cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mca.c (61782B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * File:	mca.c
      4 * Purpose:	Generic MCA handling layer
      5 *
      6 * Copyright (C) 2003 Hewlett-Packard Co
      7 *	David Mosberger-Tang <davidm@hpl.hp.com>
      8 *
      9 * Copyright (C) 2002 Dell Inc.
     10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
     11 *
     12 * Copyright (C) 2002 Intel
     13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
     14 *
     15 * Copyright (C) 2001 Intel
     16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
     17 *
     18 * Copyright (C) 2000 Intel
     19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
     20 *
     21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
     22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
     23 *
     24 * Copyright (C) 2006 FUJITSU LIMITED
     25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
     26 *
     27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
     28 *	      Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
     29 *	      added min save state dump, added INIT handler.
     30 *
     31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
     32 *	      Added setup of CMCI and CPEI IRQs, logging of corrected platform
     33 *	      errors, completed code for logging of corrected & uncorrected
     34 *	      machine check errors, and updated for conformance with Nov. 2000
     35 *	      revision of the SAL 3.0 spec.
     36 *
     37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
     38 *	      Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
     39 *	      set SAL default return values, changed error record structure to
     40 *	      linked list, added init call to sal_get_state_info_size().
     41 *
     42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
     43 *	      GUID cleanups.
     44 *
     45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
     46 *	      Added INIT backtrace support.
     47 *
     48 * 2003-12-08 Keith Owens <kaos@sgi.com>
     49 *	      smp_call_function() must not be called from interrupt context
     50 *	      (can deadlock on tasklist_lock).
     51 *	      Use keventd to call smp_call_function().
     52 *
     53 * 2004-02-01 Keith Owens <kaos@sgi.com>
     54 *	      Avoid deadlock when using printk() for MCA and INIT records.
     55 *	      Delete all record printing code, moved to salinfo_decode in user
     56 *	      space.  Mark variables and functions static where possible.
     57 *	      Delete dead variables and functions.  Reorder to remove the need
     58 *	      for forward declarations and to consolidate related code.
     59 *
     60 * 2005-08-12 Keith Owens <kaos@sgi.com>
     61 *	      Convert MCA/INIT handlers to use per event stacks and SAL/OS
     62 *	      state.
     63 *
     64 * 2005-10-07 Keith Owens <kaos@sgi.com>
     65 *	      Add notify_die() hooks.
     66 *
     67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
     68 *	      Add printing support for MCA/INIT.
     69 *
     70 * 2007-04-27 Russ Anderson <rja@sgi.com>
     71 *	      Support multiple cpus going through OS_MCA in the same event.
     72 */
     73#include <linux/jiffies.h>
     74#include <linux/types.h>
     75#include <linux/init.h>
     76#include <linux/sched/signal.h>
     77#include <linux/sched/debug.h>
     78#include <linux/sched/task.h>
     79#include <linux/interrupt.h>
     80#include <linux/irq.h>
     81#include <linux/memblock.h>
     82#include <linux/acpi.h>
     83#include <linux/timer.h>
     84#include <linux/module.h>
     85#include <linux/kernel.h>
     86#include <linux/smp.h>
     87#include <linux/workqueue.h>
     88#include <linux/cpumask.h>
     89#include <linux/kdebug.h>
     90#include <linux/cpu.h>
     91#include <linux/gfp.h>
     92
     93#include <asm/delay.h>
     94#include <asm/efi.h>
     95#include <asm/meminit.h>
     96#include <asm/page.h>
     97#include <asm/ptrace.h>
     98#include <asm/sal.h>
     99#include <asm/mca.h>
    100#include <asm/mca_asm.h>
    101#include <asm/kexec.h>
    102
    103#include <asm/irq.h>
    104#include <asm/hw_irq.h>
    105#include <asm/tlb.h>
    106
    107#include "mca_drv.h"
    108#include "entry.h"
    109#include "irq.h"
    110
    111#if defined(IA64_MCA_DEBUG_INFO)
    112# define IA64_MCA_DEBUG(fmt...) printk(fmt)
    113#else
    114# define IA64_MCA_DEBUG(fmt...) do {} while (0)
    115#endif
    116
    117#define NOTIFY_INIT(event, regs, arg, spin)				\
    118do {									\
    119	if ((notify_die((event), "INIT", (regs), (arg), 0, 0)		\
    120			== NOTIFY_STOP) && ((spin) == 1))		\
    121		ia64_mca_spin(__func__);				\
    122} while (0)
    123
    124#define NOTIFY_MCA(event, regs, arg, spin)				\
    125do {									\
    126	if ((notify_die((event), "MCA", (regs), (arg), 0, 0)		\
    127			== NOTIFY_STOP) && ((spin) == 1))		\
    128		ia64_mca_spin(__func__);				\
    129} while (0)
    130
    131/* Used by mca_asm.S */
    132DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
    133DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
    134DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */
    135DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
    136DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
    137
    138unsigned long __per_cpu_mca[NR_CPUS];
    139
    140/* In mca_asm.S */
    141extern void			ia64_os_init_dispatch_monarch (void);
    142extern void			ia64_os_init_dispatch_slave (void);
    143
    144static int monarch_cpu = -1;
    145
    146static ia64_mc_info_t		ia64_mc_info;
    147
    148#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
    149#define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
    150#define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
    151#define CPE_HISTORY_LENGTH    5
    152#define CMC_HISTORY_LENGTH    5
    153
    154static struct timer_list cpe_poll_timer;
    155static struct timer_list cmc_poll_timer;
    156/*
    157 * This variable tells whether we are currently in polling mode.
    158 * Start with this in the wrong state so we won't play w/ timers
    159 * before the system is ready.
    160 */
    161static int cmc_polling_enabled = 1;
    162
    163/*
    164 * Clearing this variable prevents CPE polling from getting activated
    165 * in mca_late_init.  Use it if your system doesn't provide a CPEI,
    166 * but encounters problems retrieving CPE logs.  This should only be
    167 * necessary for debugging.
    168 */
    169static int cpe_poll_enabled = 1;
    170
    171extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
    172
    173static int mca_init __initdata;
    174
    175/*
    176 * limited & delayed printing support for MCA/INIT handler
    177 */
    178
    179#define mprintk(fmt...) ia64_mca_printk(fmt)
    180
    181#define MLOGBUF_SIZE (512+256*NR_CPUS)
    182#define MLOGBUF_MSGMAX 256
    183static char mlogbuf[MLOGBUF_SIZE];
    184static DEFINE_SPINLOCK(mlogbuf_wlock);	/* mca context only */
    185static DEFINE_SPINLOCK(mlogbuf_rlock);	/* normal context only */
    186static unsigned long mlogbuf_start;
    187static unsigned long mlogbuf_end;
    188static unsigned int mlogbuf_finished = 0;
    189static unsigned long mlogbuf_timestamp = 0;
    190
    191static int loglevel_save = -1;
    192#define BREAK_LOGLEVEL(__console_loglevel)		\
    193	oops_in_progress = 1;				\
    194	if (loglevel_save < 0)				\
    195		loglevel_save = __console_loglevel;	\
    196	__console_loglevel = 15;
    197
    198#define RESTORE_LOGLEVEL(__console_loglevel)		\
    199	if (loglevel_save >= 0) {			\
    200		__console_loglevel = loglevel_save;	\
    201		loglevel_save = -1;			\
    202	}						\
    203	mlogbuf_finished = 0;				\
    204	oops_in_progress = 0;
    205
    206/*
    207 * Push messages into buffer, print them later if not urgent.
    208 */
    209void ia64_mca_printk(const char *fmt, ...)
    210{
    211	va_list args;
    212	int printed_len;
    213	char temp_buf[MLOGBUF_MSGMAX];
    214	char *p;
    215
    216	va_start(args, fmt);
    217	printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
    218	va_end(args);
    219
    220	/* Copy the output into mlogbuf */
    221	if (oops_in_progress) {
    222		/* mlogbuf was abandoned, use printk directly instead. */
    223		printk("%s", temp_buf);
    224	} else {
    225		spin_lock(&mlogbuf_wlock);
    226		for (p = temp_buf; *p; p++) {
    227			unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
    228			if (next != mlogbuf_start) {
    229				mlogbuf[mlogbuf_end] = *p;
    230				mlogbuf_end = next;
    231			} else {
    232				/* buffer full */
    233				break;
    234			}
    235		}
    236		mlogbuf[mlogbuf_end] = '\0';
    237		spin_unlock(&mlogbuf_wlock);
    238	}
    239}
    240EXPORT_SYMBOL(ia64_mca_printk);
    241
    242/*
    243 * Print buffered messages.
    244 *  NOTE: call this after returning normal context. (ex. from salinfod)
    245 */
    246void ia64_mlogbuf_dump(void)
    247{
    248	char temp_buf[MLOGBUF_MSGMAX];
    249	char *p;
    250	unsigned long index;
    251	unsigned long flags;
    252	unsigned int printed_len;
    253
    254	/* Get output from mlogbuf */
    255	while (mlogbuf_start != mlogbuf_end) {
    256		temp_buf[0] = '\0';
    257		p = temp_buf;
    258		printed_len = 0;
    259
    260		spin_lock_irqsave(&mlogbuf_rlock, flags);
    261
    262		index = mlogbuf_start;
    263		while (index != mlogbuf_end) {
    264			*p = mlogbuf[index];
    265			index = (index + 1) % MLOGBUF_SIZE;
    266			if (!*p)
    267				break;
    268			p++;
    269			if (++printed_len >= MLOGBUF_MSGMAX - 1)
    270				break;
    271		}
    272		*p = '\0';
    273		if (temp_buf[0])
    274			printk("%s", temp_buf);
    275		mlogbuf_start = index;
    276
    277		mlogbuf_timestamp = 0;
    278		spin_unlock_irqrestore(&mlogbuf_rlock, flags);
    279	}
    280}
    281EXPORT_SYMBOL(ia64_mlogbuf_dump);
    282
    283/*
    284 * Call this if system is going to down or if immediate flushing messages to
    285 * console is required. (ex. recovery was failed, crash dump is going to be
    286 * invoked, long-wait rendezvous etc.)
    287 *  NOTE: this should be called from monarch.
    288 */
    289static void ia64_mlogbuf_finish(int wait)
    290{
    291	BREAK_LOGLEVEL(console_loglevel);
    292
    293	ia64_mlogbuf_dump();
    294	printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
    295		"MCA/INIT might be dodgy or fail.\n");
    296
    297	if (!wait)
    298		return;
    299
    300	/* wait for console */
    301	printk("Delaying for 5 seconds...\n");
    302	udelay(5*1000000);
    303
    304	mlogbuf_finished = 1;
    305}
    306
    307/*
    308 * Print buffered messages from INIT context.
    309 */
    310static void ia64_mlogbuf_dump_from_init(void)
    311{
    312	if (mlogbuf_finished)
    313		return;
    314
    315	if (mlogbuf_timestamp &&
    316			time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
    317		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
    318			" and the system seems to be messed up.\n");
    319		ia64_mlogbuf_finish(0);
    320		return;
    321	}
    322
    323	if (!spin_trylock(&mlogbuf_rlock)) {
    324		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
    325			"Generated messages other than stack dump will be "
    326			"buffered to mlogbuf and will be printed later.\n");
    327		printk(KERN_ERR "INIT: If messages would not printed after "
    328			"this INIT, wait 30sec and assert INIT again.\n");
    329		if (!mlogbuf_timestamp)
    330			mlogbuf_timestamp = jiffies;
    331		return;
    332	}
    333	spin_unlock(&mlogbuf_rlock);
    334	ia64_mlogbuf_dump();
    335}
    336
    337static inline void
    338ia64_mca_spin(const char *func)
    339{
    340	if (monarch_cpu == smp_processor_id())
    341		ia64_mlogbuf_finish(0);
    342	mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
    343	while (1)
    344		cpu_relax();
    345}
    346/*
    347 * IA64_MCA log support
    348 */
    349#define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */
    350#define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
    351
    352typedef struct ia64_state_log_s
    353{
    354	spinlock_t	isl_lock;
    355	int		isl_index;
    356	unsigned long	isl_count;
    357	ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
    358} ia64_state_log_t;
    359
    360static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
    361
    362#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
    363#define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
    364#define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
    365#define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
    366#define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
    367#define IA64_LOG_INDEX_INC(it) \
    368    {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
    369    ia64_state_log[it].isl_count++;}
    370#define IA64_LOG_INDEX_DEC(it) \
    371    ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
    372#define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
    373#define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
    374#define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
    375
    376static inline void ia64_log_allocate(int it, u64 size)
    377{
    378	ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
    379		(ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
    380	if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
    381		panic("%s: Failed to allocate %llu bytes\n", __func__, size);
    382
    383	ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
    384		(ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
    385	if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
    386		panic("%s: Failed to allocate %llu bytes\n", __func__, size);
    387}
    388
    389/*
    390 * ia64_log_init
    391 *	Reset the OS ia64 log buffer
    392 * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
    393 * Outputs	:	None
    394 */
    395static void __init
    396ia64_log_init(int sal_info_type)
    397{
    398	u64	max_size = 0;
    399
    400	IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
    401	IA64_LOG_LOCK_INIT(sal_info_type);
    402
    403	// SAL will tell us the maximum size of any error record of this type
    404	max_size = ia64_sal_get_state_info_size(sal_info_type);
    405	if (!max_size)
    406		/* alloc_bootmem() doesn't like zero-sized allocations! */
    407		return;
    408
    409	// set up OS data structures to hold error info
    410	ia64_log_allocate(sal_info_type, max_size);
    411}
    412
    413/*
    414 * ia64_log_get
    415 *
    416 *	Get the current MCA log from SAL and copy it into the OS log buffer.
    417 *
    418 *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
    419 *              irq_safe    whether you can use printk at this point
    420 *  Outputs :   size        (total record length)
    421 *              *buffer     (ptr to error record)
    422 *
    423 */
    424static u64
    425ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
    426{
    427	sal_log_record_header_t     *log_buffer;
    428	u64                         total_len = 0;
    429	unsigned long               s;
    430
    431	IA64_LOG_LOCK(sal_info_type);
    432
    433	/* Get the process state information */
    434	log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
    435
    436	total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
    437
    438	if (total_len) {
    439		IA64_LOG_INDEX_INC(sal_info_type);
    440		IA64_LOG_UNLOCK(sal_info_type);
    441		if (irq_safe) {
    442			IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
    443				       __func__, sal_info_type, total_len);
    444		}
    445		*buffer = (u8 *) log_buffer;
    446		return total_len;
    447	} else {
    448		IA64_LOG_UNLOCK(sal_info_type);
    449		return 0;
    450	}
    451}
    452
    453/*
    454 *  ia64_mca_log_sal_error_record
    455 *
    456 *  This function retrieves a specified error record type from SAL
    457 *  and wakes up any processes waiting for error records.
    458 *
    459 *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
    460 *              FIXME: remove MCA and irq_safe.
    461 */
    462static void
    463ia64_mca_log_sal_error_record(int sal_info_type)
    464{
    465	u8 *buffer;
    466	sal_log_record_header_t *rh;
    467	u64 size;
    468	int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
    469#ifdef IA64_MCA_DEBUG_INFO
    470	static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
    471#endif
    472
    473	size = ia64_log_get(sal_info_type, &buffer, irq_safe);
    474	if (!size)
    475		return;
    476
    477	salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
    478
    479	if (irq_safe)
    480		IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
    481			smp_processor_id(),
    482			sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
    483
    484	/* Clear logs from corrected errors in case there's no user-level logger */
    485	rh = (sal_log_record_header_t *)buffer;
    486	if (rh->severity == sal_log_severity_corrected)
    487		ia64_sal_clear_state_info(sal_info_type);
    488}
    489
    490/*
    491 * search_mca_table
    492 *  See if the MCA surfaced in an instruction range
    493 *  that has been tagged as recoverable.
    494 *
    495 *  Inputs
    496 *	first	First address range to check
    497 *	last	Last address range to check
    498 *	ip	Instruction pointer, address we are looking for
    499 *
    500 * Return value:
    501 *      1 on Success (in the table)/ 0 on Failure (not in the  table)
    502 */
    503int
    504search_mca_table (const struct mca_table_entry *first,
    505                const struct mca_table_entry *last,
    506                unsigned long ip)
    507{
    508        const struct mca_table_entry *curr;
    509        u64 curr_start, curr_end;
    510
    511        curr = first;
    512        while (curr <= last) {
    513                curr_start = (u64) &curr->start_addr + curr->start_addr;
    514                curr_end = (u64) &curr->end_addr + curr->end_addr;
    515
    516                if ((ip >= curr_start) && (ip <= curr_end)) {
    517                        return 1;
    518                }
    519                curr++;
    520        }
    521        return 0;
    522}
    523
    524/* Given an address, look for it in the mca tables. */
    525int mca_recover_range(unsigned long addr)
    526{
    527	extern struct mca_table_entry __start___mca_table[];
    528	extern struct mca_table_entry __stop___mca_table[];
    529
    530	return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
    531}
    532EXPORT_SYMBOL_GPL(mca_recover_range);
    533
    534int cpe_vector = -1;
    535int ia64_cpe_irq = -1;
    536
    537static irqreturn_t
    538ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
    539{
    540	static unsigned long	cpe_history[CPE_HISTORY_LENGTH];
    541	static int		index;
    542	static DEFINE_SPINLOCK(cpe_history_lock);
    543
    544	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
    545		       __func__, cpe_irq, smp_processor_id());
    546
    547	/* SAL spec states this should run w/ interrupts enabled */
    548	local_irq_enable();
    549
    550	spin_lock(&cpe_history_lock);
    551	if (!cpe_poll_enabled && cpe_vector >= 0) {
    552
    553		int i, count = 1; /* we know 1 happened now */
    554		unsigned long now = jiffies;
    555
    556		for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
    557			if (now - cpe_history[i] <= HZ)
    558				count++;
    559		}
    560
    561		IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
    562		if (count >= CPE_HISTORY_LENGTH) {
    563
    564			cpe_poll_enabled = 1;
    565			spin_unlock(&cpe_history_lock);
    566			disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
    567
    568			/*
    569			 * Corrected errors will still be corrected, but
    570			 * make sure there's a log somewhere that indicates
    571			 * something is generating more than we can handle.
    572			 */
    573			printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
    574
    575			mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
    576
    577			/* lock already released, get out now */
    578			goto out;
    579		} else {
    580			cpe_history[index++] = now;
    581			if (index == CPE_HISTORY_LENGTH)
    582				index = 0;
    583		}
    584	}
    585	spin_unlock(&cpe_history_lock);
    586out:
    587	/* Get the CPE error record and log it */
    588	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
    589
    590	local_irq_disable();
    591
    592	return IRQ_HANDLED;
    593}
    594
    595/*
    596 * ia64_mca_register_cpev
    597 *
    598 *  Register the corrected platform error vector with SAL.
    599 *
    600 *  Inputs
    601 *      cpev        Corrected Platform Error Vector number
    602 *
    603 *  Outputs
    604 *      None
    605 */
    606void
    607ia64_mca_register_cpev (int cpev)
    608{
    609	/* Register the CPE interrupt vector with SAL */
    610	struct ia64_sal_retval isrv;
    611
    612	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
    613	if (isrv.status) {
    614		printk(KERN_ERR "Failed to register Corrected Platform "
    615		       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
    616		return;
    617	}
    618
    619	IA64_MCA_DEBUG("%s: corrected platform error "
    620		       "vector %#x registered\n", __func__, cpev);
    621}
    622
    623/*
    624 * ia64_mca_cmc_vector_setup
    625 *
    626 *  Setup the corrected machine check vector register in the processor.
    627 *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
    628 *  This function is invoked on a per-processor basis.
    629 *
    630 * Inputs
    631 *      None
    632 *
    633 * Outputs
    634 *	None
    635 */
    636void
    637ia64_mca_cmc_vector_setup (void)
    638{
    639	cmcv_reg_t	cmcv;
    640
    641	cmcv.cmcv_regval	= 0;
    642	cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */
    643	cmcv.cmcv_vector	= IA64_CMC_VECTOR;
    644	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
    645
    646	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
    647		       __func__, smp_processor_id(), IA64_CMC_VECTOR);
    648
    649	IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
    650		       __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
    651}
    652
    653/*
    654 * ia64_mca_cmc_vector_disable
    655 *
    656 *  Mask the corrected machine check vector register in the processor.
    657 *  This function is invoked on a per-processor basis.
    658 *
    659 * Inputs
    660 *      dummy(unused)
    661 *
    662 * Outputs
    663 *	None
    664 */
    665static void
    666ia64_mca_cmc_vector_disable (void *dummy)
    667{
    668	cmcv_reg_t	cmcv;
    669
    670	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
    671
    672	cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
    673	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
    674
    675	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
    676		       __func__, smp_processor_id(), cmcv.cmcv_vector);
    677}
    678
    679/*
    680 * ia64_mca_cmc_vector_enable
    681 *
    682 *  Unmask the corrected machine check vector register in the processor.
    683 *  This function is invoked on a per-processor basis.
    684 *
    685 * Inputs
    686 *      dummy(unused)
    687 *
    688 * Outputs
    689 *	None
    690 */
    691static void
    692ia64_mca_cmc_vector_enable (void *dummy)
    693{
    694	cmcv_reg_t	cmcv;
    695
    696	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
    697
    698	cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
    699	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
    700
    701	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
    702		       __func__, smp_processor_id(), cmcv.cmcv_vector);
    703}
    704
    705/*
    706 * ia64_mca_cmc_vector_disable_keventd
    707 *
    708 * Called via keventd (smp_call_function() is not safe in interrupt context) to
    709 * disable the cmc interrupt vector.
    710 */
    711static void
    712ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
    713{
    714	on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
    715}
    716
    717/*
    718 * ia64_mca_cmc_vector_enable_keventd
    719 *
    720 * Called via keventd (smp_call_function() is not safe in interrupt context) to
    721 * enable the cmc interrupt vector.
    722 */
    723static void
    724ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
    725{
    726	on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
    727}
    728
    729/*
    730 * ia64_mca_wakeup
    731 *
    732 *	Send an inter-cpu interrupt to wake-up a particular cpu.
    733 *
    734 *  Inputs  :   cpuid
    735 *  Outputs :   None
    736 */
    737static void
    738ia64_mca_wakeup(int cpu)
    739{
    740	ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
    741}
    742
    743/*
    744 * ia64_mca_wakeup_all
    745 *
    746 *	Wakeup all the slave cpus which have rendez'ed previously.
    747 *
    748 *  Inputs  :   None
    749 *  Outputs :   None
    750 */
    751static void
    752ia64_mca_wakeup_all(void)
    753{
    754	int cpu;
    755
    756	/* Clear the Rendez checkin flag for all cpus */
    757	for_each_online_cpu(cpu) {
    758		if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
    759			ia64_mca_wakeup(cpu);
    760	}
    761
    762}
    763
    764/*
    765 * ia64_mca_rendez_interrupt_handler
    766 *
    767 *	This is handler used to put slave processors into spinloop
    768 *	while the monarch processor does the mca handling and later
    769 *	wake each slave up once the monarch is done.  The state
    770 *	IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
    771 *	in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
    772 *	the cpu has come out of OS rendezvous.
    773 *
    774 *  Inputs  :   None
    775 *  Outputs :   None
    776 */
    777static irqreturn_t
    778ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
    779{
    780	unsigned long flags;
    781	int cpu = smp_processor_id();
    782	struct ia64_mca_notify_die nd =
    783		{ .sos = NULL, .monarch_cpu = &monarch_cpu };
    784
    785	/* Mask all interrupts */
    786	local_irq_save(flags);
    787
    788	NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
    789
    790	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
    791	/* Register with the SAL monarch that the slave has
    792	 * reached SAL
    793	 */
    794	ia64_sal_mc_rendez();
    795
    796	NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
    797
    798	/* Wait for the monarch cpu to exit. */
    799	while (monarch_cpu != -1)
    800	       cpu_relax();	/* spin until monarch leaves */
    801
    802	NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
    803
    804	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
    805	/* Enable all interrupts */
    806	local_irq_restore(flags);
    807	return IRQ_HANDLED;
    808}
    809
    810/*
    811 * ia64_mca_wakeup_int_handler
    812 *
    813 *	The interrupt handler for processing the inter-cpu interrupt to the
    814 *	slave cpu which was spinning in the rendez loop.
    815 *	Since this spinning is done by turning off the interrupts and
    816 *	polling on the wakeup-interrupt bit in the IRR, there is
    817 *	nothing useful to be done in the handler.
    818 *
    819 *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
    820 *	arg		(Interrupt handler specific argument)
    821 *  Outputs :   None
    822 *
    823 */
    824static irqreturn_t
    825ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
    826{
    827	return IRQ_HANDLED;
    828}
    829
    830/* Function pointer for extra MCA recovery */
    831int (*ia64_mca_ucmc_extension)
    832	(void*,struct ia64_sal_os_state*)
    833	= NULL;
    834
    835int
    836ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
    837{
    838	if (ia64_mca_ucmc_extension)
    839		return 1;
    840
    841	ia64_mca_ucmc_extension = fn;
    842	return 0;
    843}
    844
    845void
    846ia64_unreg_MCA_extension(void)
    847{
    848	if (ia64_mca_ucmc_extension)
    849		ia64_mca_ucmc_extension = NULL;
    850}
    851
    852EXPORT_SYMBOL(ia64_reg_MCA_extension);
    853EXPORT_SYMBOL(ia64_unreg_MCA_extension);
    854
    855
    856static inline void
    857copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
    858{
    859	u64 fslot, tslot, nat;
    860	*tr = *fr;
    861	fslot = ((unsigned long)fr >> 3) & 63;
    862	tslot = ((unsigned long)tr >> 3) & 63;
    863	*tnat &= ~(1UL << tslot);
    864	nat = (fnat >> fslot) & 1;
    865	*tnat |= (nat << tslot);
    866}
    867
    868/* Change the comm field on the MCA/INT task to include the pid that
    869 * was interrupted, it makes for easier debugging.  If that pid was 0
    870 * (swapper or nested MCA/INIT) then use the start of the previous comm
    871 * field suffixed with its cpu.
    872 */
    873
    874static void
    875ia64_mca_modify_comm(const struct task_struct *previous_current)
    876{
    877	char *p, comm[sizeof(current->comm)];
    878	if (previous_current->pid)
    879		snprintf(comm, sizeof(comm), "%s %d",
    880			current->comm, previous_current->pid);
    881	else {
    882		int l;
    883		if ((p = strchr(previous_current->comm, ' ')))
    884			l = p - previous_current->comm;
    885		else
    886			l = strlen(previous_current->comm);
    887		snprintf(comm, sizeof(comm), "%s %*s %d",
    888			current->comm, l, previous_current->comm,
    889			task_thread_info(previous_current)->cpu);
    890	}
    891	memcpy(current->comm, comm, sizeof(current->comm));
    892}
    893
    894static void
    895finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
    896		unsigned long *nat)
    897{
    898	const struct pal_min_state_area *ms = sos->pal_min_state;
    899	const u64 *bank;
    900
    901	/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
    902	 * pmsa_{xip,xpsr,xfs}
    903	 */
    904	if (ia64_psr(regs)->ic) {
    905		regs->cr_iip = ms->pmsa_iip;
    906		regs->cr_ipsr = ms->pmsa_ipsr;
    907		regs->cr_ifs = ms->pmsa_ifs;
    908	} else {
    909		regs->cr_iip = ms->pmsa_xip;
    910		regs->cr_ipsr = ms->pmsa_xpsr;
    911		regs->cr_ifs = ms->pmsa_xfs;
    912
    913		sos->iip = ms->pmsa_iip;
    914		sos->ipsr = ms->pmsa_ipsr;
    915		sos->ifs = ms->pmsa_ifs;
    916	}
    917	regs->pr = ms->pmsa_pr;
    918	regs->b0 = ms->pmsa_br0;
    919	regs->ar_rsc = ms->pmsa_rsc;
    920	copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
    921	copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
    922	copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
    923	copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
    924	copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
    925	copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
    926	copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
    927	copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
    928	copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
    929	copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
    930	copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
    931	if (ia64_psr(regs)->bn)
    932		bank = ms->pmsa_bank1_gr;
    933	else
    934		bank = ms->pmsa_bank0_gr;
    935	copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
    936	copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
    937	copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
    938	copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
    939	copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
    940	copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
    941	copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
    942	copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
    943	copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
    944	copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
    945	copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
    946	copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
    947	copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
    948	copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
    949	copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
    950	copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
    951}
    952
    953/* On entry to this routine, we are running on the per cpu stack, see
    954 * mca_asm.h.  The original stack has not been touched by this event.  Some of
    955 * the original stack's registers will be in the RBS on this stack.  This stack
    956 * also contains a partial pt_regs and switch_stack, the rest of the data is in
    957 * PAL minstate.
    958 *
    959 * The first thing to do is modify the original stack to look like a blocked
    960 * task so we can run backtrace on the original task.  Also mark the per cpu
    961 * stack as current to ensure that we use the correct task state, it also means
    962 * that we can do backtrace on the MCA/INIT handler code itself.
    963 */
    964
    965static struct task_struct *
    966ia64_mca_modify_original_stack(struct pt_regs *regs,
    967		const struct switch_stack *sw,
    968		struct ia64_sal_os_state *sos,
    969		const char *type)
    970{
    971	char *p;
    972	ia64_va va;
    973	extern char ia64_leave_kernel[];	/* Need asm address, not function descriptor */
    974	const struct pal_min_state_area *ms = sos->pal_min_state;
    975	struct task_struct *previous_current;
    976	struct pt_regs *old_regs;
    977	struct switch_stack *old_sw;
    978	unsigned size = sizeof(struct pt_regs) +
    979			sizeof(struct switch_stack) + 16;
    980	unsigned long *old_bspstore, *old_bsp;
    981	unsigned long *new_bspstore, *new_bsp;
    982	unsigned long old_unat, old_rnat, new_rnat, nat;
    983	u64 slots, loadrs = regs->loadrs;
    984	u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
    985	u64 ar_bspstore = regs->ar_bspstore;
    986	u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
    987	const char *msg;
    988	int cpu = smp_processor_id();
    989
    990	previous_current = curr_task(cpu);
    991	ia64_set_curr_task(cpu, current);
    992	if ((p = strchr(current->comm, ' ')))
    993		*p = '\0';
    994
    995	/* Best effort attempt to cope with MCA/INIT delivered while in
    996	 * physical mode.
    997	 */
    998	regs->cr_ipsr = ms->pmsa_ipsr;
    999	if (ia64_psr(regs)->dt == 0) {
   1000		va.l = r12;
   1001		if (va.f.reg == 0) {
   1002			va.f.reg = 7;
   1003			r12 = va.l;
   1004		}
   1005		va.l = r13;
   1006		if (va.f.reg == 0) {
   1007			va.f.reg = 7;
   1008			r13 = va.l;
   1009		}
   1010	}
   1011	if (ia64_psr(regs)->rt == 0) {
   1012		va.l = ar_bspstore;
   1013		if (va.f.reg == 0) {
   1014			va.f.reg = 7;
   1015			ar_bspstore = va.l;
   1016		}
   1017		va.l = ar_bsp;
   1018		if (va.f.reg == 0) {
   1019			va.f.reg = 7;
   1020			ar_bsp = va.l;
   1021		}
   1022	}
   1023
   1024	/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
   1025	 * have been copied to the old stack, the old stack may fail the
   1026	 * validation tests below.  So ia64_old_stack() must restore the dirty
   1027	 * registers from the new stack.  The old and new bspstore probably
   1028	 * have different alignments, so loadrs calculated on the old bsp
   1029	 * cannot be used to restore from the new bsp.  Calculate a suitable
   1030	 * loadrs for the new stack and save it in the new pt_regs, where
   1031	 * ia64_old_stack() can get it.
   1032	 */
   1033	old_bspstore = (unsigned long *)ar_bspstore;
   1034	old_bsp = (unsigned long *)ar_bsp;
   1035	slots = ia64_rse_num_regs(old_bspstore, old_bsp);
   1036	new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
   1037	new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
   1038	regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
   1039
   1040	/* Verify the previous stack state before we change it */
   1041	if (user_mode(regs)) {
   1042		msg = "occurred in user space";
   1043		/* previous_current is guaranteed to be valid when the task was
   1044		 * in user space, so ...
   1045		 */
   1046		ia64_mca_modify_comm(previous_current);
   1047		goto no_mod;
   1048	}
   1049
   1050	if (r13 != sos->prev_IA64_KR_CURRENT) {
   1051		msg = "inconsistent previous current and r13";
   1052		goto no_mod;
   1053	}
   1054
   1055	if (!mca_recover_range(ms->pmsa_iip)) {
   1056		if ((r12 - r13) >= KERNEL_STACK_SIZE) {
   1057			msg = "inconsistent r12 and r13";
   1058			goto no_mod;
   1059		}
   1060		if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
   1061			msg = "inconsistent ar.bspstore and r13";
   1062			goto no_mod;
   1063		}
   1064		va.p = old_bspstore;
   1065		if (va.f.reg < 5) {
   1066			msg = "old_bspstore is in the wrong region";
   1067			goto no_mod;
   1068		}
   1069		if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
   1070			msg = "inconsistent ar.bsp and r13";
   1071			goto no_mod;
   1072		}
   1073		size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
   1074		if (ar_bspstore + size > r12) {
   1075			msg = "no room for blocked state";
   1076			goto no_mod;
   1077		}
   1078	}
   1079
   1080	ia64_mca_modify_comm(previous_current);
   1081
   1082	/* Make the original task look blocked.  First stack a struct pt_regs,
   1083	 * describing the state at the time of interrupt.  mca_asm.S built a
   1084	 * partial pt_regs, copy it and fill in the blanks using minstate.
   1085	 */
   1086	p = (char *)r12 - sizeof(*regs);
   1087	old_regs = (struct pt_regs *)p;
   1088	memcpy(old_regs, regs, sizeof(*regs));
   1089	old_regs->loadrs = loadrs;
   1090	old_unat = old_regs->ar_unat;
   1091	finish_pt_regs(old_regs, sos, &old_unat);
   1092
   1093	/* Next stack a struct switch_stack.  mca_asm.S built a partial
   1094	 * switch_stack, copy it and fill in the blanks using pt_regs and
   1095	 * minstate.
   1096	 *
   1097	 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
   1098	 * ar.pfs is set to 0.
   1099	 *
   1100	 * unwind.c::unw_unwind() does special processing for interrupt frames.
   1101	 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
   1102	 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
   1103	 * that this is documented, of course.  Set PRED_NON_SYSCALL in the
   1104	 * switch_stack on the original stack so it will unwind correctly when
   1105	 * unwind.c reads pt_regs.
   1106	 *
   1107	 * thread.ksp is updated to point to the synthesized switch_stack.
   1108	 */
   1109	p -= sizeof(struct switch_stack);
   1110	old_sw = (struct switch_stack *)p;
   1111	memcpy(old_sw, sw, sizeof(*sw));
   1112	old_sw->caller_unat = old_unat;
   1113	old_sw->ar_fpsr = old_regs->ar_fpsr;
   1114	copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
   1115	copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
   1116	copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
   1117	copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
   1118	old_sw->b0 = (u64)ia64_leave_kernel;
   1119	old_sw->b1 = ms->pmsa_br1;
   1120	old_sw->ar_pfs = 0;
   1121	old_sw->ar_unat = old_unat;
   1122	old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
   1123	previous_current->thread.ksp = (u64)p - 16;
   1124
   1125	/* Finally copy the original stack's registers back to its RBS.
   1126	 * Registers from ar.bspstore through ar.bsp at the time of the event
   1127	 * are in the current RBS, copy them back to the original stack.  The
   1128	 * copy must be done register by register because the original bspstore
   1129	 * and the current one have different alignments, so the saved RNAT
   1130	 * data occurs at different places.
   1131	 *
   1132	 * mca_asm does cover, so the old_bsp already includes all registers at
   1133	 * the time of MCA/INIT.  It also does flushrs, so all registers before
   1134	 * this function have been written to backing store on the MCA/INIT
   1135	 * stack.
   1136	 */
   1137	new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
   1138	old_rnat = regs->ar_rnat;
   1139	while (slots--) {
   1140		if (ia64_rse_is_rnat_slot(new_bspstore)) {
   1141			new_rnat = ia64_get_rnat(new_bspstore++);
   1142		}
   1143		if (ia64_rse_is_rnat_slot(old_bspstore)) {
   1144			*old_bspstore++ = old_rnat;
   1145			old_rnat = 0;
   1146		}
   1147		nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
   1148		old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
   1149		old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
   1150		*old_bspstore++ = *new_bspstore++;
   1151	}
   1152	old_sw->ar_bspstore = (unsigned long)old_bspstore;
   1153	old_sw->ar_rnat = old_rnat;
   1154
   1155	sos->prev_task = previous_current;
   1156	return previous_current;
   1157
   1158no_mod:
   1159	mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
   1160			smp_processor_id(), type, msg);
   1161	old_unat = regs->ar_unat;
   1162	finish_pt_regs(regs, sos, &old_unat);
   1163	return previous_current;
   1164}
   1165
   1166/* The monarch/slave interaction is based on monarch_cpu and requires that all
   1167 * slaves have entered rendezvous before the monarch leaves.  If any cpu has
   1168 * not entered rendezvous yet then wait a bit.  The assumption is that any
   1169 * slave that has not rendezvoused after a reasonable time is never going to do
   1170 * so.  In this context, slave includes cpus that respond to the MCA rendezvous
   1171 * interrupt, as well as cpus that receive the INIT slave event.
   1172 */
   1173
   1174static void
   1175ia64_wait_for_slaves(int monarch, const char *type)
   1176{
   1177	int c, i , wait;
   1178
   1179	/*
   1180	 * wait 5 seconds total for slaves (arbitrary)
   1181	 */
   1182	for (i = 0; i < 5000; i++) {
   1183		wait = 0;
   1184		for_each_online_cpu(c) {
   1185			if (c == monarch)
   1186				continue;
   1187			if (ia64_mc_info.imi_rendez_checkin[c]
   1188					== IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
   1189				udelay(1000);		/* short wait */
   1190				wait = 1;
   1191				break;
   1192			}
   1193		}
   1194		if (!wait)
   1195			goto all_in;
   1196	}
   1197
   1198	/*
   1199	 * Maybe slave(s) dead. Print buffered messages immediately.
   1200	 */
   1201	ia64_mlogbuf_finish(0);
   1202	mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
   1203	for_each_online_cpu(c) {
   1204		if (c == monarch)
   1205			continue;
   1206		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
   1207			mprintk(" %d", c);
   1208	}
   1209	mprintk("\n");
   1210	return;
   1211
   1212all_in:
   1213	mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
   1214	return;
   1215}
   1216
   1217/*  mca_insert_tr
   1218 *
   1219 *  Switch rid when TR reload and needed!
   1220 *  iord: 1: itr, 2: itr;
   1221 *
   1222*/
   1223static void mca_insert_tr(u64 iord)
   1224{
   1225
   1226	int i;
   1227	u64 old_rr;
   1228	struct ia64_tr_entry *p;
   1229	unsigned long psr;
   1230	int cpu = smp_processor_id();
   1231
   1232	if (!ia64_idtrs[cpu])
   1233		return;
   1234
   1235	psr = ia64_clear_ic();
   1236	for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
   1237		p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
   1238		if (p->pte & 0x1) {
   1239			old_rr = ia64_get_rr(p->ifa);
   1240			if (old_rr != p->rr) {
   1241				ia64_set_rr(p->ifa, p->rr);
   1242				ia64_srlz_d();
   1243			}
   1244			ia64_ptr(iord, p->ifa, p->itir >> 2);
   1245			ia64_srlz_i();
   1246			if (iord & 0x1) {
   1247				ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
   1248				ia64_srlz_i();
   1249			}
   1250			if (iord & 0x2) {
   1251				ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
   1252				ia64_srlz_i();
   1253			}
   1254			if (old_rr != p->rr) {
   1255				ia64_set_rr(p->ifa, old_rr);
   1256				ia64_srlz_d();
   1257			}
   1258		}
   1259	}
   1260	ia64_set_psr(psr);
   1261}
   1262
   1263/*
   1264 * ia64_mca_handler
   1265 *
   1266 *	This is uncorrectable machine check handler called from OS_MCA
   1267 *	dispatch code which is in turn called from SAL_CHECK().
   1268 *	This is the place where the core of OS MCA handling is done.
   1269 *	Right now the logs are extracted and displayed in a well-defined
   1270 *	format. This handler code is supposed to be run only on the
   1271 *	monarch processor. Once the monarch is done with MCA handling
   1272 *	further MCA logging is enabled by clearing logs.
   1273 *	Monarch also has the duty of sending wakeup-IPIs to pull the
   1274 *	slave processors out of rendezvous spinloop.
   1275 *
   1276 *	If multiple processors call into OS_MCA, the first will become
   1277 *	the monarch.  Subsequent cpus will be recorded in the mca_cpu
   1278 *	bitmask.  After the first monarch has processed its MCA, it
   1279 *	will wake up the next cpu in the mca_cpu bitmask and then go
   1280 *	into the rendezvous loop.  When all processors have serviced
   1281 *	their MCA, the last monarch frees up the rest of the processors.
   1282 */
   1283void
   1284ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
   1285		 struct ia64_sal_os_state *sos)
   1286{
   1287	int recover, cpu = smp_processor_id();
   1288	struct task_struct *previous_current;
   1289	struct ia64_mca_notify_die nd =
   1290		{ .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
   1291	static atomic_t mca_count;
   1292	static cpumask_t mca_cpu;
   1293
   1294	if (atomic_add_return(1, &mca_count) == 1) {
   1295		monarch_cpu = cpu;
   1296		sos->monarch = 1;
   1297	} else {
   1298		cpumask_set_cpu(cpu, &mca_cpu);
   1299		sos->monarch = 0;
   1300	}
   1301	mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
   1302		"monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
   1303
   1304	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
   1305
   1306	NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
   1307
   1308	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
   1309	if (sos->monarch) {
   1310		ia64_wait_for_slaves(cpu, "MCA");
   1311
   1312		/* Wakeup all the processors which are spinning in the
   1313		 * rendezvous loop.  They will leave SAL, then spin in the OS
   1314		 * with interrupts disabled until this monarch cpu leaves the
   1315		 * MCA handler.  That gets control back to the OS so we can
   1316		 * backtrace the other cpus, backtrace when spinning in SAL
   1317		 * does not work.
   1318		 */
   1319		ia64_mca_wakeup_all();
   1320	} else {
   1321		while (cpumask_test_cpu(cpu, &mca_cpu))
   1322			cpu_relax();	/* spin until monarch wakes us */
   1323	}
   1324
   1325	NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
   1326
   1327	/* Get the MCA error record and log it */
   1328	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
   1329
   1330	/* MCA error recovery */
   1331	recover = (ia64_mca_ucmc_extension
   1332		&& ia64_mca_ucmc_extension(
   1333			IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
   1334			sos));
   1335
   1336	if (recover) {
   1337		sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
   1338		rh->severity = sal_log_severity_corrected;
   1339		ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
   1340		sos->os_status = IA64_MCA_CORRECTED;
   1341	} else {
   1342		/* Dump buffered message to console */
   1343		ia64_mlogbuf_finish(1);
   1344	}
   1345
   1346	if (__this_cpu_read(ia64_mca_tr_reload)) {
   1347		mca_insert_tr(0x1); /*Reload dynamic itrs*/
   1348		mca_insert_tr(0x2); /*Reload dynamic itrs*/
   1349	}
   1350
   1351	NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
   1352
   1353	if (atomic_dec_return(&mca_count) > 0) {
   1354		int i;
   1355
   1356		/* wake up the next monarch cpu,
   1357		 * and put this cpu in the rendez loop.
   1358		 */
   1359		for_each_online_cpu(i) {
   1360			if (cpumask_test_cpu(i, &mca_cpu)) {
   1361				monarch_cpu = i;
   1362				cpumask_clear_cpu(i, &mca_cpu);	/* wake next cpu */
   1363				while (monarch_cpu != -1)
   1364					cpu_relax();	/* spin until last cpu leaves */
   1365				ia64_set_curr_task(cpu, previous_current);
   1366				ia64_mc_info.imi_rendez_checkin[cpu]
   1367						= IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
   1368				return;
   1369			}
   1370		}
   1371	}
   1372	ia64_set_curr_task(cpu, previous_current);
   1373	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
   1374	monarch_cpu = -1;	/* This frees the slaves and previous monarchs */
   1375}
   1376
   1377static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
   1378static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
   1379
   1380/*
   1381 * ia64_mca_cmc_int_handler
   1382 *
   1383 *  This is corrected machine check interrupt handler.
   1384 *	Right now the logs are extracted and displayed in a well-defined
   1385 *	format.
   1386 *
   1387 * Inputs
   1388 *      interrupt number
   1389 *      client data arg ptr
   1390 *
   1391 * Outputs
   1392 *	None
   1393 */
   1394static irqreturn_t
   1395ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
   1396{
   1397	static unsigned long	cmc_history[CMC_HISTORY_LENGTH];
   1398	static int		index;
   1399	static DEFINE_SPINLOCK(cmc_history_lock);
   1400
   1401	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
   1402		       __func__, cmc_irq, smp_processor_id());
   1403
   1404	/* SAL spec states this should run w/ interrupts enabled */
   1405	local_irq_enable();
   1406
   1407	spin_lock(&cmc_history_lock);
   1408	if (!cmc_polling_enabled) {
   1409		int i, count = 1; /* we know 1 happened now */
   1410		unsigned long now = jiffies;
   1411
   1412		for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
   1413			if (now - cmc_history[i] <= HZ)
   1414				count++;
   1415		}
   1416
   1417		IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
   1418		if (count >= CMC_HISTORY_LENGTH) {
   1419
   1420			cmc_polling_enabled = 1;
   1421			spin_unlock(&cmc_history_lock);
   1422			/* If we're being hit with CMC interrupts, we won't
   1423			 * ever execute the schedule_work() below.  Need to
   1424			 * disable CMC interrupts on this processor now.
   1425			 */
   1426			ia64_mca_cmc_vector_disable(NULL);
   1427			schedule_work(&cmc_disable_work);
   1428
   1429			/*
   1430			 * Corrected errors will still be corrected, but
   1431			 * make sure there's a log somewhere that indicates
   1432			 * something is generating more than we can handle.
   1433			 */
   1434			printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
   1435
   1436			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
   1437
   1438			/* lock already released, get out now */
   1439			goto out;
   1440		} else {
   1441			cmc_history[index++] = now;
   1442			if (index == CMC_HISTORY_LENGTH)
   1443				index = 0;
   1444		}
   1445	}
   1446	spin_unlock(&cmc_history_lock);
   1447out:
   1448	/* Get the CMC error record and log it */
   1449	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
   1450
   1451	local_irq_disable();
   1452
   1453	return IRQ_HANDLED;
   1454}
   1455
   1456/*
   1457 *  ia64_mca_cmc_int_caller
   1458 *
   1459 * 	Triggered by sw interrupt from CMC polling routine.  Calls
   1460 * 	real interrupt handler and either triggers a sw interrupt
   1461 * 	on the next cpu or does cleanup at the end.
   1462 *
   1463 * Inputs
   1464 *	interrupt number
   1465 *	client data arg ptr
   1466 * Outputs
   1467 * 	handled
   1468 */
   1469static irqreturn_t
   1470ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
   1471{
   1472	static int start_count = -1;
   1473	unsigned int cpuid;
   1474
   1475	cpuid = smp_processor_id();
   1476
   1477	/* If first cpu, update count */
   1478	if (start_count == -1)
   1479		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
   1480
   1481	ia64_mca_cmc_int_handler(cmc_irq, arg);
   1482
   1483	cpuid = cpumask_next(cpuid+1, cpu_online_mask);
   1484
   1485	if (cpuid < nr_cpu_ids) {
   1486		ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
   1487	} else {
   1488		/* If no log record, switch out of polling mode */
   1489		if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
   1490
   1491			printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
   1492			schedule_work(&cmc_enable_work);
   1493			cmc_polling_enabled = 0;
   1494
   1495		} else {
   1496
   1497			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
   1498		}
   1499
   1500		start_count = -1;
   1501	}
   1502
   1503	return IRQ_HANDLED;
   1504}
   1505
   1506/*
   1507 *  ia64_mca_cmc_poll
   1508 *
   1509 *	Poll for Corrected Machine Checks (CMCs)
   1510 *
   1511 * Inputs   :   dummy(unused)
   1512 * Outputs  :   None
   1513 *
   1514 */
   1515static void
   1516ia64_mca_cmc_poll (struct timer_list *unused)
   1517{
   1518	/* Trigger a CMC interrupt cascade  */
   1519	ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
   1520							IA64_IPI_DM_INT, 0);
   1521}
   1522
   1523/*
   1524 *  ia64_mca_cpe_int_caller
   1525 *
   1526 * 	Triggered by sw interrupt from CPE polling routine.  Calls
   1527 * 	real interrupt handler and either triggers a sw interrupt
   1528 * 	on the next cpu or does cleanup at the end.
   1529 *
   1530 * Inputs
   1531 *	interrupt number
   1532 *	client data arg ptr
   1533 * Outputs
   1534 * 	handled
   1535 */
   1536static irqreturn_t
   1537ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
   1538{
   1539	static int start_count = -1;
   1540	static int poll_time = MIN_CPE_POLL_INTERVAL;
   1541	unsigned int cpuid;
   1542
   1543	cpuid = smp_processor_id();
   1544
   1545	/* If first cpu, update count */
   1546	if (start_count == -1)
   1547		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
   1548
   1549	ia64_mca_cpe_int_handler(cpe_irq, arg);
   1550
   1551	cpuid = cpumask_next(cpuid+1, cpu_online_mask);
   1552
   1553	if (cpuid < NR_CPUS) {
   1554		ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
   1555	} else {
   1556		/*
   1557		 * If a log was recorded, increase our polling frequency,
   1558		 * otherwise, backoff or return to interrupt mode.
   1559		 */
   1560		if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
   1561			poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
   1562		} else if (cpe_vector < 0) {
   1563			poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
   1564		} else {
   1565			poll_time = MIN_CPE_POLL_INTERVAL;
   1566
   1567			printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
   1568			enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
   1569			cpe_poll_enabled = 0;
   1570		}
   1571
   1572		if (cpe_poll_enabled)
   1573			mod_timer(&cpe_poll_timer, jiffies + poll_time);
   1574		start_count = -1;
   1575	}
   1576
   1577	return IRQ_HANDLED;
   1578}
   1579
   1580/*
   1581 *  ia64_mca_cpe_poll
   1582 *
   1583 *	Poll for Corrected Platform Errors (CPEs), trigger interrupt
   1584 *	on first cpu, from there it will trickle through all the cpus.
   1585 *
   1586 * Inputs   :   dummy(unused)
   1587 * Outputs  :   None
   1588 *
   1589 */
   1590static void
   1591ia64_mca_cpe_poll (struct timer_list *unused)
   1592{
   1593	/* Trigger a CPE interrupt cascade  */
   1594	ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
   1595							IA64_IPI_DM_INT, 0);
   1596}
   1597
   1598static int
   1599default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
   1600{
   1601	int c;
   1602	struct task_struct *g, *t;
   1603	if (val != DIE_INIT_MONARCH_PROCESS)
   1604		return NOTIFY_DONE;
   1605#ifdef CONFIG_KEXEC
   1606	if (atomic_read(&kdump_in_progress))
   1607		return NOTIFY_DONE;
   1608#endif
   1609
   1610	/*
   1611	 * FIXME: mlogbuf will brim over with INIT stack dumps.
   1612	 * To enable show_stack from INIT, we use oops_in_progress which should
   1613	 * be used in real oops. This would cause something wrong after INIT.
   1614	 */
   1615	BREAK_LOGLEVEL(console_loglevel);
   1616	ia64_mlogbuf_dump_from_init();
   1617
   1618	printk(KERN_ERR "Processes interrupted by INIT -");
   1619	for_each_online_cpu(c) {
   1620		struct ia64_sal_os_state *s;
   1621		t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
   1622		s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
   1623		g = s->prev_task;
   1624		if (g) {
   1625			if (g->pid)
   1626				printk(" %d", g->pid);
   1627			else
   1628				printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
   1629		}
   1630	}
   1631	printk("\n\n");
   1632	if (read_trylock(&tasklist_lock)) {
   1633		do_each_thread (g, t) {
   1634			printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
   1635			show_stack(t, NULL, KERN_DEFAULT);
   1636		} while_each_thread (g, t);
   1637		read_unlock(&tasklist_lock);
   1638	}
   1639	/* FIXME: This will not restore zapped printk locks. */
   1640	RESTORE_LOGLEVEL(console_loglevel);
   1641	return NOTIFY_DONE;
   1642}
   1643
   1644/*
   1645 * C portion of the OS INIT handler
   1646 *
   1647 * Called from ia64_os_init_dispatch
   1648 *
   1649 * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
   1650 * this event.  This code is used for both monarch and slave INIT events, see
   1651 * sos->monarch.
   1652 *
   1653 * All INIT events switch to the INIT stack and change the previous process to
   1654 * blocked status.  If one of the INIT events is the monarch then we are
   1655 * probably processing the nmi button/command.  Use the monarch cpu to dump all
   1656 * the processes.  The slave INIT events all spin until the monarch cpu
   1657 * returns.  We can also get INIT slave events for MCA, in which case the MCA
   1658 * process is the monarch.
   1659 */
   1660
   1661void
   1662ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
   1663		  struct ia64_sal_os_state *sos)
   1664{
   1665	static atomic_t slaves;
   1666	static atomic_t monarchs;
   1667	struct task_struct *previous_current;
   1668	int cpu = smp_processor_id();
   1669	struct ia64_mca_notify_die nd =
   1670		{ .sos = sos, .monarch_cpu = &monarch_cpu };
   1671
   1672	NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
   1673
   1674	mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
   1675		sos->proc_state_param, cpu, sos->monarch);
   1676	salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
   1677
   1678	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
   1679	sos->os_status = IA64_INIT_RESUME;
   1680
   1681	/* FIXME: Workaround for broken proms that drive all INIT events as
   1682	 * slaves.  The last slave that enters is promoted to be a monarch.
   1683	 * Remove this code in September 2006, that gives platforms a year to
   1684	 * fix their proms and get their customers updated.
   1685	 */
   1686	if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
   1687		mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
   1688		        __func__, cpu);
   1689		atomic_dec(&slaves);
   1690		sos->monarch = 1;
   1691	}
   1692
   1693	/* FIXME: Workaround for broken proms that drive all INIT events as
   1694	 * monarchs.  Second and subsequent monarchs are demoted to slaves.
   1695	 * Remove this code in September 2006, that gives platforms a year to
   1696	 * fix their proms and get their customers updated.
   1697	 */
   1698	if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
   1699		mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
   1700			       __func__, cpu);
   1701		atomic_dec(&monarchs);
   1702		sos->monarch = 0;
   1703	}
   1704
   1705	if (!sos->monarch) {
   1706		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
   1707
   1708#ifdef CONFIG_KEXEC
   1709		while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
   1710			udelay(1000);
   1711#else
   1712		while (monarch_cpu == -1)
   1713			cpu_relax();	/* spin until monarch enters */
   1714#endif
   1715
   1716		NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
   1717		NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
   1718
   1719#ifdef CONFIG_KEXEC
   1720		while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
   1721			udelay(1000);
   1722#else
   1723		while (monarch_cpu != -1)
   1724			cpu_relax();	/* spin until monarch leaves */
   1725#endif
   1726
   1727		NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
   1728
   1729		mprintk("Slave on cpu %d returning to normal service.\n", cpu);
   1730		ia64_set_curr_task(cpu, previous_current);
   1731		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
   1732		atomic_dec(&slaves);
   1733		return;
   1734	}
   1735
   1736	monarch_cpu = cpu;
   1737	NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
   1738
   1739	/*
   1740	 * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
   1741	 * generated via the BMC's command-line interface, but since the console is on the
   1742	 * same serial line, the user will need some time to switch out of the BMC before
   1743	 * the dump begins.
   1744	 */
   1745	mprintk("Delaying for 5 seconds...\n");
   1746	udelay(5*1000000);
   1747	ia64_wait_for_slaves(cpu, "INIT");
   1748	/* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
   1749	 * to default_monarch_init_process() above and just print all the
   1750	 * tasks.
   1751	 */
   1752	NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
   1753	NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
   1754
   1755	mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
   1756	atomic_dec(&monarchs);
   1757	ia64_set_curr_task(cpu, previous_current);
   1758	monarch_cpu = -1;
   1759	return;
   1760}
   1761
   1762static int __init
   1763ia64_mca_disable_cpe_polling(char *str)
   1764{
   1765	cpe_poll_enabled = 0;
   1766	return 1;
   1767}
   1768
   1769__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
   1770
   1771/* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
   1772 * these stacks can never sleep, they cannot return from the kernel to user
   1773 * space, they do not appear in a normal ps listing.  So there is no need to
   1774 * format most of the fields.
   1775 */
   1776
   1777static void
   1778format_mca_init_stack(void *mca_data, unsigned long offset,
   1779		const char *type, int cpu)
   1780{
   1781	struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
   1782	struct thread_info *ti;
   1783	memset(p, 0, KERNEL_STACK_SIZE);
   1784	ti = task_thread_info(p);
   1785	ti->flags = _TIF_MCA_INIT;
   1786	ti->preempt_count = 1;
   1787	ti->task = p;
   1788	ti->cpu = cpu;
   1789	p->stack = ti;
   1790	p->__state = TASK_UNINTERRUPTIBLE;
   1791	cpumask_set_cpu(cpu, &p->cpus_mask);
   1792	INIT_LIST_HEAD(&p->tasks);
   1793	p->parent = p->real_parent = p->group_leader = p;
   1794	INIT_LIST_HEAD(&p->children);
   1795	INIT_LIST_HEAD(&p->sibling);
   1796	strncpy(p->comm, type, sizeof(p->comm)-1);
   1797}
   1798
   1799/* Caller prevents this from being called after init */
   1800static void * __ref mca_bootmem(void)
   1801{
   1802	return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
   1803}
   1804
   1805/* Do per-CPU MCA-related initialization.  */
   1806void
   1807ia64_mca_cpu_init(void *cpu_data)
   1808{
   1809	void *pal_vaddr;
   1810	void *data;
   1811	long sz = sizeof(struct ia64_mca_cpu);
   1812	int cpu = smp_processor_id();
   1813	static int first_time = 1;
   1814
   1815	/*
   1816	 * Structure will already be allocated if cpu has been online,
   1817	 * then offlined.
   1818	 */
   1819	if (__per_cpu_mca[cpu]) {
   1820		data = __va(__per_cpu_mca[cpu]);
   1821	} else {
   1822		if (first_time) {
   1823			data = mca_bootmem();
   1824			first_time = 0;
   1825		} else
   1826			data = (void *)__get_free_pages(GFP_ATOMIC,
   1827							get_order(sz));
   1828		if (!data)
   1829			panic("Could not allocate MCA memory for cpu %d\n",
   1830					cpu);
   1831	}
   1832	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
   1833		"MCA", cpu);
   1834	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
   1835		"INIT", cpu);
   1836	__this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
   1837
   1838	/*
   1839	 * Stash away a copy of the PTE needed to map the per-CPU page.
   1840	 * We may need it during MCA recovery.
   1841	 */
   1842	__this_cpu_write(ia64_mca_per_cpu_pte,
   1843		pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
   1844
   1845	/*
   1846	 * Also, stash away a copy of the PAL address and the PTE
   1847	 * needed to map it.
   1848	 */
   1849	pal_vaddr = efi_get_pal_addr();
   1850	if (!pal_vaddr)
   1851		return;
   1852	__this_cpu_write(ia64_mca_pal_base,
   1853		GRANULEROUNDDOWN((unsigned long) pal_vaddr));
   1854	__this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
   1855							      PAGE_KERNEL)));
   1856}
   1857
   1858static int ia64_mca_cpu_online(unsigned int cpu)
   1859{
   1860	unsigned long flags;
   1861
   1862	local_irq_save(flags);
   1863	if (!cmc_polling_enabled)
   1864		ia64_mca_cmc_vector_enable(NULL);
   1865	local_irq_restore(flags);
   1866	return 0;
   1867}
   1868
   1869/*
   1870 * ia64_mca_init
   1871 *
   1872 *  Do all the system level mca specific initialization.
   1873 *
   1874 *	1. Register spinloop and wakeup request interrupt vectors
   1875 *
   1876 *	2. Register OS_MCA handler entry point
   1877 *
   1878 *	3. Register OS_INIT handler entry point
   1879 *
   1880 *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
   1881 *
   1882 *  Note that this initialization is done very early before some kernel
   1883 *  services are available.
   1884 *
   1885 *  Inputs  :   None
   1886 *
   1887 *  Outputs :   None
   1888 */
   1889void __init
   1890ia64_mca_init(void)
   1891{
   1892	ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
   1893	ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
   1894	ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
   1895	int i;
   1896	long rc;
   1897	struct ia64_sal_retval isrv;
   1898	unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
   1899	static struct notifier_block default_init_monarch_nb = {
   1900		.notifier_call = default_monarch_init_process,
   1901		.priority = 0/* we need to notified last */
   1902	};
   1903
   1904	IA64_MCA_DEBUG("%s: begin\n", __func__);
   1905
   1906	/* Clear the Rendez checkin flag for all cpus */
   1907	for(i = 0 ; i < NR_CPUS; i++)
   1908		ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
   1909
   1910	/*
   1911	 * Register the rendezvous spinloop and wakeup mechanism with SAL
   1912	 */
   1913
   1914	/* Register the rendezvous interrupt vector with SAL */
   1915	while (1) {
   1916		isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
   1917					      SAL_MC_PARAM_MECHANISM_INT,
   1918					      IA64_MCA_RENDEZ_VECTOR,
   1919					      timeout,
   1920					      SAL_MC_PARAM_RZ_ALWAYS);
   1921		rc = isrv.status;
   1922		if (rc == 0)
   1923			break;
   1924		if (rc == -2) {
   1925			printk(KERN_INFO "Increasing MCA rendezvous timeout from "
   1926				"%ld to %ld milliseconds\n", timeout, isrv.v0);
   1927			timeout = isrv.v0;
   1928			NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
   1929			continue;
   1930		}
   1931		printk(KERN_ERR "Failed to register rendezvous interrupt "
   1932		       "with SAL (status %ld)\n", rc);
   1933		return;
   1934	}
   1935
   1936	/* Register the wakeup interrupt vector with SAL */
   1937	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
   1938				      SAL_MC_PARAM_MECHANISM_INT,
   1939				      IA64_MCA_WAKEUP_VECTOR,
   1940				      0, 0);
   1941	rc = isrv.status;
   1942	if (rc) {
   1943		printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
   1944		       "(status %ld)\n", rc);
   1945		return;
   1946	}
   1947
   1948	IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
   1949
   1950	ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
   1951	/*
   1952	 * XXX - disable SAL checksum by setting size to 0; should be
   1953	 *	ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
   1954	 */
   1955	ia64_mc_info.imi_mca_handler_size	= 0;
   1956
   1957	/* Register the os mca handler with SAL */
   1958	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
   1959				       ia64_mc_info.imi_mca_handler,
   1960				       ia64_tpa(mca_hldlr_ptr->gp),
   1961				       ia64_mc_info.imi_mca_handler_size,
   1962				       0, 0, 0)))
   1963	{
   1964		printk(KERN_ERR "Failed to register OS MCA handler with SAL "
   1965		       "(status %ld)\n", rc);
   1966		return;
   1967	}
   1968
   1969	IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
   1970		       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
   1971
   1972	/*
   1973	 * XXX - disable SAL checksum by setting size to 0, should be
   1974	 * size of the actual init handler in mca_asm.S.
   1975	 */
   1976	ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(init_hldlr_ptr_monarch->fp);
   1977	ia64_mc_info.imi_monarch_init_handler_size	= 0;
   1978	ia64_mc_info.imi_slave_init_handler		= ia64_tpa(init_hldlr_ptr_slave->fp);
   1979	ia64_mc_info.imi_slave_init_handler_size	= 0;
   1980
   1981	IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
   1982		       ia64_mc_info.imi_monarch_init_handler);
   1983
   1984	/* Register the os init handler with SAL */
   1985	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
   1986				       ia64_mc_info.imi_monarch_init_handler,
   1987				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
   1988				       ia64_mc_info.imi_monarch_init_handler_size,
   1989				       ia64_mc_info.imi_slave_init_handler,
   1990				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
   1991				       ia64_mc_info.imi_slave_init_handler_size)))
   1992	{
   1993		printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
   1994		       "(status %ld)\n", rc);
   1995		return;
   1996	}
   1997	if (register_die_notifier(&default_init_monarch_nb)) {
   1998		printk(KERN_ERR "Failed to register default monarch INIT process\n");
   1999		return;
   2000	}
   2001
   2002	IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
   2003
   2004	/* Initialize the areas set aside by the OS to buffer the
   2005	 * platform/processor error states for MCA/INIT/CMC
   2006	 * handling.
   2007	 */
   2008	ia64_log_init(SAL_INFO_TYPE_MCA);
   2009	ia64_log_init(SAL_INFO_TYPE_INIT);
   2010	ia64_log_init(SAL_INFO_TYPE_CMC);
   2011	ia64_log_init(SAL_INFO_TYPE_CPE);
   2012
   2013	mca_init = 1;
   2014	printk(KERN_INFO "MCA related initialization done\n");
   2015}
   2016
   2017
   2018/*
   2019 * These pieces cannot be done in ia64_mca_init() because it is called before
   2020 * early_irq_init() which would wipe out our percpu irq registrations. But we
   2021 * cannot leave them until ia64_mca_late_init() because by then all the other
   2022 * processors have been brought online and have set their own CMC vectors to
   2023 * point at a non-existant action. Called from arch_early_irq_init().
   2024 */
   2025void __init ia64_mca_irq_init(void)
   2026{
   2027	/*
   2028	 *  Configure the CMCI/P vector and handler. Interrupts for CMC are
   2029	 *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
   2030	 */
   2031	register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0,
   2032			    "cmc_hndlr");
   2033	register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0,
   2034			    "cmc_poll");
   2035	ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
   2036
   2037	/* Setup the MCA rendezvous interrupt vector */
   2038	register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler,
   2039			    0, "mca_rdzv");
   2040
   2041	/* Setup the MCA wakeup interrupt vector */
   2042	register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler,
   2043			    0, "mca_wkup");
   2044
   2045	/* Setup the CPEI/P handler */
   2046	register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0,
   2047			    "cpe_poll");
   2048}
   2049
   2050/*
   2051 * ia64_mca_late_init
   2052 *
   2053 *	Opportunity to setup things that require initialization later
   2054 *	than ia64_mca_init.  Setup a timer to poll for CPEs if the
   2055 *	platform doesn't support an interrupt driven mechanism.
   2056 *
   2057 *  Inputs  :   None
   2058 *  Outputs :   Status
   2059 */
   2060static int __init
   2061ia64_mca_late_init(void)
   2062{
   2063	if (!mca_init)
   2064		return 0;
   2065
   2066	/* Setup the CMCI/P vector and handler */
   2067	timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
   2068
   2069	/* Unmask/enable the vector */
   2070	cmc_polling_enabled = 0;
   2071	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
   2072			  ia64_mca_cpu_online, NULL);
   2073	IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
   2074
   2075	/* Setup the CPEI/P vector and handler */
   2076	cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
   2077	timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
   2078
   2079	{
   2080		unsigned int irq;
   2081
   2082		if (cpe_vector >= 0) {
   2083			/* If platform supports CPEI, enable the irq. */
   2084			irq = local_vector_to_irq(cpe_vector);
   2085			if (irq > 0) {
   2086				cpe_poll_enabled = 0;
   2087				irq_set_status_flags(irq, IRQ_PER_CPU);
   2088				if (request_irq(irq, ia64_mca_cpe_int_handler,
   2089						0, "cpe_hndlr", NULL))
   2090					pr_err("Failed to register cpe_hndlr interrupt\n");
   2091				ia64_cpe_irq = irq;
   2092				ia64_mca_register_cpev(cpe_vector);
   2093				IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
   2094					__func__);
   2095				return 0;
   2096			}
   2097			printk(KERN_ERR "%s: Failed to find irq for CPE "
   2098					"interrupt handler, vector %d\n",
   2099					__func__, cpe_vector);
   2100		}
   2101		/* If platform doesn't support CPEI, get the timer going. */
   2102		if (cpe_poll_enabled) {
   2103			ia64_mca_cpe_poll(0UL);
   2104			IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
   2105		}
   2106	}
   2107
   2108	return 0;
   2109}
   2110
   2111device_initcall(ia64_mca_late_init);