 * Abstraction Layer chapter 11 in ADAG
    361 */
    362void *
    363efi_get_pal_addr (void)
    364{
    365	void *efi_map_start, *efi_map_end, *p;
    366	efi_memory_desc_t *md;
    367	u64 efi_desc_size;
    368	int pal_code_count = 0;
    369	u64 vaddr, mask;
    370
    371	efi_map_start = __va(ia64_boot_param->efi_memmap);
    372	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
    373	efi_desc_size = ia64_boot_param->efi_memdesc_size;
    374
    375	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
    376		md = p;
    377		if (md->type != EFI_PAL_CODE)
    378			continue;
    379
    380		if (++pal_code_count > 1) {
    381			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
    382			       "dropped @ %llx\n", md->phys_addr);
    383			continue;
    384		}
    385		/*
    386		 * The only ITLB entry in region 7 that is used is the one
    387		 * installed by __start().  That entry covers a 64MB range.
    388		 */
    389		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
    390		vaddr = PAGE_OFFSET + md->phys_addr;
    391
    392		/*
    393		 * We must check that the PAL mapping won't overlap with the
    394		 * kernel mapping.
    395		 *
    396		 * PAL code is guaranteed to be aligned on a power of 2 between
    397		 * 4k and 256KB and that only one ITR is needed to map it. This
    398		 * implies that the PAL code is always aligned on its size,
    399		 * i.e., the closest matching page size supported by the TLB.
    400		 * Therefore PAL code is guaranteed never to cross a 64MB unless
    401		 * it is bigger than 64MB (very unlikely!).  So for now the
    402		 * following test is enough to determine whether or not we need
    403		 * a dedicated ITR for the PAL code.
    404		 */
    405		if ((vaddr & mask) == (KERNEL_START & mask)) {
    406			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
    407			       __func__);
    408			continue;
    409		}
    410
    411		if (efi_md_size(md) > IA64_GRANULE_SIZE)
    412			panic("Whoa!  PAL code size bigger than a granule!");
    413
    414#if EFI_DEBUG
    415		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
    416
    417		printk(KERN_INFO "CPU %d: mapping PAL code "
    418			"[0x%llx-0x%llx) into [0x%llx-0x%llx)\n",
    419			smp_processor_id(), md->phys_addr,
    420			md->phys_addr + efi_md_size(md),
    421			vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
    422#endif
    423		return __va(md->phys_addr);
    424	}
    425	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
    426	       __func__);
    427	return NULL;
    428}
    429
    430
    431static u8 __init palo_checksum(u8 *buffer, u32 length)
    432{
    433	u8 sum = 0;
    434	u8 *end = buffer + length;
    435
    436	while (buffer < end)
    437		sum = (u8) (sum + *(buffer++));
    438
    439	return sum;
    440}
    441
    442/*
    443 * Parse and handle PALO table which is published at:
    444 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
    445 */
    446static void __init handle_palo(unsigned long phys_addr)
    447{
    448	struct palo_table *palo = __va(phys_addr);
    449	u8  checksum;
    450
    451	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
    452		printk(KERN_INFO "PALO signature incorrect.\n");
    453		return;
    454	}
    455
    456	checksum = palo_checksum((u8 *)palo, palo->length);
    457	if (checksum) {
    458		printk(KERN_INFO "PALO checksum incorrect.\n");
    459		return;
    460	}
    461
    462	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
    463}
    464
    465void
    466efi_map_pal_code (void)
    467{
    468	void *pal_vaddr = efi_get_pal_addr ();
    469	u64 psr;
    470
    471	if (!pal_vaddr)
    472		return;
    473
    474	/*
    475	 * Cannot write to CRx with PSR.ic=1
    476	 */
    477	psr = ia64_clear_ic();
    478	ia64_itr(0x1, IA64_TR_PALCODE,
    479		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
    480		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
    481		 IA64_GRANULE_SHIFT);
    482	ia64_set_psr(psr);		/* restore psr */
    483}
    484
    485void __init
    486efi_init (void)
    487{
    488	const efi_system_table_t *efi_systab;
    489	void *efi_map_start, *efi_map_end;
    490	u64 efi_desc_size;
    491	char *cp;
    492
    493	set_bit(EFI_BOOT, &efi.flags);
    494	set_bit(EFI_64BIT, &efi.flags);
    495
    496	/*
    497	 * It's too early to be able to use the standard kernel command line
    498	 * support...
    499	 */
    500	for (cp = boot_command_line; *cp; ) {
    501		if (memcmp(cp, "mem=", 4) == 0) {
    502			mem_limit = memparse(cp + 4, &cp);
    503		} else if (memcmp(cp, "max_addr=", 9) == 0) {
    504			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
    505		} else if (memcmp(cp, "min_addr=", 9) == 0) {
    506			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
    507		} else {
    508			while (*cp != ' ' && *cp)
    509				++cp;
    510			while (*cp == ' ')
    511				++cp;
    512		}
    513	}
    514	if (min_addr != 0UL)
    515		printk(KERN_INFO "Ignoring memory below %lluMB\n",
    516		       min_addr >> 20);
    517	if (max_addr != ~0UL)
    518		printk(KERN_INFO "Ignoring memory above %lluMB\n",
    519		       max_addr >> 20);
    520
    521	efi_systab = __va(ia64_boot_param->efi_systab);
    522
    523	/*
    524	 * Verify the EFI Table
    525	 */
    526	if (efi_systab == NULL)
    527		panic("Whoa! Can't find EFI system table.\n");
    528	if (efi_systab_check_header(&efi_systab->hdr, 1))
    529		panic("Whoa! EFI system table signature incorrect\n");
    530
    531	efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
    532
    533	palo_phys      = EFI_INVALID_TABLE_ADDR;
    534
    535	if (efi_config_parse_tables(__va(efi_systab->tables),
    536				    efi_systab->nr_tables,
    537				    arch_tables) != 0)
    538		return;
    539
    540	if (palo_phys != EFI_INVALID_TABLE_ADDR)
    541		handle_palo(palo_phys);
    542
    543	runtime = __va(efi_systab->runtime);
    544	efi.get_time = phys_get_time;
    545	efi.set_time = phys_set_time;
    546	efi.get_wakeup_time = phys_get_wakeup_time;
    547	efi.set_wakeup_time = phys_set_wakeup_time;
    548	efi.get_variable = phys_get_variable;
    549	efi.get_next_variable = phys_get_next_variable;
    550	efi.set_variable = phys_set_variable;
    551	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
    552	efi.reset_system = phys_reset_system;
    553
    554	efi_map_start = __va(ia64_boot_param->efi_memmap);
    555	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
    556	efi_desc_size = ia64_boot_param->efi_memdesc_size;
    557
    558#if EFI_DEBUG
    559	/* print EFI memory map: */
    560	{
    561		efi_memory_desc_t *md;
    562		void *p;
    563		unsigned int i;
    564
    565		for (i = 0, p = efi_map_start; p < efi_map_end;
    566		     ++i, p += efi_desc_size)
    567		{
    568			const char *unit;
    569			unsigned long size;
    570			char buf[64];
    571
    572			md = p;
    573			size = md->num_pages << EFI_PAGE_SHIFT;
    574
    575			if ((size >> 40) > 0) {
    576				size >>= 40;
    577				unit = "TB";
    578			} else if ((size >> 30) > 0) {
    579				size >>= 30;
    580				unit = "GB";
    581			} else if ((size >> 20) > 0) {
    582				size >>= 20;
    583				unit = "MB";
    584			} else {
    585				size >>= 10;
    586				unit = "KB";
    587			}
    588
    589			printk("mem%02d: %s "
    590			       "range=[0x%016llx-0x%016llx) (%4lu%s)\n",
    591			       i, efi_md_typeattr_format(buf, sizeof(buf), md),
    592			       md->phys_addr,
    593			       md->phys_addr + efi_md_size(md), size, unit);
    594		}
    595	}
    596#endif
    597
    598	efi_map_pal_code();
    599	efi_enter_virtual_mode();
    600}
    601
    602void
    603efi_enter_virtual_mode (void)
    604{
    605	void *efi_map_start, *efi_map_end, *p;
    606	efi_memory_desc_t *md;
    607	efi_status_t status;
    608	u64 efi_desc_size;
    609
    610	efi_map_start = __va(ia64_boot_param->efi_memmap);
    611	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
    612	efi_desc_size = ia64_boot_param->efi_memdesc_size;
    613
    614	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
    615		md = p;
    616		if (md->attribute & EFI_MEMORY_RUNTIME) {
    617			/*
    618			 * Some descriptors have multiple bits set, so the
    619			 * order of the tests is relevant.
    620			 */
    621			if (md->attribute & EFI_MEMORY_WB) {
    622				md->virt_addr = (u64) __va(md->phys_addr);
    623			} else if (md->attribute & EFI_MEMORY_UC) {
    624				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
    625			} else if (md->attribute & EFI_MEMORY_WC) {
    626#if 0
    627				md->virt_addr = ia64_remap(md->phys_addr,
    628							   (_PAGE_A |
    629							    _PAGE_P |
    630							    _PAGE_D |
    631							    _PAGE_MA_WC |
    632							    _PAGE_PL_0 |
    633							    _PAGE_AR_RW));
    634#else
    635				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
    636				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
    637#endif
    638			} else if (md->attribute & EFI_MEMORY_WT) {
    639#if 0
    640				md->virt_addr = ia64_remap(md->phys_addr,
    641							   (_PAGE_A |
    642							    _PAGE_P |
    643							    _PAGE_D |
    644							    _PAGE_MA_WT |
    645							    _PAGE_PL_0 |
    646							    _PAGE_AR_RW));
    647#else
    648				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
    649				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
    650#endif
    651			}
    652		}
    653	}
    654
    655	status = efi_call_phys(__va(runtime->set_virtual_address_map),
    656			       ia64_boot_param->efi_memmap_size,
    657			       efi_desc_size,
    658			       ia64_boot_param->efi_memdesc_version,
    659			       ia64_boot_param->efi_memmap);
    660	if (status != EFI_SUCCESS) {
    661		printk(KERN_WARNING "warning: unable to switch EFI into "
    662		       "virtual mode (status=%lu)\n", status);
    663		return;
    664	}
    665
    666	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
    667
    668	/*
    669	 * Now that EFI is in virtual mode, we call the EFI functions more
    670	 * efficiently:
    671	 */
    672	efi.get_time = virt_get_time;
    673	efi.set_time = virt_set_time;
    674	efi.get_wakeup_time = virt_get_wakeup_time;
    675	efi.set_wakeup_time = virt_set_wakeup_time;
    676	efi.get_variable = virt_get_variable;
    677	efi.get_next_variable = virt_get_next_variable;
    678	efi.set_variable = virt_set_variable;
    679	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
    680	efi.reset_system = virt_reset_system;
    681}
    682
    683/*
    684 * Walk the EFI memory map looking for the I/O port range.  There can only be
    685 * one entry of this type, other I/O port ranges should be described via ACPI.
    686 */
    687u64
    688efi_get_iobase (void)
    689{
    690	void *efi_map_start, *efi_map_end, *p;
    691	efi_memory_desc_t *md;
    692	u64 efi_desc_size;
    693
    694	efi_map_start = __va(ia64_boot_param->efi_memmap);
    695	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
    696	efi_desc_size = ia64_boot_param->efi_memdesc_size;
    697
    698	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
    699		md = p;
    700		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
    701			if (md->attribute & EFI_MEMORY_UC)
    702				return md->phys_addr;
    703		}
    704	}
    705	return 0;
    706}
    707
    708static struct kern_memdesc *
    709kern_memory_descriptor (unsigned long phys_addr)
    710{
    711	struct kern_memdesc *md;
    712
    713	for (md = kern_memmap; md->start != ~0UL; md++) {
    714		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
    715			 return md;
    716	}
    717	return NULL;
    718}
    719
    720static efi_memory_desc_t *
    721efi_memory_descriptor (unsigned long phys_addr)
    722{
    723	void *efi_map_start, *efi_map_end, *p;
    724	efi_memory_desc_t *md;
    725	u64 efi_desc_size;
    726
    727	efi_map_start = __va(ia64_boot_param->efi_memmap);
    728	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
    729	efi_desc_size = ia64_boot_param->efi_memdesc_size;
    730
    731	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
    732		md = p;
    733
    734		if (phys_addr - md->phys_addr < efi_md_size(md))
    735			 return md;
    736	}
    737	return NULL;
    738}
    739
    740static int
    741efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
    742{
    743	void *efi_map_start, *efi_map_end, *p;
    744	efi_memory_desc_t *md;
    745	u64 efi_desc_size;
    746	unsigned long end;
    747
    748	efi_map_start = __va(ia64_boot_param->efi_memmap);
    749	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
    750	efi_desc_size = ia64_boot_param->efi_memdesc_size;
    751
    752	end = phys_addr + size;
    753
    754	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
    755		md = p;
    756		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
    757			return 1;
    758	}
    759	return 0;
    760}
    761
    762int
    763efi_mem_type (unsigned long phys_addr)
    764{
    765	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
    766
    767	if (md)
    768		return md->type;
    769	return -EINVAL;
    770}
    771
    772u64
    773efi_mem_attributes (unsigned long phys_addr)
    774{
    775	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
    776
    777	if (md)
    778		return md->attribute;
    779	return 0;
    780}
    781EXPORT_SYMBOL(efi_mem_attributes);
    782
    783u64
    784efi_mem_attribute (unsigned long phys_addr, unsigned long size)
    785{
    786	unsigned long end = phys_addr + size;
    787	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
    788	u64 attr;
    789
    790	if (!md)
    791		return 0;
    792
    793	/*
    794	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
    795	 * the kernel that firmware needs this region mapped.
    796	 */
    797	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
    798	do {
    799		unsigned long md_end = efi_md_end(md);
    800
    801		if (end <= md_end)
    802			return attr;
    803
    804		md = efi_memory_descriptor(md_end);
    805		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
    806			return 0;
    807	} while (md);
    808	return 0;	/* never reached */
    809}
    810
    811u64
    812kern_mem_attribute (unsigned long phys_addr, unsigned long size)
    813{
    814	unsigned long end = phys_addr + size;
    815	struct kern_memdesc *md;
    816	u64 attr;
    817
    818	/*
    819	 * This is a hack for ioremap calls before we set up kern_memmap.
    820	 * Maybe we should do efi_memmap_init() earlier instead.
    821	 */
    822	if (!kern_memmap) {
    823		attr = efi_mem_attribute(phys_addr, size);
    824		if (attr & EFI_MEMORY_WB)
    825			return EFI_MEMORY_WB;
    826		return 0;
    827	}
    828
    829	md = kern_memory_descriptor(phys_addr);
    830	if (!md)
    831		return 0;
    832
    833	attr = md->attribute;
    834	do {
    835		unsigned long md_end = kmd_end(md);
    836
    837		if (end <= md_end)
    838			return attr;
    839
    840		md = kern_memory_descriptor(md_end);
    841		if (!md || md->attribute != attr)
    842			return 0;
    843	} while (md);
    844	return 0;	/* never reached */
    845}
    846
    847int
    848valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
    849{
    850	u64 attr;
    851
    852	/*
    853	 * /dev/mem reads and writes use copy_to_user(), which implicitly
    854	 * uses a granule-sized kernel identity mapping.  It's really
    855	 * only safe to do this for regions in kern_memmap.  For more
    856	 * details, see Documentation/ia64/aliasing.rst.
    857	 */
    858	attr = kern_mem_attribute(phys_addr, size);
    859	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
    860		return 1;
    861	return 0;
    862}
    863
    864int
    865valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
    866{
    867	unsigned long phys_addr = pfn << PAGE_SHIFT;
    868	u64 attr;
    869
    870	attr = efi_mem_attribute(phys_addr, size);
    871
    872	/*
    873	 * /dev/mem mmap uses normal user pages, so we don't need the entire
    874	 * granule, but the entire region we're mapping must support the same
    875	 * attribute.
    876	 */
    877	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
    878		return 1;
    879
    880	/*
    881	 * Intel firmware doesn't tell us about all the MMIO regions, so
    882	 * in general we have to allow mmap requests.  But if EFI *does*
    883	 * tell us about anything inside this region, we should deny it.
    884	 * The user can always map a smaller region to avoid the overlap.
    885	 */
    886	if (efi_memmap_intersects(phys_addr, size))
    887		return 0;
    888
    889	return 1;
    890}
    891
    892pgprot_t
    893phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
    894		     pgprot_t vma_prot)
    895{
    896	unsigned long phys_addr = pfn << PAGE_SHIFT;
    897	u64 attr;
    898
    899	/*
    900	 * For /dev/mem mmap, we use user mappings, but if the region is
    901	 * in kern_memmap (and hence may be covered by a kernel mapping),
    902	 * we must use the same attribute as the kernel mapping.
    903	 */
    904	attr = kern_mem_attribute(phys_addr, size);
    905	if (attr & EFI_MEMORY_WB)
    906		return pgprot_cacheable(vma_prot);
    907	else if (attr & EFI_MEMORY_UC)
    908		return pgprot_noncached(vma_prot);
    909
    910	/*
    911	 * Some chipsets don't support UC access to memory.  If
    912	 * WB is supported, we prefer that.
    913	 */
    914	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
    915		return pgprot_cacheable(vma_prot);
    916
    917	return pgprot_noncached(vma_prot);
    918}
    919
    920int __init
    921efi_uart_console_only(void)
    922{
    923	efi_status_t status;
    924	char *s, name[] = "ConOut";
    925	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
    926	efi_char16_t *utf16, name_utf16[32];
    927	unsigned char data[1024];
    928	unsigned long size = sizeof(data);
    929	struct efi_generic_dev_path *hdr, *end_addr;
    930	int uart = 0;
    931
    932	/* Convert to UTF-16 */
    933	utf16 = name_utf16;
    934	s = name;
    935	while (*s)
    936		*utf16++ = *s++ & 0x7f;
    937	*utf16 = 0;
    938
    939	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
    940	if (status != EFI_SUCCESS) {
    941		printk(KERN_ERR "No EFI %s variable?\n", name);
    942		return 0;
    943	}
    944
    945	hdr = (struct efi_generic_dev_path *) data;
    946	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
    947	while (hdr < end_addr) {
    948		if (hdr->type == EFI_DEV_MSG &&
    949		    hdr->sub_type == EFI_DEV_MSG_UART)
    950			uart = 1;
    951		else if (hdr->type == EFI_DEV_END_PATH ||
    952			  hdr->type == EFI_DEV_END_PATH2) {
    953			if (!uart)
    954				return 0;
    955			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
    956				return 1;
    957			uart = 0;
    958		}
    959		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
    960	}
    961	printk(KERN_ERR "Malformed %s value\n", name);
    962	return 0;
    963}
    964
    965/*
    966 * Look for the first granule aligned memory descriptor memory
    967 * that is big enough to hold EFI memory map. Make sure this
    968 * descriptor is at least granule sized so it does not get trimmed
    969 */
    970struct kern_memdesc *
    971find_memmap_space (void)
    972{
    973	u64	contig_low=0, contig_high=0;
    974	u64	as = 0, ae;
    975	void *efi_map_start, *efi_map_end, *p, *q;
    976	efi_memory_desc_t *md, *pmd = NULL, *check_md;
    977	u64	space_needed, efi_desc_size;
    978	unsigned long total_mem = 0;
    979
    980	efi_map_start = __va(ia64_boot_param->efi_memmap);
    981	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
    982	efi_desc_size = ia64_boot_param->efi_memdesc_size;
    983
    984	/*
    985	 * Worst case: we need 3 kernel descriptors for each efi descriptor
    986	 * (if every entry has a WB part in the middle, and UC head and tail),
    987	 * plus one for the end marker.
    988	 */
    989	space_needed = sizeof(kern_memdesc_t) *
    990		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
    991
    992	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
    993		md = p;
    994		if (!efi_wb(md)) {
    995			continue;
    996		}
    997		if (pmd == NULL || !efi_wb(pmd) ||
    998		    efi_md_end(pmd) != md->phys_addr) {
    999			contig_low = GRANULEROUNDUP(md->phys_addr);
   1000			contig_high = efi_md_end(md);
   1001			for (q = p + efi_desc_size; q < efi_map_end;
   1002			     q += efi_desc_size) {
   1003				check_md = q;
   1004				if (!efi_wb(check_md))
   1005					break;
   1006				if (contig_high != check_md->phys_addr)
   1007					break;
   1008				contig_high = efi_md_end(check_md);
   1009			}
   1010			contig_high = GRANULEROUNDDOWN(contig_high);
   1011		}
   1012		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
   1013			continue;
   1014
   1015		/* Round ends inward to granule boundaries */
   1016		as = max(contig_low, md->phys_addr);
   1017		ae = min(contig_high, efi_md_end(md));
   1018
   1019		/* keep within max_addr= and min_addr= command line arg */
   1020		as = max(as, min_addr);
   1021		ae = min(ae, max_addr);
   1022		if (ae <= as)
   1023			continue;
   1024
   1025		/* avoid going over mem= command line arg */
   1026		if (total_mem + (ae - as) > mem_limit)
   1027			ae -= total_mem + (ae - as) - mem_limit;
   1028
   1029		if (ae <= as)
   1030			continue;
   1031
   1032		if (ae - as > space_needed)
   1033			break;
   1034	}
   1035	if (p >= efi_map_end)
   1036		panic("Can't allocate space for kernel memory descriptors");
   1037
   1038	return __va(as);
   1039}
   1040
   1041/*
   1042 * Walk the EFI memory map and gather all memory available for kernel
   1043 * to use.  We can allocate partial granules only if the unavailable
   1044 * parts exist, and are WB.
   1045 */
   1046unsigned long
   1047efi_memmap_init(u64 *s, u64 *e)
   1048{
   1049	struct kern_memdesc *k, *prev = NULL;
   1050	u64	contig_low=0, contig_high=0;
   1051	u64	as, ae, lim;
   1052	void *efi_map_start, *efi_map_end, *p, *q;
   1053	efi_memory_desc_t *md, *pmd = NULL, *check_md;
   1054	u64	efi_desc_size;
   1055	unsigned long total_mem = 0;
   1056
   1057	k = kern_memmap = find_memmap_space();
   1058
   1059	efi_map_start = __va(ia64_boot_param->efi_memmap);
   1060	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
   1061	efi_desc_size = ia64_boot_param->efi_memdesc_size;
   1062
   1063	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
   1064		md = p;
   1065		if (!efi_wb(md)) {
   1066			if (efi_uc(md) &&
   1067			    (md->type == EFI_CONVENTIONAL_MEMORY ||
   1068			     md->type == EFI_BOOT_SERVICES_DATA)) {
   1069				k->attribute = EFI_MEMORY_UC;
   1070				k->start = md->phys_addr;
   1071				k->num_pages = md->num_pages;
   1072				k++;
   1073			}
   1074			continue;
   1075		}
   1076		if (pmd == NULL || !efi_wb(pmd) ||
   1077		    efi_md_end(pmd) != md->phys_addr) {
   1078			contig_low = GRANULEROUNDUP(md->phys_addr);
   1079			contig_high = efi_md_end(md);
   1080			for (q = p + efi_desc_size; q < efi_map_end;
   1081			     q += efi_desc_size) {
   1082				check_md = q;
   1083				if (!efi_wb(check_md))
   1084					break;
   1085				if (contig_high != check_md->phys_addr)
   1086					break;
   1087				contig_high = efi_md_end(check_md);
   1088			}
   1089			contig_high = GRANULEROUNDDOWN(contig_high);
   1090		}
   1091		if (!is_memory_available(md))
   1092			continue;
   1093
   1094		/*
   1095		 * Round ends inward to granule boundaries
   1096		 * Give trimmings to uncached allocator
   1097		 */
   1098		if (md->phys_addr < contig_low) {
   1099			lim = min(efi_md_end(md), contig_low);
   1100			if (efi_uc(md)) {
   1101				if (k > kern_memmap &&
   1102				    (k-1)->attribute == EFI_MEMORY_UC &&
   1103				    kmd_end(k-1) == md->phys_addr) {
   1104					(k-1)->num_pages +=
   1105						(lim - md->phys_addr)
   1106						>> EFI_PAGE_SHIFT;
   1107				} else {
   1108					k->attribute = EFI_MEMORY_UC;
   1109					k->start = md->phys_addr;
   1110					k->num_pages = (lim - md->phys_addr)
   1111						>> EFI_PAGE_SHIFT;
   1112					k++;
   1113				}
   1114			}
   1115			as = contig_low;
   1116		} else
   1117			as = md->phys_addr;
   1118
   1119		if (efi_md_end(md) > contig_high) {
   1120			lim = max(md->phys_addr, contig_high);
   1121			if (efi_uc(md)) {
   1122				if (lim == md->phys_addr && k > kern_memmap &&
   1123				    (k-1)->attribute == EFI_MEMORY_UC &&
   1124				    kmd_end(k-1) == md->phys_addr) {
   1125					(k-1)->num_pages += md->num_pages;
   1126				} else {
   1127					k->attribute = EFI_MEMORY_UC;
   1128					k->start = lim;
   1129					k->num_pages = (efi_md_end(md) - lim)
   1130						>> EFI_PAGE_SHIFT;
   1131					k++;
   1132				}
   1133			}
   1134			ae = contig_high;
   1135		} else
   1136			ae = efi_md_end(md);
   1137
   1138		/* keep within max_addr= and min_addr= command line arg */
   1139		as = max(as, min_addr);
   1140		ae = min(ae, max_addr);
   1141		if (ae <= as)
   1142			continue;
   1143
   1144		/* avoid going over mem= command line arg */
   1145		if (total_mem + (ae - as) > mem_limit)
   1146			ae -= total_mem + (ae - as) - mem_limit;
   1147
   1148		if (ae <= as)
   1149			continue;
   1150		if (prev && kmd_end(prev) == md->phys_addr) {
   1151			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
   1152			total_mem += ae - as;
   1153			continue;
   1154		}
   1155		k->attribute = EFI_MEMORY_WB;
   1156		k->start = as;
   1157		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
   1158		total_mem += ae - as;
   1159		prev = k++;
   1160	}
   1161	k->start = ~0L; /* end-marker */
   1162
   1163	/* reserve the memory we are using for kern_memmap */
   1164	*s = (u64)kern_memmap;
   1165	*e = (u64)++k;
   1166
   1167	return total_mem;
   1168}
   1169
   1170void
   1171efi_initialize_iomem_resources(struct resource *code_resource,
   1172			       struct resource *data_resource,
   1173			       struct resource *bss_resource)
   1174{
   1175	struct resource *res;
   1176	void *efi_map_start, *efi_map_end, *p;
   1177	efi_memory_desc_t *md;
   1178	u64 efi_desc_size;
   1179	char *name;
   1180	unsigned long flags, desc;
   1181
   1182	efi_map_start = __va(ia64_boot_param->efi_memmap);
   1183	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
   1184	efi_desc_size = ia64_boot_param->efi_memdesc_size;
   1185
   1186	res = NULL;
   1187
   1188	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
   1189		md = p;
   1190
   1191		if (md->num_pages == 0) /* should not happen */
   1192			continue;
   1193
   1194		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
   1195		desc = IORES_DESC_NONE;
   1196
   1197		switch (md->type) {
   1198
   1199			case EFI_MEMORY_MAPPED_IO:
   1200			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
   1201				continue;
   1202
   1203			case EFI_LOADER_CODE:
   1204			case EFI_LOADER_DATA:
   1205			case EFI_BOOT_SERVICES_DATA:
   1206			case EFI_BOOT_SERVICES_CODE:
   1207			case EFI_CONVENTIONAL_MEMORY:
   1208				if (md->attribute & EFI_MEMORY_WP) {
   1209					name = "System ROM";
   1210					flags |= IORESOURCE_READONLY;
   1211				} else if (md->attribute == EFI_MEMORY_UC) {
   1212					name = "Uncached RAM";
   1213				} else {
   1214					name = "System RAM";
   1215					flags |= IORESOURCE_SYSRAM;
   1216				}
   1217				break;
   1218
   1219			case EFI_ACPI_MEMORY_NVS:
   1220				name = "ACPI Non-volatile Storage";
   1221				desc = IORES_DESC_ACPI_NV_STORAGE;
   1222				break;
   1223
   1224			case EFI_UNUSABLE_MEMORY:
   1225				name = "reserved";
   1226				flags |= IORESOURCE_DISABLED;
   1227				break;
   1228
   1229			case EFI_PERSISTENT_MEMORY:
   1230				name = "Persistent Memory";
   1231				desc = IORES_DESC_PERSISTENT_MEMORY;
   1232				break;
   1233
   1234			case EFI_RESERVED_TYPE:
   1235			case EFI_RUNTIME_SERVICES_CODE:
   1236			case EFI_RUNTIME_SERVICES_DATA:
   1237			case EFI_ACPI_RECLAIM_MEMORY:
   1238			default:
   1239				name = "reserved";
   1240				break;
   1241		}
   1242
   1243		if ((res = kzalloc(sizeof(struct resource),
   1244				   GFP_KERNEL)) == NULL) {
   1245			printk(KERN_ERR
   1246			       "failed to allocate resource for iomem\n");
   1247			return;
   1248		}
   1249
   1250		res->name = name;
   1251		res->start = md->phys_addr;
   1252		res->end = md->phys_addr + efi_md_size(md) - 1;
   1253		res->flags = flags;
   1254		res->desc = desc;
   1255
   1256		if (insert_resource(&iomem_resource, res) < 0)
   1257			kfree(res);
   1258		else {
   1259			/*
   1260			 * We don't know which region contains
   1261			 * kernel data so we try it repeatedly and
   1262			 * let the resource manager test it.
   1263			 */
   1264			insert_resource(res, code_resource);
   1265			insert_resource(res, data_resource);
   1266			insert_resource(res, bss_resource);
   1267#ifdef CONFIG_KEXEC
   1268                        insert_resource(res, &efi_memmap_res);
   1269                        insert_resource(res, &boot_param_res);
   1270			if (crashk_res.end > crashk_res.start)
   1271				insert_resource(res, &crashk_res);
   1272#endif
   1273		}
   1274	}
   1275}
   1276
   1277#ifdef CONFIG_KEXEC
   1278/* find a block of memory aligned to 64M exclude reserved regions
   1279   rsvd_regions are sorted
   1280 */
   1281unsigned long __init
   1282kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
   1283{
   1284	int i;
   1285	u64 start, end;
   1286	u64 alignment = 1UL << _PAGE_SIZE_64M;
   1287	void *efi_map_start, *efi_map_end, *p;
   1288	efi_memory_desc_t *md;
   1289	u64 efi_desc_size;
   1290
   1291	efi_map_start = __va(ia64_boot_param->efi_memmap);
   1292	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
   1293	efi_desc_size = ia64_boot_param->efi_memdesc_size;
   1294
   1295	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
   1296		md = p;
   1297		if (!efi_wb(md))
   1298			continue;
   1299		start = ALIGN(md->phys_addr, alignment);
   1300		end = efi_md_end(md);
   1301		for (i = 0; i < n; i++) {
   1302			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
   1303				if (__pa(r[i].start) > start + size)
   1304					return start;
   1305				start = ALIGN(__pa(r[i].end), alignment);
   1306				if (i < n-1 &&
   1307				    __pa(r[i+1].start) < start + size)
   1308					continue;
   1309				else
   1310					break;
   1311			}
   1312		}
   1313		if (end > start + size)
   1314			return start;
   1315	}
   1316
   1317	printk(KERN_WARNING
   1318	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
   1319	return ~0UL;
   1320}
   1321#endif
   1322
   1323#ifdef CONFIG_CRASH_DUMP
   1324/* locate the size find a the descriptor at a certain address */
   1325unsigned long __init
   1326vmcore_find_descriptor_size (unsigned long address)
   1327{
   1328	void *efi_map_start, *efi_map_end, *p;
   1329	efi_memory_desc_t *md;
   1330	u64 efi_desc_size;
   1331	unsigned long ret = 0;
   1332
   1333	efi_map_start = __va(ia64_boot_param->efi_memmap);
   1334	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
   1335	efi_desc_size = ia64_boot_param->efi_memdesc_size;
   1336
   1337	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
   1338		md = p;
   1339		if (efi_wb(md) && md->type == EFI_LOADER_DATA
   1340		    && md->phys_addr == address) {
   1341			ret = efi_md_size(md);
   1342			break;
   1343		}
   1344	}
   1345
   1346	if (ret == 0)
   1347		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
   1348
   1349	return ret;
   1350}
   1351#endif
   1352
   1353char *efi_systab_show_arch(char *str)
   1354{
   1355	if (mps_phys != EFI_INVALID_TABLE_ADDR)
   1356		str += sprintf(str, "MPS=0x%lx\n", mps_phys);
   1357	if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
   1358		str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
   1359	return str;
   1360}