cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kprobes.c (23982B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *  Kernel Probes (KProbes)
      4 *  arch/ia64/kernel/kprobes.c
      5 *
      6 * Copyright (C) IBM Corporation, 2002, 2004
      7 * Copyright (C) Intel Corporation, 2005
      8 *
      9 * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
     10 *              <anil.s.keshavamurthy@intel.com> adapted from i386
     11 */
     12
     13#include <linux/kprobes.h>
     14#include <linux/ptrace.h>
     15#include <linux/string.h>
     16#include <linux/slab.h>
     17#include <linux/preempt.h>
     18#include <linux/extable.h>
     19#include <linux/kdebug.h>
     20#include <linux/pgtable.h>
     21
     22#include <asm/sections.h>
     23#include <asm/exception.h>
     24
     25DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
     26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
     27
     28struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
     29
     30enum instruction_type {A, I, M, F, B, L, X, u};
     31static enum instruction_type bundle_encoding[32][3] = {
     32	[0x00] = { M, I, I },
     33	[0x01] = { M, I, I },
     34	[0x02] = { M, I, I },
     35	[0x03] = { M, I, I },
     36	[0x04] = { M, L, X },
     37	[0x05] = { M, L, X },
     38	[0x06] = { u, u, u },
     39	[0x07] = { u, u, u },
     40	[0x08] = { M, M, I },
     41	[0x09] = { M, M, I },
     42	[0x0A] = { M, M, I },
     43	[0x0B] = { M, M, I },
     44	[0x0C] = { M, F, I },
     45	[0x0D] = { M, F, I },
     46	[0x0E] = { M, M, F },
     47	[0x0F] = { M, M, F },
     48	[0x10] = { M, I, B },
     49	[0x11] = { M, I, B },
     50	[0x12] = { M, B, B },
     51	[0x13] = { M, B, B },
     52	[0x14] = { u, u, u },
     53	[0x15] = { u, u, u },
     54	[0x16] = { B, B, B },
     55	[0x17] = { B, B, B },
     56	[0x18] = { M, M, B },
     57	[0x19] = { M, M, B },
     58	[0x1A] = { u, u, u },
     59	[0x1B] = { u, u, u },
     60	[0x1C] = { M, F, B },
     61	[0x1D] = { M, F, B },
     62	[0x1E] = { u, u, u },
     63	[0x1F] = { u, u, u },
     64};
     65
     66/* Insert a long branch code */
     67static void __kprobes set_brl_inst(void *from, void *to)
     68{
     69	s64 rel = ((s64) to - (s64) from) >> 4;
     70	bundle_t *brl;
     71	brl = (bundle_t *) ((u64) from & ~0xf);
     72	brl->quad0.template = 0x05;	/* [MLX](stop) */
     73	brl->quad0.slot0 = NOP_M_INST;	/* nop.m 0x0 */
     74	brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
     75	brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
     76	/* brl.cond.sptk.many.clr rel<<4 (qp=0) */
     77	brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
     78}
     79
     80/*
     81 * In this function we check to see if the instruction
     82 * is IP relative instruction and update the kprobe
     83 * inst flag accordingly
     84 */
     85static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
     86					      uint major_opcode,
     87					      unsigned long kprobe_inst,
     88					      struct kprobe *p)
     89{
     90	p->ainsn.inst_flag = 0;
     91	p->ainsn.target_br_reg = 0;
     92	p->ainsn.slot = slot;
     93
     94	/* Check for Break instruction
     95	 * Bits 37:40 Major opcode to be zero
     96	 * Bits 27:32 X6 to be zero
     97	 * Bits 32:35 X3 to be zero
     98	 */
     99	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
    100		/* is a break instruction */
    101	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
    102		return;
    103	}
    104
    105	if (bundle_encoding[template][slot] == B) {
    106		switch (major_opcode) {
    107		  case INDIRECT_CALL_OPCODE:
    108	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
    109			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
    110			break;
    111		  case IP_RELATIVE_PREDICT_OPCODE:
    112		  case IP_RELATIVE_BRANCH_OPCODE:
    113			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
    114			break;
    115		  case IP_RELATIVE_CALL_OPCODE:
    116			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
    117			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
    118			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
    119			break;
    120		}
    121	} else if (bundle_encoding[template][slot] == X) {
    122		switch (major_opcode) {
    123		  case LONG_CALL_OPCODE:
    124			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
    125			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
    126		  break;
    127		}
    128	}
    129	return;
    130}
    131
    132/*
    133 * In this function we check to see if the instruction
    134 * (qp) cmpx.crel.ctype p1,p2=r2,r3
    135 * on which we are inserting kprobe is cmp instruction
    136 * with ctype as unc.
    137 */
    138static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
    139					    uint major_opcode,
    140					    unsigned long kprobe_inst)
    141{
    142	cmp_inst_t cmp_inst;
    143	uint ctype_unc = 0;
    144
    145	if (!((bundle_encoding[template][slot] == I) ||
    146		(bundle_encoding[template][slot] == M)))
    147		goto out;
    148
    149	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
    150		(major_opcode == 0xE)))
    151		goto out;
    152
    153	cmp_inst.l = kprobe_inst;
    154	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
    155		/* Integer compare - Register Register (A6 type)*/
    156		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
    157				&&(cmp_inst.f.c == 1))
    158			ctype_unc = 1;
    159	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
    160		/* Integer compare - Immediate Register (A8 type)*/
    161		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
    162			ctype_unc = 1;
    163	}
    164out:
    165	return ctype_unc;
    166}
    167
    168/*
    169 * In this function we check to see if the instruction
    170 * on which we are inserting kprobe is supported.
    171 * Returns qp value if supported
    172 * Returns -EINVAL if unsupported
    173 */
    174static int __kprobes unsupported_inst(uint template, uint  slot,
    175				      uint major_opcode,
    176				      unsigned long kprobe_inst,
    177				      unsigned long addr)
    178{
    179	int qp;
    180
    181	qp = kprobe_inst & 0x3f;
    182	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
    183		if (slot == 1 && qp)  {
    184			printk(KERN_WARNING "Kprobes on cmp unc "
    185					"instruction on slot 1 at <0x%lx> "
    186					"is not supported\n", addr);
    187			return -EINVAL;
    188
    189		}
    190		qp = 0;
    191	}
    192	else if (bundle_encoding[template][slot] == I) {
    193		if (major_opcode == 0) {
    194			/*
    195			 * Check for Integer speculation instruction
    196			 * - Bit 33-35 to be equal to 0x1
    197			 */
    198			if (((kprobe_inst >> 33) & 0x7) == 1) {
    199				printk(KERN_WARNING
    200					"Kprobes on speculation inst at <0x%lx> not supported\n",
    201						addr);
    202				return -EINVAL;
    203			}
    204			/*
    205			 * IP relative mov instruction
    206			 *  - Bit 27-35 to be equal to 0x30
    207			 */
    208			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
    209				printk(KERN_WARNING
    210					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
    211						addr);
    212				return -EINVAL;
    213
    214			}
    215		}
    216		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
    217				(kprobe_inst & (0x1UL << 12))) {
    218			/* test bit instructions, tbit,tnat,tf
    219			 * bit 33-36 to be equal to 0
    220			 * bit 12 to be equal to 1
    221			 */
    222			if (slot == 1 && qp) {
    223				printk(KERN_WARNING "Kprobes on test bit "
    224						"instruction on slot at <0x%lx> "
    225						"is not supported\n", addr);
    226				return -EINVAL;
    227			}
    228			qp = 0;
    229		}
    230	}
    231	else if (bundle_encoding[template][slot] == B) {
    232		if (major_opcode == 7) {
    233			/* IP-Relative Predict major code is 7 */
    234			printk(KERN_WARNING "Kprobes on IP-Relative"
    235					"Predict is not supported\n");
    236			return -EINVAL;
    237		}
    238		else if (major_opcode == 2) {
    239			/* Indirect Predict, major code is 2
    240			 * bit 27-32 to be equal to 10 or 11
    241			 */
    242			int x6=(kprobe_inst >> 27) & 0x3F;
    243			if ((x6 == 0x10) || (x6 == 0x11)) {
    244				printk(KERN_WARNING "Kprobes on "
    245					"Indirect Predict is not supported\n");
    246				return -EINVAL;
    247			}
    248		}
    249	}
    250	/* kernel does not use float instruction, here for safety kprobe
    251	 * will judge whether it is fcmp/flass/float approximation instruction
    252	 */
    253	else if (unlikely(bundle_encoding[template][slot] == F)) {
    254		if ((major_opcode == 4 || major_opcode == 5) &&
    255				(kprobe_inst  & (0x1 << 12))) {
    256			/* fcmp/fclass unc instruction */
    257			if (slot == 1 && qp) {
    258				printk(KERN_WARNING "Kprobes on fcmp/fclass "
    259					"instruction on slot at <0x%lx> "
    260					"is not supported\n", addr);
    261				return -EINVAL;
    262
    263			}
    264			qp = 0;
    265		}
    266		if ((major_opcode == 0 || major_opcode == 1) &&
    267			(kprobe_inst & (0x1UL << 33))) {
    268			/* float Approximation instruction */
    269			if (slot == 1 && qp) {
    270				printk(KERN_WARNING "Kprobes on float Approx "
    271					"instr at <0x%lx> is not supported\n",
    272						addr);
    273				return -EINVAL;
    274			}
    275			qp = 0;
    276		}
    277	}
    278	return qp;
    279}
    280
    281/*
    282 * In this function we override the bundle with
    283 * the break instruction at the given slot.
    284 */
    285static void __kprobes prepare_break_inst(uint template, uint  slot,
    286					 uint major_opcode,
    287					 unsigned long kprobe_inst,
    288					 struct kprobe *p,
    289					 int qp)
    290{
    291	unsigned long break_inst = BREAK_INST;
    292	bundle_t *bundle = &p->opcode.bundle;
    293
    294	/*
    295	 * Copy the original kprobe_inst qualifying predicate(qp)
    296	 * to the break instruction
    297	 */
    298	break_inst |= qp;
    299
    300	switch (slot) {
    301	  case 0:
    302		bundle->quad0.slot0 = break_inst;
    303		break;
    304	  case 1:
    305		bundle->quad0.slot1_p0 = break_inst;
    306		bundle->quad1.slot1_p1 = break_inst >> (64-46);
    307		break;
    308	  case 2:
    309		bundle->quad1.slot2 = break_inst;
    310		break;
    311	}
    312
    313	/*
    314	 * Update the instruction flag, so that we can
    315	 * emulate the instruction properly after we
    316	 * single step on original instruction
    317	 */
    318	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
    319}
    320
    321static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
    322	       	unsigned long *kprobe_inst, uint *major_opcode)
    323{
    324	unsigned long kprobe_inst_p0, kprobe_inst_p1;
    325	unsigned int template;
    326
    327	template = bundle->quad0.template;
    328
    329	switch (slot) {
    330	  case 0:
    331		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
    332		*kprobe_inst = bundle->quad0.slot0;
    333		  break;
    334	  case 1:
    335		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
    336		kprobe_inst_p0 = bundle->quad0.slot1_p0;
    337		kprobe_inst_p1 = bundle->quad1.slot1_p1;
    338		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
    339		break;
    340	  case 2:
    341		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
    342		*kprobe_inst = bundle->quad1.slot2;
    343		break;
    344	}
    345}
    346
    347/* Returns non-zero if the addr is in the Interrupt Vector Table */
    348static int __kprobes in_ivt_functions(unsigned long addr)
    349{
    350	return (addr >= (unsigned long)__start_ivt_text
    351		&& addr < (unsigned long)__end_ivt_text);
    352}
    353
    354static int __kprobes valid_kprobe_addr(int template, int slot,
    355				       unsigned long addr)
    356{
    357	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
    358		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
    359				"at 0x%lx\n", addr);
    360		return -EINVAL;
    361	}
    362
    363	if (in_ivt_functions(addr)) {
    364		printk(KERN_WARNING "Kprobes can't be inserted inside "
    365				"IVT functions at 0x%lx\n", addr);
    366		return -EINVAL;
    367	}
    368
    369	return 0;
    370}
    371
    372static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
    373{
    374	unsigned int i;
    375	i = atomic_add_return(1, &kcb->prev_kprobe_index);
    376	kcb->prev_kprobe[i-1].kp = kprobe_running();
    377	kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
    378}
    379
    380static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
    381{
    382	unsigned int i;
    383	i = atomic_read(&kcb->prev_kprobe_index);
    384	__this_cpu_write(current_kprobe, kcb->prev_kprobe[i-1].kp);
    385	kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
    386	atomic_sub(1, &kcb->prev_kprobe_index);
    387}
    388
    389static void __kprobes set_current_kprobe(struct kprobe *p,
    390			struct kprobe_ctlblk *kcb)
    391{
    392	__this_cpu_write(current_kprobe, p);
    393}
    394
    395void __kretprobe_trampoline(void)
    396{
    397}
    398
    399int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
    400{
    401	regs->cr_iip = __kretprobe_trampoline_handler(regs, NULL);
    402	/*
    403	 * By returning a non-zero value, we are telling
    404	 * kprobe_handler() that we don't want the post_handler
    405	 * to run (and have re-enabled preemption)
    406	 */
    407	return 1;
    408}
    409
    410void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
    411				      struct pt_regs *regs)
    412{
    413	ri->ret_addr = (kprobe_opcode_t *)regs->b0;
    414	ri->fp = NULL;
    415
    416	/* Replace the return addr with trampoline addr */
    417	regs->b0 = (unsigned long)dereference_function_descriptor(__kretprobe_trampoline);
    418}
    419
    420/* Check the instruction in the slot is break */
    421static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
    422{
    423	unsigned int major_opcode;
    424	unsigned int template = bundle->quad0.template;
    425	unsigned long kprobe_inst;
    426
    427	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
    428	if (slot == 1 && bundle_encoding[template][1] == L)
    429		slot++;
    430
    431	/* Get Kprobe probe instruction at given slot*/
    432	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
    433
    434	/* For break instruction,
    435	 * Bits 37:40 Major opcode to be zero
    436	 * Bits 27:32 X6 to be zero
    437	 * Bits 32:35 X3 to be zero
    438	 */
    439	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
    440		/* Not a break instruction */
    441		return 0;
    442	}
    443
    444	/* Is a break instruction */
    445	return 1;
    446}
    447
    448/*
    449 * In this function, we check whether the target bundle modifies IP or
    450 * it triggers an exception. If so, it cannot be boostable.
    451 */
    452static int __kprobes can_boost(bundle_t *bundle, uint slot,
    453			       unsigned long bundle_addr)
    454{
    455	unsigned int template = bundle->quad0.template;
    456
    457	do {
    458		if (search_exception_tables(bundle_addr + slot) ||
    459		    __is_ia64_break_inst(bundle, slot))
    460			return 0;	/* exception may occur in this bundle*/
    461	} while ((++slot) < 3);
    462	template &= 0x1e;
    463	if (template >= 0x10 /* including B unit */ ||
    464	    template == 0x04 /* including X unit */ ||
    465	    template == 0x06) /* undefined */
    466		return 0;
    467
    468	return 1;
    469}
    470
    471/* Prepare long jump bundle and disables other boosters if need */
    472static void __kprobes prepare_booster(struct kprobe *p)
    473{
    474	unsigned long addr = (unsigned long)p->addr & ~0xFULL;
    475	unsigned int slot = (unsigned long)p->addr & 0xf;
    476	struct kprobe *other_kp;
    477
    478	if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
    479		set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
    480		p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
    481	}
    482
    483	/* disables boosters in previous slots */
    484	for (; addr < (unsigned long)p->addr; addr++) {
    485		other_kp = get_kprobe((void *)addr);
    486		if (other_kp)
    487			other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
    488	}
    489}
    490
    491int __kprobes arch_prepare_kprobe(struct kprobe *p)
    492{
    493	unsigned long addr = (unsigned long) p->addr;
    494	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
    495	unsigned long kprobe_inst=0;
    496	unsigned int slot = addr & 0xf, template, major_opcode = 0;
    497	bundle_t *bundle;
    498	int qp;
    499
    500	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
    501	template = bundle->quad0.template;
    502
    503	if(valid_kprobe_addr(template, slot, addr))
    504		return -EINVAL;
    505
    506	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
    507	if (slot == 1 && bundle_encoding[template][1] == L)
    508		slot++;
    509
    510	/* Get kprobe_inst and major_opcode from the bundle */
    511	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
    512
    513	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
    514	if (qp < 0)
    515		return -EINVAL;
    516
    517	p->ainsn.insn = get_insn_slot();
    518	if (!p->ainsn.insn)
    519		return -ENOMEM;
    520	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
    521	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
    522
    523	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
    524
    525	prepare_booster(p);
    526
    527	return 0;
    528}
    529
    530void __kprobes arch_arm_kprobe(struct kprobe *p)
    531{
    532	unsigned long arm_addr;
    533	bundle_t *src, *dest;
    534
    535	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
    536	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
    537	src = &p->opcode.bundle;
    538
    539	flush_icache_range((unsigned long)p->ainsn.insn,
    540			   (unsigned long)p->ainsn.insn +
    541			   sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
    542
    543	switch (p->ainsn.slot) {
    544		case 0:
    545			dest->quad0.slot0 = src->quad0.slot0;
    546			break;
    547		case 1:
    548			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
    549			break;
    550		case 2:
    551			dest->quad1.slot2 = src->quad1.slot2;
    552			break;
    553	}
    554	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
    555}
    556
    557void __kprobes arch_disarm_kprobe(struct kprobe *p)
    558{
    559	unsigned long arm_addr;
    560	bundle_t *src, *dest;
    561
    562	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
    563	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
    564	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
    565	src = &p->ainsn.insn->bundle;
    566	switch (p->ainsn.slot) {
    567		case 0:
    568			dest->quad0.slot0 = src->quad0.slot0;
    569			break;
    570		case 1:
    571			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
    572			break;
    573		case 2:
    574			dest->quad1.slot2 = src->quad1.slot2;
    575			break;
    576	}
    577	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
    578}
    579
    580void __kprobes arch_remove_kprobe(struct kprobe *p)
    581{
    582	if (p->ainsn.insn) {
    583		free_insn_slot(p->ainsn.insn,
    584			       p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
    585		p->ainsn.insn = NULL;
    586	}
    587}
    588/*
    589 * We are resuming execution after a single step fault, so the pt_regs
    590 * structure reflects the register state after we executed the instruction
    591 * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
    592 * the ip to point back to the original stack address. To set the IP address
    593 * to original stack address, handle the case where we need to fixup the
    594 * relative IP address and/or fixup branch register.
    595 */
    596static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
    597{
    598	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
    599	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
    600	unsigned long template;
    601	int slot = ((unsigned long)p->addr & 0xf);
    602
    603	template = p->ainsn.insn->bundle.quad0.template;
    604
    605	if (slot == 1 && bundle_encoding[template][1] == L)
    606		slot = 2;
    607
    608	if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
    609
    610		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
    611			/* Fix relative IP address */
    612			regs->cr_iip = (regs->cr_iip - bundle_addr) +
    613					resume_addr;
    614		}
    615
    616		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
    617		/*
    618		 * Fix target branch register, software convention is
    619		 * to use either b0 or b6 or b7, so just checking
    620		 * only those registers
    621		 */
    622			switch (p->ainsn.target_br_reg) {
    623			case 0:
    624				if ((regs->b0 == bundle_addr) ||
    625					(regs->b0 == bundle_addr + 0x10)) {
    626					regs->b0 = (regs->b0 - bundle_addr) +
    627						resume_addr;
    628				}
    629				break;
    630			case 6:
    631				if ((regs->b6 == bundle_addr) ||
    632					(regs->b6 == bundle_addr + 0x10)) {
    633					regs->b6 = (regs->b6 - bundle_addr) +
    634						resume_addr;
    635				}
    636				break;
    637			case 7:
    638				if ((regs->b7 == bundle_addr) ||
    639					(regs->b7 == bundle_addr + 0x10)) {
    640					regs->b7 = (regs->b7 - bundle_addr) +
    641						resume_addr;
    642				}
    643				break;
    644			} /* end switch */
    645		}
    646		goto turn_ss_off;
    647	}
    648
    649	if (slot == 2) {
    650		if (regs->cr_iip == bundle_addr + 0x10) {
    651			regs->cr_iip = resume_addr + 0x10;
    652		}
    653	} else {
    654		if (regs->cr_iip == bundle_addr) {
    655			regs->cr_iip = resume_addr;
    656		}
    657	}
    658
    659turn_ss_off:
    660	/* Turn off Single Step bit */
    661	ia64_psr(regs)->ss = 0;
    662}
    663
    664static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
    665{
    666	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
    667	unsigned long slot = (unsigned long)p->addr & 0xf;
    668
    669	/* single step inline if break instruction */
    670	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
    671		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
    672	else
    673		regs->cr_iip = bundle_addr & ~0xFULL;
    674
    675	if (slot > 2)
    676		slot = 0;
    677
    678	ia64_psr(regs)->ri = slot;
    679
    680	/* turn on single stepping */
    681	ia64_psr(regs)->ss = 1;
    682}
    683
    684static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
    685{
    686	unsigned int slot = ia64_psr(regs)->ri;
    687	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
    688	bundle_t bundle;
    689
    690	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
    691
    692	return __is_ia64_break_inst(&bundle, slot);
    693}
    694
    695static int __kprobes pre_kprobes_handler(struct die_args *args)
    696{
    697	struct kprobe *p;
    698	int ret = 0;
    699	struct pt_regs *regs = args->regs;
    700	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
    701	struct kprobe_ctlblk *kcb;
    702
    703	/*
    704	 * We don't want to be preempted for the entire
    705	 * duration of kprobe processing
    706	 */
    707	preempt_disable();
    708	kcb = get_kprobe_ctlblk();
    709
    710	/* Handle recursion cases */
    711	if (kprobe_running()) {
    712		p = get_kprobe(addr);
    713		if (p) {
    714			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
    715	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
    716				ia64_psr(regs)->ss = 0;
    717				goto no_kprobe;
    718			}
    719			/* We have reentered the pre_kprobe_handler(), since
    720			 * another probe was hit while within the handler.
    721			 * We here save the original kprobes variables and
    722			 * just single step on the instruction of the new probe
    723			 * without calling any user handlers.
    724			 */
    725			save_previous_kprobe(kcb);
    726			set_current_kprobe(p, kcb);
    727			kprobes_inc_nmissed_count(p);
    728			prepare_ss(p, regs);
    729			kcb->kprobe_status = KPROBE_REENTER;
    730			return 1;
    731		} else if (!is_ia64_break_inst(regs)) {
    732			/* The breakpoint instruction was removed by
    733			 * another cpu right after we hit, no further
    734			 * handling of this interrupt is appropriate
    735			 */
    736			ret = 1;
    737			goto no_kprobe;
    738		} else {
    739			/* Not our break */
    740			goto no_kprobe;
    741		}
    742	}
    743
    744	p = get_kprobe(addr);
    745	if (!p) {
    746		if (!is_ia64_break_inst(regs)) {
    747			/*
    748			 * The breakpoint instruction was removed right
    749			 * after we hit it.  Another cpu has removed
    750			 * either a probepoint or a debugger breakpoint
    751			 * at this address.  In either case, no further
    752			 * handling of this interrupt is appropriate.
    753			 */
    754			ret = 1;
    755
    756		}
    757
    758		/* Not one of our break, let kernel handle it */
    759		goto no_kprobe;
    760	}
    761
    762	set_current_kprobe(p, kcb);
    763	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
    764
    765	if (p->pre_handler && p->pre_handler(p, regs)) {
    766		reset_current_kprobe();
    767		preempt_enable_no_resched();
    768		return 1;
    769	}
    770
    771#if !defined(CONFIG_PREEMPTION)
    772	if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
    773		/* Boost up -- we can execute copied instructions directly */
    774		ia64_psr(regs)->ri = p->ainsn.slot;
    775		regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
    776		/* turn single stepping off */
    777		ia64_psr(regs)->ss = 0;
    778
    779		reset_current_kprobe();
    780		preempt_enable_no_resched();
    781		return 1;
    782	}
    783#endif
    784	prepare_ss(p, regs);
    785	kcb->kprobe_status = KPROBE_HIT_SS;
    786	return 1;
    787
    788no_kprobe:
    789	preempt_enable_no_resched();
    790	return ret;
    791}
    792
    793static int __kprobes post_kprobes_handler(struct pt_regs *regs)
    794{
    795	struct kprobe *cur = kprobe_running();
    796	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
    797
    798	if (!cur)
    799		return 0;
    800
    801	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
    802		kcb->kprobe_status = KPROBE_HIT_SSDONE;
    803		cur->post_handler(cur, regs, 0);
    804	}
    805
    806	resume_execution(cur, regs);
    807
    808	/*Restore back the original saved kprobes variables and continue. */
    809	if (kcb->kprobe_status == KPROBE_REENTER) {
    810		restore_previous_kprobe(kcb);
    811		goto out;
    812	}
    813	reset_current_kprobe();
    814
    815out:
    816	preempt_enable_no_resched();
    817	return 1;
    818}
    819
    820int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
    821{
    822	struct kprobe *cur = kprobe_running();
    823	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
    824
    825
    826	switch(kcb->kprobe_status) {
    827	case KPROBE_HIT_SS:
    828	case KPROBE_REENTER:
    829		/*
    830		 * We are here because the instruction being single
    831		 * stepped caused a page fault. We reset the current
    832		 * kprobe and the instruction pointer points back to
    833		 * the probe address and allow the page fault handler
    834		 * to continue as a normal page fault.
    835		 */
    836		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
    837		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
    838		if (kcb->kprobe_status == KPROBE_REENTER)
    839			restore_previous_kprobe(kcb);
    840		else
    841			reset_current_kprobe();
    842		preempt_enable_no_resched();
    843		break;
    844	case KPROBE_HIT_ACTIVE:
    845	case KPROBE_HIT_SSDONE:
    846		/*
    847		 * In case the user-specified fault handler returned
    848		 * zero, try to fix up.
    849		 */
    850		if (ia64_done_with_exception(regs))
    851			return 1;
    852
    853		/*
    854		 * Let ia64_do_page_fault() fix it.
    855		 */
    856		break;
    857	default:
    858		break;
    859	}
    860
    861	return 0;
    862}
    863
    864int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
    865				       unsigned long val, void *data)
    866{
    867	struct die_args *args = (struct die_args *)data;
    868	int ret = NOTIFY_DONE;
    869
    870	if (args->regs && user_mode(args->regs))
    871		return ret;
    872
    873	switch(val) {
    874	case DIE_BREAK:
    875		/* err is break number from ia64_bad_break() */
    876		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
    877			|| args->err == 0)
    878			if (pre_kprobes_handler(args))
    879				ret = NOTIFY_STOP;
    880		break;
    881	case DIE_FAULT:
    882		/* err is vector number from ia64_fault() */
    883		if (args->err == 36)
    884			if (post_kprobes_handler(args->regs))
    885				ret = NOTIFY_STOP;
    886		break;
    887	default:
    888		break;
    889	}
    890	return ret;
    891}
    892
    893static struct kprobe trampoline_p = {
    894	.pre_handler = trampoline_probe_handler
    895};
    896
    897int __init arch_init_kprobes(void)
    898{
    899	trampoline_p.addr =
    900		dereference_function_descriptor(__kretprobe_trampoline);
    901	return register_kprobe(&trampoline_p);
    902}
    903
    904int __kprobes arch_trampoline_kprobe(struct kprobe *p)
    905{
    906	if (p->addr ==
    907		dereference_function_descriptor(__kretprobe_trampoline))
    908		return 1;
    909
    910	return 0;
    911}