cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

process.c (17240B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Architecture-specific setup.
      4 *
      5 * Copyright (C) 1998-2003 Hewlett-Packard Co
      6 *	David Mosberger-Tang <davidm@hpl.hp.com>
      7 * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
      8 *
      9 * 2005-10-07 Keith Owens <kaos@sgi.com>
     10 *	      Add notify_die() hooks.
     11 */
     12#include <linux/cpu.h>
     13#include <linux/pm.h>
     14#include <linux/elf.h>
     15#include <linux/errno.h>
     16#include <linux/kernel.h>
     17#include <linux/mm.h>
     18#include <linux/slab.h>
     19#include <linux/module.h>
     20#include <linux/notifier.h>
     21#include <linux/personality.h>
     22#include <linux/reboot.h>
     23#include <linux/sched.h>
     24#include <linux/sched/debug.h>
     25#include <linux/sched/hotplug.h>
     26#include <linux/sched/task.h>
     27#include <linux/sched/task_stack.h>
     28#include <linux/stddef.h>
     29#include <linux/thread_info.h>
     30#include <linux/unistd.h>
     31#include <linux/efi.h>
     32#include <linux/interrupt.h>
     33#include <linux/delay.h>
     34#include <linux/kdebug.h>
     35#include <linux/utsname.h>
     36#include <linux/resume_user_mode.h>
     37#include <linux/rcupdate.h>
     38
     39#include <asm/cpu.h>
     40#include <asm/delay.h>
     41#include <asm/elf.h>
     42#include <asm/irq.h>
     43#include <asm/kexec.h>
     44#include <asm/processor.h>
     45#include <asm/sal.h>
     46#include <asm/switch_to.h>
     47#include <asm/tlbflush.h>
     48#include <linux/uaccess.h>
     49#include <asm/unwind.h>
     50#include <asm/user.h>
     51#include <asm/xtp.h>
     52
     53#include "entry.h"
     54
     55#include "sigframe.h"
     56
     57void (*ia64_mark_idle)(int);
     58
     59unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
     60EXPORT_SYMBOL(boot_option_idle_override);
     61void (*pm_power_off) (void);
     62EXPORT_SYMBOL(pm_power_off);
     63
     64static void
     65ia64_do_show_stack (struct unw_frame_info *info, void *arg)
     66{
     67	unsigned long ip, sp, bsp;
     68	const char *loglvl = arg;
     69
     70	printk("%s\nCall Trace:\n", loglvl);
     71	do {
     72		unw_get_ip(info, &ip);
     73		if (ip == 0)
     74			break;
     75
     76		unw_get_sp(info, &sp);
     77		unw_get_bsp(info, &bsp);
     78		printk("%s [<%016lx>] %pS\n"
     79			 "                                sp=%016lx bsp=%016lx\n",
     80			 loglvl, ip, (void *)ip, sp, bsp);
     81	} while (unw_unwind(info) >= 0);
     82}
     83
     84void
     85show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
     86{
     87	if (!task)
     88		unw_init_running(ia64_do_show_stack, (void *)loglvl);
     89	else {
     90		struct unw_frame_info info;
     91
     92		unw_init_from_blocked_task(&info, task);
     93		ia64_do_show_stack(&info, (void *)loglvl);
     94	}
     95}
     96
     97void
     98show_regs (struct pt_regs *regs)
     99{
    100	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
    101
    102	print_modules();
    103	printk("\n");
    104	show_regs_print_info(KERN_DEFAULT);
    105	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
    106	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
    107	       init_utsname()->release);
    108	printk("ip is at %pS\n", (void *)ip);
    109	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
    110	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
    111	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
    112	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
    113	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
    114	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
    115	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
    116	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
    117	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
    118	       regs->f6.u.bits[1], regs->f6.u.bits[0],
    119	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
    120	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
    121	       regs->f8.u.bits[1], regs->f8.u.bits[0],
    122	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
    123	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
    124	       regs->f10.u.bits[1], regs->f10.u.bits[0],
    125	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
    126
    127	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
    128	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
    129	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
    130	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
    131	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
    132	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
    133	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
    134	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
    135	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
    136
    137	if (user_mode(regs)) {
    138		/* print the stacked registers */
    139		unsigned long val, *bsp, ndirty;
    140		int i, sof, is_nat = 0;
    141
    142		sof = regs->cr_ifs & 0x7f;	/* size of frame */
    143		ndirty = (regs->loadrs >> 19);
    144		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
    145		for (i = 0; i < sof; ++i) {
    146			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
    147			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
    148			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
    149		}
    150	} else
    151		show_stack(NULL, NULL, KERN_DEFAULT);
    152}
    153
    154/* local support for deprecated console_print */
    155void
    156console_print(const char *s)
    157{
    158	printk(KERN_EMERG "%s", s);
    159}
    160
    161void
    162do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
    163{
    164	if (fsys_mode(current, &scr->pt)) {
    165		/*
    166		 * defer signal-handling etc. until we return to
    167		 * privilege-level 0.
    168		 */
    169		if (!ia64_psr(&scr->pt)->lp)
    170			ia64_psr(&scr->pt)->lp = 1;
    171		return;
    172	}
    173
    174	/* deal with pending signal delivery */
    175	if (test_thread_flag(TIF_SIGPENDING) ||
    176	    test_thread_flag(TIF_NOTIFY_SIGNAL)) {
    177		local_irq_enable();	/* force interrupt enable */
    178		ia64_do_signal(scr, in_syscall);
    179	}
    180
    181	if (test_thread_flag(TIF_NOTIFY_RESUME)) {
    182		local_irq_enable();	/* force interrupt enable */
    183		resume_user_mode_work(&scr->pt);
    184	}
    185
    186	/* copy user rbs to kernel rbs */
    187	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
    188		local_irq_enable();	/* force interrupt enable */
    189		ia64_sync_krbs();
    190	}
    191
    192	local_irq_disable();	/* force interrupt disable */
    193}
    194
    195static int __init nohalt_setup(char * str)
    196{
    197	cpu_idle_poll_ctrl(true);
    198	return 1;
    199}
    200__setup("nohalt", nohalt_setup);
    201
    202#ifdef CONFIG_HOTPLUG_CPU
    203/* We don't actually take CPU down, just spin without interrupts. */
    204static inline void play_dead(void)
    205{
    206	unsigned int this_cpu = smp_processor_id();
    207
    208	/* Ack it */
    209	__this_cpu_write(cpu_state, CPU_DEAD);
    210
    211	max_xtp();
    212	local_irq_disable();
    213	idle_task_exit();
    214	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
    215	/*
    216	 * The above is a point of no-return, the processor is
    217	 * expected to be in SAL loop now.
    218	 */
    219	BUG();
    220}
    221#else
    222static inline void play_dead(void)
    223{
    224	BUG();
    225}
    226#endif /* CONFIG_HOTPLUG_CPU */
    227
    228void arch_cpu_idle_dead(void)
    229{
    230	play_dead();
    231}
    232
    233void arch_cpu_idle(void)
    234{
    235	void (*mark_idle)(int) = ia64_mark_idle;
    236
    237#ifdef CONFIG_SMP
    238	min_xtp();
    239#endif
    240	rmb();
    241	if (mark_idle)
    242		(*mark_idle)(1);
    243
    244	raw_safe_halt();
    245
    246	if (mark_idle)
    247		(*mark_idle)(0);
    248#ifdef CONFIG_SMP
    249	normal_xtp();
    250#endif
    251}
    252
    253void
    254ia64_save_extra (struct task_struct *task)
    255{
    256	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
    257		ia64_save_debug_regs(&task->thread.dbr[0]);
    258}
    259
    260void
    261ia64_load_extra (struct task_struct *task)
    262{
    263	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
    264		ia64_load_debug_regs(&task->thread.dbr[0]);
    265}
    266
    267/*
    268 * Copy the state of an ia-64 thread.
    269 *
    270 * We get here through the following  call chain:
    271 *
    272 *	from user-level:	from kernel:
    273 *
    274 *	<clone syscall>	        <some kernel call frames>
    275 *	sys_clone		   :
    276 *	kernel_clone		kernel_clone
    277 *	copy_thread		copy_thread
    278 *
    279 * This means that the stack layout is as follows:
    280 *
    281 *	+---------------------+ (highest addr)
    282 *	|   struct pt_regs    |
    283 *	+---------------------+
    284 *	| struct switch_stack |
    285 *	+---------------------+
    286 *	|                     |
    287 *	|    memory stack     |
    288 *	|                     | <-- sp (lowest addr)
    289 *	+---------------------+
    290 *
    291 * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
    292 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
    293 * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
    294 * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
    295 * the stack is page aligned and the page size is at least 4KB, this is always the case,
    296 * so there is nothing to worry about.
    297 */
    298int
    299copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
    300{
    301	unsigned long clone_flags = args->flags;
    302	unsigned long user_stack_base = args->stack;
    303	unsigned long user_stack_size = args->stack_size;
    304	unsigned long tls = args->tls;
    305	extern char ia64_ret_from_clone;
    306	struct switch_stack *child_stack, *stack;
    307	unsigned long rbs, child_rbs, rbs_size;
    308	struct pt_regs *child_ptregs;
    309	struct pt_regs *regs = current_pt_regs();
    310	int retval = 0;
    311
    312	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
    313	child_stack = (struct switch_stack *) child_ptregs - 1;
    314
    315	rbs = (unsigned long) current + IA64_RBS_OFFSET;
    316	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
    317
    318	/* copy parts of thread_struct: */
    319	p->thread.ksp = (unsigned long) child_stack - 16;
    320
    321	/*
    322	 * NOTE: The calling convention considers all floating point
    323	 * registers in the high partition (fph) to be scratch.  Since
    324	 * the only way to get to this point is through a system call,
    325	 * we know that the values in fph are all dead.  Hence, there
    326	 * is no need to inherit the fph state from the parent to the
    327	 * child and all we have to do is to make sure that
    328	 * IA64_THREAD_FPH_VALID is cleared in the child.
    329	 *
    330	 * XXX We could push this optimization a bit further by
    331	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
    332	 * However, it's not clear this is worth doing.  Also, it
    333	 * would be a slight deviation from the normal Linux system
    334	 * call behavior where scratch registers are preserved across
    335	 * system calls (unless used by the system call itself).
    336	 */
    337#	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
    338					 | IA64_THREAD_PM_VALID)
    339#	define THREAD_FLAGS_TO_SET	0
    340	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
    341			   | THREAD_FLAGS_TO_SET);
    342
    343	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
    344
    345	if (unlikely(args->fn)) {
    346		if (unlikely(args->idle)) {
    347			/* fork_idle() called us */
    348			return 0;
    349		}
    350		memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
    351		child_stack->r4 = (unsigned long) args->fn;
    352		child_stack->r5 = (unsigned long) args->fn_arg;
    353		/*
    354		 * Preserve PSR bits, except for bits 32-34 and 37-45,
    355		 * which we can't read.
    356		 */
    357		child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
    358		/* mark as valid, empty frame */
    359		child_ptregs->cr_ifs = 1UL << 63;
    360		child_stack->ar_fpsr = child_ptregs->ar_fpsr
    361			= ia64_getreg(_IA64_REG_AR_FPSR);
    362		child_stack->pr = (1 << PRED_KERNEL_STACK);
    363		child_stack->ar_bspstore = child_rbs;
    364		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
    365
    366		/* stop some PSR bits from being inherited.
    367		 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
    368		 * therefore we must specify them explicitly here and not include them in
    369		 * IA64_PSR_BITS_TO_CLEAR.
    370		 */
    371		child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
    372				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
    373
    374		return 0;
    375	}
    376	stack = ((struct switch_stack *) regs) - 1;
    377	/* copy parent's switch_stack & pt_regs to child: */
    378	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
    379
    380	/* copy the parent's register backing store to the child: */
    381	rbs_size = stack->ar_bspstore - rbs;
    382	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
    383	if (clone_flags & CLONE_SETTLS)
    384		child_ptregs->r13 = tls;
    385	if (user_stack_base) {
    386		child_ptregs->r12 = user_stack_base + user_stack_size - 16;
    387		child_ptregs->ar_bspstore = user_stack_base;
    388		child_ptregs->ar_rnat = 0;
    389		child_ptregs->loadrs = 0;
    390	}
    391	child_stack->ar_bspstore = child_rbs + rbs_size;
    392	child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
    393
    394	/* stop some PSR bits from being inherited.
    395	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
    396	 * therefore we must specify them explicitly here and not include them in
    397	 * IA64_PSR_BITS_TO_CLEAR.
    398	 */
    399	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
    400				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
    401	return retval;
    402}
    403
    404asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
    405			   unsigned long stack_size, unsigned long parent_tidptr,
    406			   unsigned long child_tidptr, unsigned long tls)
    407{
    408	struct kernel_clone_args args = {
    409		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
    410		.pidfd		= (int __user *)parent_tidptr,
    411		.child_tid	= (int __user *)child_tidptr,
    412		.parent_tid	= (int __user *)parent_tidptr,
    413		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
    414		.stack		= stack_start,
    415		.stack_size	= stack_size,
    416		.tls		= tls,
    417	};
    418
    419	return kernel_clone(&args);
    420}
    421
    422static void
    423do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
    424{
    425	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
    426	unsigned long ip;
    427	elf_greg_t *dst = arg;
    428	struct pt_regs *pt;
    429	char nat;
    430	int i;
    431
    432	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
    433
    434	if (unw_unwind_to_user(info) < 0)
    435		return;
    436
    437	unw_get_sp(info, &sp);
    438	pt = (struct pt_regs *) (sp + 16);
    439
    440	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
    441
    442	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
    443		return;
    444
    445	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
    446		  &ar_rnat);
    447
    448	/*
    449	 * coredump format:
    450	 *	r0-r31
    451	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
    452	 *	predicate registers (p0-p63)
    453	 *	b0-b7
    454	 *	ip cfm user-mask
    455	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
    456	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
    457	 */
    458
    459	/* r0 is zero */
    460	for (i = 1, mask = (1UL << i); i < 32; ++i) {
    461		unw_get_gr(info, i, &dst[i], &nat);
    462		if (nat)
    463			nat_bits |= mask;
    464		mask <<= 1;
    465	}
    466	dst[32] = nat_bits;
    467	unw_get_pr(info, &dst[33]);
    468
    469	for (i = 0; i < 8; ++i)
    470		unw_get_br(info, i, &dst[34 + i]);
    471
    472	unw_get_rp(info, &ip);
    473	dst[42] = ip + ia64_psr(pt)->ri;
    474	dst[43] = cfm;
    475	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
    476
    477	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
    478	/*
    479	 * For bsp and bspstore, unw_get_ar() would return the kernel
    480	 * addresses, but we need the user-level addresses instead:
    481	 */
    482	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
    483	dst[47] = pt->ar_bspstore;
    484	dst[48] = ar_rnat;
    485	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
    486	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
    487	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
    488	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
    489	unw_get_ar(info, UNW_AR_LC, &dst[53]);
    490	unw_get_ar(info, UNW_AR_EC, &dst[54]);
    491	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
    492	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
    493}
    494
    495static void
    496do_copy_regs (struct unw_frame_info *info, void *arg)
    497{
    498	do_copy_task_regs(current, info, arg);
    499}
    500
    501void
    502ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
    503{
    504	unw_init_running(do_copy_regs, dst);
    505}
    506
    507/*
    508 * Flush thread state.  This is called when a thread does an execve().
    509 */
    510void
    511flush_thread (void)
    512{
    513	/* drop floating-point and debug-register state if it exists: */
    514	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
    515	ia64_drop_fpu(current);
    516}
    517
    518/*
    519 * Clean up state associated with a thread.  This is called when
    520 * the thread calls exit().
    521 */
    522void
    523exit_thread (struct task_struct *tsk)
    524{
    525
    526	ia64_drop_fpu(tsk);
    527}
    528
    529unsigned long
    530__get_wchan (struct task_struct *p)
    531{
    532	struct unw_frame_info info;
    533	unsigned long ip;
    534	int count = 0;
    535
    536	/*
    537	 * Note: p may not be a blocked task (it could be current or
    538	 * another process running on some other CPU.  Rather than
    539	 * trying to determine if p is really blocked, we just assume
    540	 * it's blocked and rely on the unwind routines to fail
    541	 * gracefully if the process wasn't really blocked after all.
    542	 * --davidm 99/12/15
    543	 */
    544	unw_init_from_blocked_task(&info, p);
    545	do {
    546		if (task_is_running(p))
    547			return 0;
    548		if (unw_unwind(&info) < 0)
    549			return 0;
    550		unw_get_ip(&info, &ip);
    551		if (!in_sched_functions(ip))
    552			return ip;
    553	} while (count++ < 16);
    554	return 0;
    555}
    556
    557void
    558cpu_halt (void)
    559{
    560	pal_power_mgmt_info_u_t power_info[8];
    561	unsigned long min_power;
    562	int i, min_power_state;
    563
    564	if (ia64_pal_halt_info(power_info) != 0)
    565		return;
    566
    567	min_power_state = 0;
    568	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
    569	for (i = 1; i < 8; ++i)
    570		if (power_info[i].pal_power_mgmt_info_s.im
    571		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
    572			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
    573			min_power_state = i;
    574		}
    575
    576	while (1)
    577		ia64_pal_halt(min_power_state);
    578}
    579
    580void machine_shutdown(void)
    581{
    582	smp_shutdown_nonboot_cpus(reboot_cpu);
    583
    584#ifdef CONFIG_KEXEC
    585	kexec_disable_iosapic();
    586#endif
    587}
    588
    589void
    590machine_restart (char *restart_cmd)
    591{
    592	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
    593	efi_reboot(REBOOT_WARM, NULL);
    594}
    595
    596void
    597machine_halt (void)
    598{
    599	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
    600	cpu_halt();
    601}
    602
    603void
    604machine_power_off (void)
    605{
    606	do_kernel_power_off();
    607	machine_halt();
    608}
    609
    610EXPORT_SYMBOL(ia64_delay_loop);