cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ptrace.c (52439B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Kernel support for the ptrace() and syscall tracing interfaces.
      4 *
      5 * Copyright (C) 1999-2005 Hewlett-Packard Co
      6 *	David Mosberger-Tang <davidm@hpl.hp.com>
      7 * Copyright (C) 2006 Intel Co
      8 *  2006-08-12	- IA64 Native Utrace implementation support added by
      9 *	Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
     10 *
     11 * Derived from the x86 and Alpha versions.
     12 */
     13#include <linux/kernel.h>
     14#include <linux/sched.h>
     15#include <linux/sched/task.h>
     16#include <linux/sched/task_stack.h>
     17#include <linux/mm.h>
     18#include <linux/errno.h>
     19#include <linux/ptrace.h>
     20#include <linux/user.h>
     21#include <linux/security.h>
     22#include <linux/audit.h>
     23#include <linux/signal.h>
     24#include <linux/regset.h>
     25#include <linux/elf.h>
     26#include <linux/resume_user_mode.h>
     27
     28#include <asm/processor.h>
     29#include <asm/ptrace_offsets.h>
     30#include <asm/rse.h>
     31#include <linux/uaccess.h>
     32#include <asm/unwind.h>
     33
     34#include "entry.h"
     35
     36/*
     37 * Bits in the PSR that we allow ptrace() to change:
     38 *	be, up, ac, mfl, mfh (the user mask; five bits total)
     39 *	db (debug breakpoint fault; one bit)
     40 *	id (instruction debug fault disable; one bit)
     41 *	dd (data debug fault disable; one bit)
     42 *	ri (restart instruction; two bits)
     43 *	is (instruction set; one bit)
     44 */
     45#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
     46		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
     47
     48#define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
     49#define PFM_MASK	MASK(38)
     50
     51#define PTRACE_DEBUG	0
     52
     53#if PTRACE_DEBUG
     54# define dprintk(format...)	printk(format)
     55# define inline
     56#else
     57# define dprintk(format...)
     58#endif
     59
     60/* Return TRUE if PT was created due to kernel-entry via a system-call.  */
     61
     62static inline int
     63in_syscall (struct pt_regs *pt)
     64{
     65	return (long) pt->cr_ifs >= 0;
     66}
     67
     68/*
     69 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
     70 * bitset where bit i is set iff the NaT bit of register i is set.
     71 */
     72unsigned long
     73ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
     74{
     75#	define GET_BITS(first, last, unat)				\
     76	({								\
     77		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
     78		unsigned long nbits = (last - first + 1);		\
     79		unsigned long mask = MASK(nbits) << first;		\
     80		unsigned long dist;					\
     81		if (bit < first)					\
     82			dist = 64 + bit - first;			\
     83		else							\
     84			dist = bit - first;				\
     85		ia64_rotr(unat, dist) & mask;				\
     86	})
     87	unsigned long val;
     88
     89	/*
     90	 * Registers that are stored consecutively in struct pt_regs
     91	 * can be handled in parallel.  If the register order in
     92	 * struct_pt_regs changes, this code MUST be updated.
     93	 */
     94	val  = GET_BITS( 1,  1, scratch_unat);
     95	val |= GET_BITS( 2,  3, scratch_unat);
     96	val |= GET_BITS(12, 13, scratch_unat);
     97	val |= GET_BITS(14, 14, scratch_unat);
     98	val |= GET_BITS(15, 15, scratch_unat);
     99	val |= GET_BITS( 8, 11, scratch_unat);
    100	val |= GET_BITS(16, 31, scratch_unat);
    101	return val;
    102
    103#	undef GET_BITS
    104}
    105
    106/*
    107 * Set the NaT bits for the scratch registers according to NAT and
    108 * return the resulting unat (assuming the scratch registers are
    109 * stored in PT).
    110 */
    111unsigned long
    112ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
    113{
    114#	define PUT_BITS(first, last, nat)				\
    115	({								\
    116		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
    117		unsigned long nbits = (last - first + 1);		\
    118		unsigned long mask = MASK(nbits) << first;		\
    119		long dist;						\
    120		if (bit < first)					\
    121			dist = 64 + bit - first;			\
    122		else							\
    123			dist = bit - first;				\
    124		ia64_rotl(nat & mask, dist);				\
    125	})
    126	unsigned long scratch_unat;
    127
    128	/*
    129	 * Registers that are stored consecutively in struct pt_regs
    130	 * can be handled in parallel.  If the register order in
    131	 * struct_pt_regs changes, this code MUST be updated.
    132	 */
    133	scratch_unat  = PUT_BITS( 1,  1, nat);
    134	scratch_unat |= PUT_BITS( 2,  3, nat);
    135	scratch_unat |= PUT_BITS(12, 13, nat);
    136	scratch_unat |= PUT_BITS(14, 14, nat);
    137	scratch_unat |= PUT_BITS(15, 15, nat);
    138	scratch_unat |= PUT_BITS( 8, 11, nat);
    139	scratch_unat |= PUT_BITS(16, 31, nat);
    140
    141	return scratch_unat;
    142
    143#	undef PUT_BITS
    144}
    145
    146#define IA64_MLX_TEMPLATE	0x2
    147#define IA64_MOVL_OPCODE	6
    148
    149void
    150ia64_increment_ip (struct pt_regs *regs)
    151{
    152	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
    153
    154	if (ri > 2) {
    155		ri = 0;
    156		regs->cr_iip += 16;
    157	} else if (ri == 2) {
    158		get_user(w0, (char __user *) regs->cr_iip + 0);
    159		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
    160			/*
    161			 * rfi'ing to slot 2 of an MLX bundle causes
    162			 * an illegal operation fault.  We don't want
    163			 * that to happen...
    164			 */
    165			ri = 0;
    166			regs->cr_iip += 16;
    167		}
    168	}
    169	ia64_psr(regs)->ri = ri;
    170}
    171
    172void
    173ia64_decrement_ip (struct pt_regs *regs)
    174{
    175	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
    176
    177	if (ia64_psr(regs)->ri == 0) {
    178		regs->cr_iip -= 16;
    179		ri = 2;
    180		get_user(w0, (char __user *) regs->cr_iip + 0);
    181		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
    182			/*
    183			 * rfi'ing to slot 2 of an MLX bundle causes
    184			 * an illegal operation fault.  We don't want
    185			 * that to happen...
    186			 */
    187			ri = 1;
    188		}
    189	}
    190	ia64_psr(regs)->ri = ri;
    191}
    192
    193/*
    194 * This routine is used to read an rnat bits that are stored on the
    195 * kernel backing store.  Since, in general, the alignment of the user
    196 * and kernel are different, this is not completely trivial.  In
    197 * essence, we need to construct the user RNAT based on up to two
    198 * kernel RNAT values and/or the RNAT value saved in the child's
    199 * pt_regs.
    200 *
    201 * user rbs
    202 *
    203 * +--------+ <-- lowest address
    204 * | slot62 |
    205 * +--------+
    206 * |  rnat  | 0x....1f8
    207 * +--------+
    208 * | slot00 | \
    209 * +--------+ |
    210 * | slot01 | > child_regs->ar_rnat
    211 * +--------+ |
    212 * | slot02 | /				kernel rbs
    213 * +--------+				+--------+
    214 *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
    215 * +- - - - +				+--------+
    216 *					| slot62 |
    217 * +- - - - +				+--------+
    218 *					|  rnat	 |
    219 * +- - - - +				+--------+
    220 *   vrnat				| slot00 |
    221 * +- - - - +				+--------+
    222 *					=	 =
    223 *					+--------+
    224 *					| slot00 | \
    225 *					+--------+ |
    226 *					| slot01 | > child_stack->ar_rnat
    227 *					+--------+ |
    228 *					| slot02 | /
    229 *					+--------+
    230 *						  <--- child_stack->ar_bspstore
    231 *
    232 * The way to think of this code is as follows: bit 0 in the user rnat
    233 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
    234 * value.  The kernel rnat value holding this bit is stored in
    235 * variable rnat0.  rnat1 is loaded with the kernel rnat value that
    236 * form the upper bits of the user rnat value.
    237 *
    238 * Boundary cases:
    239 *
    240 * o when reading the rnat "below" the first rnat slot on the kernel
    241 *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
    242 *   merged in from pt->ar_rnat.
    243 *
    244 * o when reading the rnat "above" the last rnat slot on the kernel
    245 *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
    246 */
    247static unsigned long
    248get_rnat (struct task_struct *task, struct switch_stack *sw,
    249	  unsigned long *krbs, unsigned long *urnat_addr,
    250	  unsigned long *urbs_end)
    251{
    252	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
    253	unsigned long umask = 0, mask, m;
    254	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
    255	long num_regs, nbits;
    256	struct pt_regs *pt;
    257
    258	pt = task_pt_regs(task);
    259	kbsp = (unsigned long *) sw->ar_bspstore;
    260	ubspstore = (unsigned long *) pt->ar_bspstore;
    261
    262	if (urbs_end < urnat_addr)
    263		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
    264	else
    265		nbits = 63;
    266	mask = MASK(nbits);
    267	/*
    268	 * First, figure out which bit number slot 0 in user-land maps
    269	 * to in the kernel rnat.  Do this by figuring out how many
    270	 * register slots we're beyond the user's backingstore and
    271	 * then computing the equivalent address in kernel space.
    272	 */
    273	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
    274	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
    275	shift = ia64_rse_slot_num(slot0_kaddr);
    276	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
    277	rnat0_kaddr = rnat1_kaddr - 64;
    278
    279	if (ubspstore + 63 > urnat_addr) {
    280		/* some bits need to be merged in from pt->ar_rnat */
    281		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
    282		urnat = (pt->ar_rnat & umask);
    283		mask &= ~umask;
    284		if (!mask)
    285			return urnat;
    286	}
    287
    288	m = mask << shift;
    289	if (rnat0_kaddr >= kbsp)
    290		rnat0 = sw->ar_rnat;
    291	else if (rnat0_kaddr > krbs)
    292		rnat0 = *rnat0_kaddr;
    293	urnat |= (rnat0 & m) >> shift;
    294
    295	m = mask >> (63 - shift);
    296	if (rnat1_kaddr >= kbsp)
    297		rnat1 = sw->ar_rnat;
    298	else if (rnat1_kaddr > krbs)
    299		rnat1 = *rnat1_kaddr;
    300	urnat |= (rnat1 & m) << (63 - shift);
    301	return urnat;
    302}
    303
    304/*
    305 * The reverse of get_rnat.
    306 */
    307static void
    308put_rnat (struct task_struct *task, struct switch_stack *sw,
    309	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
    310	  unsigned long *urbs_end)
    311{
    312	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
    313	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
    314	long num_regs, nbits;
    315	struct pt_regs *pt;
    316	unsigned long cfm, *urbs_kargs;
    317
    318	pt = task_pt_regs(task);
    319	kbsp = (unsigned long *) sw->ar_bspstore;
    320	ubspstore = (unsigned long *) pt->ar_bspstore;
    321
    322	urbs_kargs = urbs_end;
    323	if (in_syscall(pt)) {
    324		/*
    325		 * If entered via syscall, don't allow user to set rnat bits
    326		 * for syscall args.
    327		 */
    328		cfm = pt->cr_ifs;
    329		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
    330	}
    331
    332	if (urbs_kargs >= urnat_addr)
    333		nbits = 63;
    334	else {
    335		if ((urnat_addr - 63) >= urbs_kargs)
    336			return;
    337		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
    338	}
    339	mask = MASK(nbits);
    340
    341	/*
    342	 * First, figure out which bit number slot 0 in user-land maps
    343	 * to in the kernel rnat.  Do this by figuring out how many
    344	 * register slots we're beyond the user's backingstore and
    345	 * then computing the equivalent address in kernel space.
    346	 */
    347	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
    348	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
    349	shift = ia64_rse_slot_num(slot0_kaddr);
    350	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
    351	rnat0_kaddr = rnat1_kaddr - 64;
    352
    353	if (ubspstore + 63 > urnat_addr) {
    354		/* some bits need to be place in pt->ar_rnat: */
    355		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
    356		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
    357		mask &= ~umask;
    358		if (!mask)
    359			return;
    360	}
    361	/*
    362	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
    363	 * rnat slot is ignored. so we don't have to clear it here.
    364	 */
    365	rnat0 = (urnat << shift);
    366	m = mask << shift;
    367	if (rnat0_kaddr >= kbsp)
    368		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
    369	else if (rnat0_kaddr > krbs)
    370		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
    371
    372	rnat1 = (urnat >> (63 - shift));
    373	m = mask >> (63 - shift);
    374	if (rnat1_kaddr >= kbsp)
    375		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
    376	else if (rnat1_kaddr > krbs)
    377		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
    378}
    379
    380static inline int
    381on_kernel_rbs (unsigned long addr, unsigned long bspstore,
    382	       unsigned long urbs_end)
    383{
    384	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
    385						      urbs_end);
    386	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
    387}
    388
    389/*
    390 * Read a word from the user-level backing store of task CHILD.  ADDR
    391 * is the user-level address to read the word from, VAL a pointer to
    392 * the return value, and USER_BSP gives the end of the user-level
    393 * backing store (i.e., it's the address that would be in ar.bsp after
    394 * the user executed a "cover" instruction).
    395 *
    396 * This routine takes care of accessing the kernel register backing
    397 * store for those registers that got spilled there.  It also takes
    398 * care of calculating the appropriate RNaT collection words.
    399 */
    400long
    401ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
    402	   unsigned long user_rbs_end, unsigned long addr, long *val)
    403{
    404	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
    405	struct pt_regs *child_regs;
    406	size_t copied;
    407	long ret;
    408
    409	urbs_end = (long *) user_rbs_end;
    410	laddr = (unsigned long *) addr;
    411	child_regs = task_pt_regs(child);
    412	bspstore = (unsigned long *) child_regs->ar_bspstore;
    413	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
    414	if (on_kernel_rbs(addr, (unsigned long) bspstore,
    415			  (unsigned long) urbs_end))
    416	{
    417		/*
    418		 * Attempt to read the RBS in an area that's actually
    419		 * on the kernel RBS => read the corresponding bits in
    420		 * the kernel RBS.
    421		 */
    422		rnat_addr = ia64_rse_rnat_addr(laddr);
    423		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
    424
    425		if (laddr == rnat_addr) {
    426			/* return NaT collection word itself */
    427			*val = ret;
    428			return 0;
    429		}
    430
    431		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
    432			/*
    433			 * It is implementation dependent whether the
    434			 * data portion of a NaT value gets saved on a
    435			 * st8.spill or RSE spill (e.g., see EAS 2.6,
    436			 * 4.4.4.6 Register Spill and Fill).  To get
    437			 * consistent behavior across all possible
    438			 * IA-64 implementations, we return zero in
    439			 * this case.
    440			 */
    441			*val = 0;
    442			return 0;
    443		}
    444
    445		if (laddr < urbs_end) {
    446			/*
    447			 * The desired word is on the kernel RBS and
    448			 * is not a NaT.
    449			 */
    450			regnum = ia64_rse_num_regs(bspstore, laddr);
    451			*val = *ia64_rse_skip_regs(krbs, regnum);
    452			return 0;
    453		}
    454	}
    455	copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
    456	if (copied != sizeof(ret))
    457		return -EIO;
    458	*val = ret;
    459	return 0;
    460}
    461
    462long
    463ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
    464	   unsigned long user_rbs_end, unsigned long addr, long val)
    465{
    466	unsigned long *bspstore, *krbs, regnum, *laddr;
    467	unsigned long *urbs_end = (long *) user_rbs_end;
    468	struct pt_regs *child_regs;
    469
    470	laddr = (unsigned long *) addr;
    471	child_regs = task_pt_regs(child);
    472	bspstore = (unsigned long *) child_regs->ar_bspstore;
    473	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
    474	if (on_kernel_rbs(addr, (unsigned long) bspstore,
    475			  (unsigned long) urbs_end))
    476	{
    477		/*
    478		 * Attempt to write the RBS in an area that's actually
    479		 * on the kernel RBS => write the corresponding bits
    480		 * in the kernel RBS.
    481		 */
    482		if (ia64_rse_is_rnat_slot(laddr))
    483			put_rnat(child, child_stack, krbs, laddr, val,
    484				 urbs_end);
    485		else {
    486			if (laddr < urbs_end) {
    487				regnum = ia64_rse_num_regs(bspstore, laddr);
    488				*ia64_rse_skip_regs(krbs, regnum) = val;
    489			}
    490		}
    491	} else if (access_process_vm(child, addr, &val, sizeof(val),
    492				FOLL_FORCE | FOLL_WRITE)
    493		   != sizeof(val))
    494		return -EIO;
    495	return 0;
    496}
    497
    498/*
    499 * Calculate the address of the end of the user-level register backing
    500 * store.  This is the address that would have been stored in ar.bsp
    501 * if the user had executed a "cover" instruction right before
    502 * entering the kernel.  If CFMP is not NULL, it is used to return the
    503 * "current frame mask" that was active at the time the kernel was
    504 * entered.
    505 */
    506unsigned long
    507ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
    508		       unsigned long *cfmp)
    509{
    510	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
    511	long ndirty;
    512
    513	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
    514	bspstore = (unsigned long *) pt->ar_bspstore;
    515	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
    516
    517	if (in_syscall(pt))
    518		ndirty += (cfm & 0x7f);
    519	else
    520		cfm &= ~(1UL << 63);	/* clear valid bit */
    521
    522	if (cfmp)
    523		*cfmp = cfm;
    524	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
    525}
    526
    527/*
    528 * Synchronize (i.e, write) the RSE backing store living in kernel
    529 * space to the VM of the CHILD task.  SW and PT are the pointers to
    530 * the switch_stack and pt_regs structures, respectively.
    531 * USER_RBS_END is the user-level address at which the backing store
    532 * ends.
    533 */
    534long
    535ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
    536		    unsigned long user_rbs_start, unsigned long user_rbs_end)
    537{
    538	unsigned long addr, val;
    539	long ret;
    540
    541	/* now copy word for word from kernel rbs to user rbs: */
    542	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
    543		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
    544		if (ret < 0)
    545			return ret;
    546		if (access_process_vm(child, addr, &val, sizeof(val),
    547				FOLL_FORCE | FOLL_WRITE)
    548		    != sizeof(val))
    549			return -EIO;
    550	}
    551	return 0;
    552}
    553
    554static long
    555ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
    556		unsigned long user_rbs_start, unsigned long user_rbs_end)
    557{
    558	unsigned long addr, val;
    559	long ret;
    560
    561	/* now copy word for word from user rbs to kernel rbs: */
    562	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
    563		if (access_process_vm(child, addr, &val, sizeof(val),
    564				FOLL_FORCE)
    565				!= sizeof(val))
    566			return -EIO;
    567
    568		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
    569		if (ret < 0)
    570			return ret;
    571	}
    572	return 0;
    573}
    574
    575typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
    576			    unsigned long, unsigned long);
    577
    578static void do_sync_rbs(struct unw_frame_info *info, void *arg)
    579{
    580	struct pt_regs *pt;
    581	unsigned long urbs_end;
    582	syncfunc_t fn = arg;
    583
    584	if (unw_unwind_to_user(info) < 0)
    585		return;
    586	pt = task_pt_regs(info->task);
    587	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
    588
    589	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
    590}
    591
    592/*
    593 * when a thread is stopped (ptraced), debugger might change thread's user
    594 * stack (change memory directly), and we must avoid the RSE stored in kernel
    595 * to override user stack (user space's RSE is newer than kernel's in the
    596 * case). To workaround the issue, we copy kernel RSE to user RSE before the
    597 * task is stopped, so user RSE has updated data.  we then copy user RSE to
    598 * kernel after the task is resummed from traced stop and kernel will use the
    599 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
    600 * synchronize user RSE to kernel.
    601 */
    602void ia64_ptrace_stop(void)
    603{
    604	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
    605		return;
    606	set_notify_resume(current);
    607	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
    608}
    609
    610/*
    611 * This is called to read back the register backing store.
    612 */
    613void ia64_sync_krbs(void)
    614{
    615	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
    616
    617	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
    618}
    619
    620/*
    621 * Write f32-f127 back to task->thread.fph if it has been modified.
    622 */
    623inline void
    624ia64_flush_fph (struct task_struct *task)
    625{
    626	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
    627
    628	/*
    629	 * Prevent migrating this task while
    630	 * we're fiddling with the FPU state
    631	 */
    632	preempt_disable();
    633	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
    634		psr->mfh = 0;
    635		task->thread.flags |= IA64_THREAD_FPH_VALID;
    636		ia64_save_fpu(&task->thread.fph[0]);
    637	}
    638	preempt_enable();
    639}
    640
    641/*
    642 * Sync the fph state of the task so that it can be manipulated
    643 * through thread.fph.  If necessary, f32-f127 are written back to
    644 * thread.fph or, if the fph state hasn't been used before, thread.fph
    645 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
    646 * ensure that the task picks up the state from thread.fph when it
    647 * executes again.
    648 */
    649void
    650ia64_sync_fph (struct task_struct *task)
    651{
    652	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
    653
    654	ia64_flush_fph(task);
    655	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
    656		task->thread.flags |= IA64_THREAD_FPH_VALID;
    657		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
    658	}
    659	ia64_drop_fpu(task);
    660	psr->dfh = 1;
    661}
    662
    663/*
    664 * Change the machine-state of CHILD such that it will return via the normal
    665 * kernel exit-path, rather than the syscall-exit path.
    666 */
    667static void
    668convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
    669			unsigned long cfm)
    670{
    671	struct unw_frame_info info, prev_info;
    672	unsigned long ip, sp, pr;
    673
    674	unw_init_from_blocked_task(&info, child);
    675	while (1) {
    676		prev_info = info;
    677		if (unw_unwind(&info) < 0)
    678			return;
    679
    680		unw_get_sp(&info, &sp);
    681		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
    682		    < IA64_PT_REGS_SIZE) {
    683			dprintk("ptrace.%s: ran off the top of the kernel "
    684				"stack\n", __func__);
    685			return;
    686		}
    687		if (unw_get_pr (&prev_info, &pr) < 0) {
    688			unw_get_rp(&prev_info, &ip);
    689			dprintk("ptrace.%s: failed to read "
    690				"predicate register (ip=0x%lx)\n",
    691				__func__, ip);
    692			return;
    693		}
    694		if (unw_is_intr_frame(&info)
    695		    && (pr & (1UL << PRED_USER_STACK)))
    696			break;
    697	}
    698
    699	/*
    700	 * Note: at the time of this call, the target task is blocked
    701	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
    702	 * (aka, "pLvSys") we redirect execution from
    703	 * .work_pending_syscall_end to .work_processed_kernel.
    704	 */
    705	unw_get_pr(&prev_info, &pr);
    706	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
    707	pr |=  (1UL << PRED_NON_SYSCALL);
    708	unw_set_pr(&prev_info, pr);
    709
    710	pt->cr_ifs = (1UL << 63) | cfm;
    711	/*
    712	 * Clear the memory that is NOT written on syscall-entry to
    713	 * ensure we do not leak kernel-state to user when execution
    714	 * resumes.
    715	 */
    716	pt->r2 = 0;
    717	pt->r3 = 0;
    718	pt->r14 = 0;
    719	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
    720	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
    721	pt->b7 = 0;
    722	pt->ar_ccv = 0;
    723	pt->ar_csd = 0;
    724	pt->ar_ssd = 0;
    725}
    726
    727static int
    728access_nat_bits (struct task_struct *child, struct pt_regs *pt,
    729		 struct unw_frame_info *info,
    730		 unsigned long *data, int write_access)
    731{
    732	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
    733	char nat = 0;
    734
    735	if (write_access) {
    736		nat_bits = *data;
    737		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
    738		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
    739			dprintk("ptrace: failed to set ar.unat\n");
    740			return -1;
    741		}
    742		for (regnum = 4; regnum <= 7; ++regnum) {
    743			unw_get_gr(info, regnum, &dummy, &nat);
    744			unw_set_gr(info, regnum, dummy,
    745				   (nat_bits >> regnum) & 1);
    746		}
    747	} else {
    748		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
    749			dprintk("ptrace: failed to read ar.unat\n");
    750			return -1;
    751		}
    752		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
    753		for (regnum = 4; regnum <= 7; ++regnum) {
    754			unw_get_gr(info, regnum, &dummy, &nat);
    755			nat_bits |= (nat != 0) << regnum;
    756		}
    757		*data = nat_bits;
    758	}
    759	return 0;
    760}
    761
    762static int
    763access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
    764		unsigned long addr, unsigned long *data, int write_access);
    765
    766static long
    767ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
    768{
    769	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
    770	struct unw_frame_info info;
    771	struct ia64_fpreg fpval;
    772	struct switch_stack *sw;
    773	struct pt_regs *pt;
    774	long ret, retval = 0;
    775	char nat = 0;
    776	int i;
    777
    778	if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
    779		return -EIO;
    780
    781	pt = task_pt_regs(child);
    782	sw = (struct switch_stack *) (child->thread.ksp + 16);
    783	unw_init_from_blocked_task(&info, child);
    784	if (unw_unwind_to_user(&info) < 0) {
    785		return -EIO;
    786	}
    787
    788	if (((unsigned long) ppr & 0x7) != 0) {
    789		dprintk("ptrace:unaligned register address %p\n", ppr);
    790		return -EIO;
    791	}
    792
    793	if (access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 0) < 0 ||
    794	    access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 0) < 0 ||
    795	    access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 0) < 0 ||
    796	    access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 0) < 0 ||
    797	    access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 0) < 0 ||
    798	    access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 0) < 0 ||
    799	    access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 0) < 0)
    800		return -EIO;
    801
    802	/* control regs */
    803
    804	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
    805	retval |= __put_user(psr, &ppr->cr_ipsr);
    806
    807	/* app regs */
    808
    809	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
    810	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
    811	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
    812	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
    813	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
    814	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
    815
    816	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
    817	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
    818	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
    819	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
    820	retval |= __put_user(cfm, &ppr->cfm);
    821
    822	/* gr1-gr3 */
    823
    824	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
    825	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
    826
    827	/* gr4-gr7 */
    828
    829	for (i = 4; i < 8; i++) {
    830		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
    831			return -EIO;
    832		retval |= __put_user(val, &ppr->gr[i]);
    833	}
    834
    835	/* gr8-gr11 */
    836
    837	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
    838
    839	/* gr12-gr15 */
    840
    841	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
    842	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
    843	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
    844
    845	/* gr16-gr31 */
    846
    847	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
    848
    849	/* b0 */
    850
    851	retval |= __put_user(pt->b0, &ppr->br[0]);
    852
    853	/* b1-b5 */
    854
    855	for (i = 1; i < 6; i++) {
    856		if (unw_access_br(&info, i, &val, 0) < 0)
    857			return -EIO;
    858		__put_user(val, &ppr->br[i]);
    859	}
    860
    861	/* b6-b7 */
    862
    863	retval |= __put_user(pt->b6, &ppr->br[6]);
    864	retval |= __put_user(pt->b7, &ppr->br[7]);
    865
    866	/* fr2-fr5 */
    867
    868	for (i = 2; i < 6; i++) {
    869		if (unw_get_fr(&info, i, &fpval) < 0)
    870			return -EIO;
    871		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
    872	}
    873
    874	/* fr6-fr11 */
    875
    876	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
    877				 sizeof(struct ia64_fpreg) * 6);
    878
    879	/* fp scratch regs(12-15) */
    880
    881	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
    882				 sizeof(struct ia64_fpreg) * 4);
    883
    884	/* fr16-fr31 */
    885
    886	for (i = 16; i < 32; i++) {
    887		if (unw_get_fr(&info, i, &fpval) < 0)
    888			return -EIO;
    889		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
    890	}
    891
    892	/* fph */
    893
    894	ia64_flush_fph(child);
    895	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
    896				 sizeof(ppr->fr[32]) * 96);
    897
    898	/*  preds */
    899
    900	retval |= __put_user(pt->pr, &ppr->pr);
    901
    902	/* nat bits */
    903
    904	retval |= __put_user(nat_bits, &ppr->nat);
    905
    906	ret = retval ? -EIO : 0;
    907	return ret;
    908}
    909
    910static long
    911ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
    912{
    913	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
    914	struct unw_frame_info info;
    915	struct switch_stack *sw;
    916	struct ia64_fpreg fpval;
    917	struct pt_regs *pt;
    918	long retval = 0;
    919	int i;
    920
    921	memset(&fpval, 0, sizeof(fpval));
    922
    923	if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
    924		return -EIO;
    925
    926	pt = task_pt_regs(child);
    927	sw = (struct switch_stack *) (child->thread.ksp + 16);
    928	unw_init_from_blocked_task(&info, child);
    929	if (unw_unwind_to_user(&info) < 0) {
    930		return -EIO;
    931	}
    932
    933	if (((unsigned long) ppr & 0x7) != 0) {
    934		dprintk("ptrace:unaligned register address %p\n", ppr);
    935		return -EIO;
    936	}
    937
    938	/* control regs */
    939
    940	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
    941	retval |= __get_user(psr, &ppr->cr_ipsr);
    942
    943	/* app regs */
    944
    945	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
    946	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
    947	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
    948	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
    949	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
    950	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
    951
    952	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
    953	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
    954	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
    955	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
    956	retval |= __get_user(cfm, &ppr->cfm);
    957
    958	/* gr1-gr3 */
    959
    960	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
    961	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
    962
    963	/* gr4-gr7 */
    964
    965	for (i = 4; i < 8; i++) {
    966		retval |= __get_user(val, &ppr->gr[i]);
    967		/* NaT bit will be set via PT_NAT_BITS: */
    968		if (unw_set_gr(&info, i, val, 0) < 0)
    969			return -EIO;
    970	}
    971
    972	/* gr8-gr11 */
    973
    974	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
    975
    976	/* gr12-gr15 */
    977
    978	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
    979	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
    980	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
    981
    982	/* gr16-gr31 */
    983
    984	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
    985
    986	/* b0 */
    987
    988	retval |= __get_user(pt->b0, &ppr->br[0]);
    989
    990	/* b1-b5 */
    991
    992	for (i = 1; i < 6; i++) {
    993		retval |= __get_user(val, &ppr->br[i]);
    994		unw_set_br(&info, i, val);
    995	}
    996
    997	/* b6-b7 */
    998
    999	retval |= __get_user(pt->b6, &ppr->br[6]);
   1000	retval |= __get_user(pt->b7, &ppr->br[7]);
   1001
   1002	/* fr2-fr5 */
   1003
   1004	for (i = 2; i < 6; i++) {
   1005		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
   1006		if (unw_set_fr(&info, i, fpval) < 0)
   1007			return -EIO;
   1008	}
   1009
   1010	/* fr6-fr11 */
   1011
   1012	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
   1013				   sizeof(ppr->fr[6]) * 6);
   1014
   1015	/* fp scratch regs(12-15) */
   1016
   1017	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
   1018				   sizeof(ppr->fr[12]) * 4);
   1019
   1020	/* fr16-fr31 */
   1021
   1022	for (i = 16; i < 32; i++) {
   1023		retval |= __copy_from_user(&fpval, &ppr->fr[i],
   1024					   sizeof(fpval));
   1025		if (unw_set_fr(&info, i, fpval) < 0)
   1026			return -EIO;
   1027	}
   1028
   1029	/* fph */
   1030
   1031	ia64_sync_fph(child);
   1032	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
   1033				   sizeof(ppr->fr[32]) * 96);
   1034
   1035	/* preds */
   1036
   1037	retval |= __get_user(pt->pr, &ppr->pr);
   1038
   1039	/* nat bits */
   1040
   1041	retval |= __get_user(nat_bits, &ppr->nat);
   1042
   1043	retval |= access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 1);
   1044	retval |= access_elf_reg(child, &info, ELF_AR_RSC_OFFSET, &rsc, 1);
   1045	retval |= access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 1);
   1046	retval |= access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 1);
   1047	retval |= access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 1);
   1048	retval |= access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 1);
   1049	retval |= access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 1);
   1050	retval |= access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 1);
   1051
   1052	return retval ? -EIO : 0;
   1053}
   1054
   1055void
   1056user_enable_single_step (struct task_struct *child)
   1057{
   1058	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
   1059
   1060	set_tsk_thread_flag(child, TIF_SINGLESTEP);
   1061	child_psr->ss = 1;
   1062}
   1063
   1064void
   1065user_enable_block_step (struct task_struct *child)
   1066{
   1067	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
   1068
   1069	set_tsk_thread_flag(child, TIF_SINGLESTEP);
   1070	child_psr->tb = 1;
   1071}
   1072
   1073void
   1074user_disable_single_step (struct task_struct *child)
   1075{
   1076	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
   1077
   1078	/* make sure the single step/taken-branch trap bits are not set: */
   1079	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
   1080	child_psr->ss = 0;
   1081	child_psr->tb = 0;
   1082}
   1083
   1084/*
   1085 * Called by kernel/ptrace.c when detaching..
   1086 *
   1087 * Make sure the single step bit is not set.
   1088 */
   1089void
   1090ptrace_disable (struct task_struct *child)
   1091{
   1092	user_disable_single_step(child);
   1093}
   1094
   1095static int
   1096access_uarea (struct task_struct *child, unsigned long addr,
   1097	      unsigned long *data, int write_access);
   1098
   1099long
   1100arch_ptrace (struct task_struct *child, long request,
   1101	     unsigned long addr, unsigned long data)
   1102{
   1103	switch (request) {
   1104	case PTRACE_PEEKTEXT:
   1105	case PTRACE_PEEKDATA:
   1106		/* read word at location addr */
   1107		if (ptrace_access_vm(child, addr, &data, sizeof(data),
   1108				FOLL_FORCE)
   1109		    != sizeof(data))
   1110			return -EIO;
   1111		/* ensure return value is not mistaken for error code */
   1112		force_successful_syscall_return();
   1113		return data;
   1114
   1115	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
   1116	 * by the generic ptrace_request().
   1117	 */
   1118
   1119	case PTRACE_PEEKUSR:
   1120		/* read the word at addr in the USER area */
   1121		if (access_uarea(child, addr, &data, 0) < 0)
   1122			return -EIO;
   1123		/* ensure return value is not mistaken for error code */
   1124		force_successful_syscall_return();
   1125		return data;
   1126
   1127	case PTRACE_POKEUSR:
   1128		/* write the word at addr in the USER area */
   1129		if (access_uarea(child, addr, &data, 1) < 0)
   1130			return -EIO;
   1131		return 0;
   1132
   1133	case PTRACE_OLD_GETSIGINFO:
   1134		/* for backwards-compatibility */
   1135		return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
   1136
   1137	case PTRACE_OLD_SETSIGINFO:
   1138		/* for backwards-compatibility */
   1139		return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
   1140
   1141	case PTRACE_GETREGS:
   1142		return ptrace_getregs(child,
   1143				      (struct pt_all_user_regs __user *) data);
   1144
   1145	case PTRACE_SETREGS:
   1146		return ptrace_setregs(child,
   1147				      (struct pt_all_user_regs __user *) data);
   1148
   1149	default:
   1150		return ptrace_request(child, request, addr, data);
   1151	}
   1152}
   1153
   1154
   1155/* "asmlinkage" so the input arguments are preserved... */
   1156
   1157asmlinkage long
   1158syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
   1159		     long arg4, long arg5, long arg6, long arg7,
   1160		     struct pt_regs regs)
   1161{
   1162	if (test_thread_flag(TIF_SYSCALL_TRACE))
   1163		if (ptrace_report_syscall_entry(&regs))
   1164			return -ENOSYS;
   1165
   1166	/* copy user rbs to kernel rbs */
   1167	if (test_thread_flag(TIF_RESTORE_RSE))
   1168		ia64_sync_krbs();
   1169
   1170
   1171	audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
   1172
   1173	return 0;
   1174}
   1175
   1176/* "asmlinkage" so the input arguments are preserved... */
   1177
   1178asmlinkage void
   1179syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
   1180		     long arg4, long arg5, long arg6, long arg7,
   1181		     struct pt_regs regs)
   1182{
   1183	int step;
   1184
   1185	audit_syscall_exit(&regs);
   1186
   1187	step = test_thread_flag(TIF_SINGLESTEP);
   1188	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
   1189		ptrace_report_syscall_exit(&regs, step);
   1190
   1191	/* copy user rbs to kernel rbs */
   1192	if (test_thread_flag(TIF_RESTORE_RSE))
   1193		ia64_sync_krbs();
   1194}
   1195
   1196/* Utrace implementation starts here */
   1197struct regset_get {
   1198	void *kbuf;
   1199	void __user *ubuf;
   1200};
   1201
   1202struct regset_set {
   1203	const void *kbuf;
   1204	const void __user *ubuf;
   1205};
   1206
   1207struct regset_getset {
   1208	struct task_struct *target;
   1209	const struct user_regset *regset;
   1210	union {
   1211		struct regset_get get;
   1212		struct regset_set set;
   1213	} u;
   1214	unsigned int pos;
   1215	unsigned int count;
   1216	int ret;
   1217};
   1218
   1219static const ptrdiff_t pt_offsets[32] =
   1220{
   1221#define R(n) offsetof(struct pt_regs, r##n)
   1222	[0] = -1, R(1), R(2), R(3),
   1223	[4] = -1, [5] = -1, [6] = -1, [7] = -1,
   1224	R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
   1225	R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
   1226	R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
   1227#undef R
   1228};
   1229
   1230static int
   1231access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
   1232		unsigned long addr, unsigned long *data, int write_access)
   1233{
   1234	struct pt_regs *pt = task_pt_regs(target);
   1235	unsigned reg = addr / sizeof(unsigned long);
   1236	ptrdiff_t d = pt_offsets[reg];
   1237
   1238	if (d >= 0) {
   1239		unsigned long *ptr = (void *)pt + d;
   1240		if (write_access)
   1241			*ptr = *data;
   1242		else
   1243			*data = *ptr;
   1244		return 0;
   1245	} else {
   1246		char nat = 0;
   1247		if (write_access) {
   1248			/* read NaT bit first: */
   1249			unsigned long dummy;
   1250			int ret = unw_get_gr(info, reg, &dummy, &nat);
   1251			if (ret < 0)
   1252				return ret;
   1253		}
   1254		return unw_access_gr(info, reg, data, &nat, write_access);
   1255	}
   1256}
   1257
   1258static int
   1259access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
   1260		unsigned long addr, unsigned long *data, int write_access)
   1261{
   1262	struct pt_regs *pt;
   1263	unsigned long *ptr = NULL;
   1264
   1265	pt = task_pt_regs(target);
   1266	switch (addr) {
   1267	case ELF_BR_OFFSET(0):
   1268		ptr = &pt->b0;
   1269		break;
   1270	case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
   1271		return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
   1272				     data, write_access);
   1273	case ELF_BR_OFFSET(6):
   1274		ptr = &pt->b6;
   1275		break;
   1276	case ELF_BR_OFFSET(7):
   1277		ptr = &pt->b7;
   1278	}
   1279	if (write_access)
   1280		*ptr = *data;
   1281	else
   1282		*data = *ptr;
   1283	return 0;
   1284}
   1285
   1286static int
   1287access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
   1288		unsigned long addr, unsigned long *data, int write_access)
   1289{
   1290	struct pt_regs *pt;
   1291	unsigned long cfm, urbs_end;
   1292	unsigned long *ptr = NULL;
   1293
   1294	pt = task_pt_regs(target);
   1295	if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
   1296		switch (addr) {
   1297		case ELF_AR_RSC_OFFSET:
   1298			/* force PL3 */
   1299			if (write_access)
   1300				pt->ar_rsc = *data | (3 << 2);
   1301			else
   1302				*data = pt->ar_rsc;
   1303			return 0;
   1304		case ELF_AR_BSP_OFFSET:
   1305			/*
   1306			 * By convention, we use PT_AR_BSP to refer to
   1307			 * the end of the user-level backing store.
   1308			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
   1309			 * to get the real value of ar.bsp at the time
   1310			 * the kernel was entered.
   1311			 *
   1312			 * Furthermore, when changing the contents of
   1313			 * PT_AR_BSP (or PT_CFM) while the task is
   1314			 * blocked in a system call, convert the state
   1315			 * so that the non-system-call exit
   1316			 * path is used.  This ensures that the proper
   1317			 * state will be picked up when resuming
   1318			 * execution.  However, it *also* means that
   1319			 * once we write PT_AR_BSP/PT_CFM, it won't be
   1320			 * possible to modify the syscall arguments of
   1321			 * the pending system call any longer.  This
   1322			 * shouldn't be an issue because modifying
   1323			 * PT_AR_BSP/PT_CFM generally implies that
   1324			 * we're either abandoning the pending system
   1325			 * call or that we defer it's re-execution
   1326			 * (e.g., due to GDB doing an inferior
   1327			 * function call).
   1328			 */
   1329			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
   1330			if (write_access) {
   1331				if (*data != urbs_end) {
   1332					if (in_syscall(pt))
   1333						convert_to_non_syscall(target,
   1334								       pt,
   1335								       cfm);
   1336					/*
   1337					 * Simulate user-level write
   1338					 * of ar.bsp:
   1339					 */
   1340					pt->loadrs = 0;
   1341					pt->ar_bspstore = *data;
   1342				}
   1343			} else
   1344				*data = urbs_end;
   1345			return 0;
   1346		case ELF_AR_BSPSTORE_OFFSET:
   1347			ptr = &pt->ar_bspstore;
   1348			break;
   1349		case ELF_AR_RNAT_OFFSET:
   1350			ptr = &pt->ar_rnat;
   1351			break;
   1352		case ELF_AR_CCV_OFFSET:
   1353			ptr = &pt->ar_ccv;
   1354			break;
   1355		case ELF_AR_UNAT_OFFSET:
   1356			ptr = &pt->ar_unat;
   1357			break;
   1358		case ELF_AR_FPSR_OFFSET:
   1359			ptr = &pt->ar_fpsr;
   1360			break;
   1361		case ELF_AR_PFS_OFFSET:
   1362			ptr = &pt->ar_pfs;
   1363			break;
   1364		case ELF_AR_LC_OFFSET:
   1365			return unw_access_ar(info, UNW_AR_LC, data,
   1366					     write_access);
   1367		case ELF_AR_EC_OFFSET:
   1368			return unw_access_ar(info, UNW_AR_EC, data,
   1369					     write_access);
   1370		case ELF_AR_CSD_OFFSET:
   1371			ptr = &pt->ar_csd;
   1372			break;
   1373		case ELF_AR_SSD_OFFSET:
   1374			ptr = &pt->ar_ssd;
   1375		}
   1376	} else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
   1377		switch (addr) {
   1378		case ELF_CR_IIP_OFFSET:
   1379			ptr = &pt->cr_iip;
   1380			break;
   1381		case ELF_CFM_OFFSET:
   1382			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
   1383			if (write_access) {
   1384				if (((cfm ^ *data) & PFM_MASK) != 0) {
   1385					if (in_syscall(pt))
   1386						convert_to_non_syscall(target,
   1387								       pt,
   1388								       cfm);
   1389					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
   1390						      | (*data & PFM_MASK));
   1391				}
   1392			} else
   1393				*data = cfm;
   1394			return 0;
   1395		case ELF_CR_IPSR_OFFSET:
   1396			if (write_access) {
   1397				unsigned long tmp = *data;
   1398				/* psr.ri==3 is a reserved value: SDM 2:25 */
   1399				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
   1400					tmp &= ~IA64_PSR_RI;
   1401				pt->cr_ipsr = ((tmp & IPSR_MASK)
   1402					       | (pt->cr_ipsr & ~IPSR_MASK));
   1403			} else
   1404				*data = (pt->cr_ipsr & IPSR_MASK);
   1405			return 0;
   1406		}
   1407	} else if (addr == ELF_NAT_OFFSET)
   1408		return access_nat_bits(target, pt, info,
   1409				       data, write_access);
   1410	else if (addr == ELF_PR_OFFSET)
   1411		ptr = &pt->pr;
   1412	else
   1413		return -1;
   1414
   1415	if (write_access)
   1416		*ptr = *data;
   1417	else
   1418		*data = *ptr;
   1419
   1420	return 0;
   1421}
   1422
   1423static int
   1424access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
   1425		unsigned long addr, unsigned long *data, int write_access)
   1426{
   1427	if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(31))
   1428		return access_elf_gpreg(target, info, addr, data, write_access);
   1429	else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
   1430		return access_elf_breg(target, info, addr, data, write_access);
   1431	else
   1432		return access_elf_areg(target, info, addr, data, write_access);
   1433}
   1434
   1435struct regset_membuf {
   1436	struct membuf to;
   1437	int ret;
   1438};
   1439
   1440static void do_gpregs_get(struct unw_frame_info *info, void *arg)
   1441{
   1442	struct regset_membuf *dst = arg;
   1443	struct membuf to = dst->to;
   1444	unsigned int n;
   1445	elf_greg_t reg;
   1446
   1447	if (unw_unwind_to_user(info) < 0)
   1448		return;
   1449
   1450	/*
   1451	 * coredump format:
   1452	 *      r0-r31
   1453	 *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
   1454	 *      predicate registers (p0-p63)
   1455	 *      b0-b7
   1456	 *      ip cfm user-mask
   1457	 *      ar.rsc ar.bsp ar.bspstore ar.rnat
   1458	 *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
   1459	 */
   1460
   1461
   1462	/* Skip r0 */
   1463	membuf_zero(&to, 8);
   1464	for (n = 8; to.left && n < ELF_AR_END_OFFSET; n += 8) {
   1465		if (access_elf_reg(info->task, info, n, &reg, 0) < 0) {
   1466			dst->ret = -EIO;
   1467			return;
   1468		}
   1469		membuf_store(&to, reg);
   1470	}
   1471}
   1472
   1473static void do_gpregs_set(struct unw_frame_info *info, void *arg)
   1474{
   1475	struct regset_getset *dst = arg;
   1476
   1477	if (unw_unwind_to_user(info) < 0)
   1478		return;
   1479
   1480	if (!dst->count)
   1481		return;
   1482	/* Skip r0 */
   1483	if (dst->pos < ELF_GR_OFFSET(1)) {
   1484		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
   1485						       &dst->u.set.kbuf,
   1486						       &dst->u.set.ubuf,
   1487						       0, ELF_GR_OFFSET(1));
   1488		if (dst->ret)
   1489			return;
   1490	}
   1491
   1492	while (dst->count && dst->pos < ELF_AR_END_OFFSET) {
   1493		unsigned int n, from, to;
   1494		elf_greg_t tmp[16];
   1495
   1496		from = dst->pos;
   1497		to = from + sizeof(tmp);
   1498		if (to > ELF_AR_END_OFFSET)
   1499			to = ELF_AR_END_OFFSET;
   1500		/* get up to 16 values */
   1501		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
   1502				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
   1503				from, to);
   1504		if (dst->ret)
   1505			return;
   1506		/* now copy them into registers */
   1507		for (n = 0; from < dst->pos; from += sizeof(elf_greg_t), n++)
   1508			if (access_elf_reg(dst->target, info, from,
   1509						&tmp[n], 1) < 0) {
   1510				dst->ret = -EIO;
   1511				return;
   1512			}
   1513	}
   1514}
   1515
   1516#define ELF_FP_OFFSET(i)	(i * sizeof(elf_fpreg_t))
   1517
   1518static void do_fpregs_get(struct unw_frame_info *info, void *arg)
   1519{
   1520	struct task_struct *task = info->task;
   1521	struct regset_membuf *dst = arg;
   1522	struct membuf to = dst->to;
   1523	elf_fpreg_t reg;
   1524	unsigned int n;
   1525
   1526	if (unw_unwind_to_user(info) < 0)
   1527		return;
   1528
   1529	/* Skip pos 0 and 1 */
   1530	membuf_zero(&to, 2 * sizeof(elf_fpreg_t));
   1531
   1532	/* fr2-fr31 */
   1533	for (n = 2; to.left && n < 32; n++) {
   1534		if (unw_get_fr(info, n, &reg)) {
   1535			dst->ret = -EIO;
   1536			return;
   1537		}
   1538		membuf_write(&to, &reg, sizeof(reg));
   1539	}
   1540
   1541	/* fph */
   1542	if (!to.left)
   1543		return;
   1544
   1545	ia64_flush_fph(task);
   1546	if (task->thread.flags & IA64_THREAD_FPH_VALID)
   1547		membuf_write(&to, &task->thread.fph, 96 * sizeof(reg));
   1548	else
   1549		membuf_zero(&to, 96 * sizeof(reg));
   1550}
   1551
   1552static void do_fpregs_set(struct unw_frame_info *info, void *arg)
   1553{
   1554	struct regset_getset *dst = arg;
   1555	elf_fpreg_t fpreg, tmp[30];
   1556	int index, start, end;
   1557
   1558	if (unw_unwind_to_user(info) < 0)
   1559		return;
   1560
   1561	/* Skip pos 0 and 1 */
   1562	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
   1563		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
   1564						       &dst->u.set.kbuf,
   1565						       &dst->u.set.ubuf,
   1566						       0, ELF_FP_OFFSET(2));
   1567		if (dst->count == 0 || dst->ret)
   1568			return;
   1569	}
   1570
   1571	/* fr2-fr31 */
   1572	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
   1573		start = dst->pos;
   1574		end = min(((unsigned int)ELF_FP_OFFSET(32)),
   1575			 dst->pos + dst->count);
   1576		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
   1577				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
   1578				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
   1579		if (dst->ret)
   1580			return;
   1581
   1582		if (start & 0xF) { /* only write high part */
   1583			if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
   1584					 &fpreg)) {
   1585				dst->ret = -EIO;
   1586				return;
   1587			}
   1588			tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
   1589				= fpreg.u.bits[0];
   1590			start &= ~0xFUL;
   1591		}
   1592		if (end & 0xF) { /* only write low part */
   1593			if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
   1594					&fpreg)) {
   1595				dst->ret = -EIO;
   1596				return;
   1597			}
   1598			tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
   1599				= fpreg.u.bits[1];
   1600			end = (end + 0xF) & ~0xFUL;
   1601		}
   1602
   1603		for ( ;	start < end ; start += sizeof(elf_fpreg_t)) {
   1604			index = start / sizeof(elf_fpreg_t);
   1605			if (unw_set_fr(info, index, tmp[index - 2])) {
   1606				dst->ret = -EIO;
   1607				return;
   1608			}
   1609		}
   1610		if (dst->ret || dst->count == 0)
   1611			return;
   1612	}
   1613
   1614	/* fph */
   1615	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
   1616		ia64_sync_fph(dst->target);
   1617		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
   1618						&dst->u.set.kbuf,
   1619						&dst->u.set.ubuf,
   1620						&dst->target->thread.fph,
   1621						ELF_FP_OFFSET(32), -1);
   1622	}
   1623}
   1624
   1625static void
   1626unwind_and_call(void (*call)(struct unw_frame_info *, void *),
   1627	       struct task_struct *target, void *data)
   1628{
   1629	if (target == current)
   1630		unw_init_running(call, data);
   1631	else {
   1632		struct unw_frame_info info;
   1633		memset(&info, 0, sizeof(info));
   1634		unw_init_from_blocked_task(&info, target);
   1635		(*call)(&info, data);
   1636	}
   1637}
   1638
   1639static int
   1640do_regset_call(void (*call)(struct unw_frame_info *, void *),
   1641	       struct task_struct *target,
   1642	       const struct user_regset *regset,
   1643	       unsigned int pos, unsigned int count,
   1644	       const void *kbuf, const void __user *ubuf)
   1645{
   1646	struct regset_getset info = { .target = target, .regset = regset,
   1647				 .pos = pos, .count = count,
   1648				 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
   1649				 .ret = 0 };
   1650	unwind_and_call(call, target, &info);
   1651	return info.ret;
   1652}
   1653
   1654static int
   1655gpregs_get(struct task_struct *target,
   1656	   const struct user_regset *regset,
   1657	   struct membuf to)
   1658{
   1659	struct regset_membuf info = {.to = to};
   1660	unwind_and_call(do_gpregs_get, target, &info);
   1661	return info.ret;
   1662}
   1663
   1664static int gpregs_set(struct task_struct *target,
   1665		const struct user_regset *regset,
   1666		unsigned int pos, unsigned int count,
   1667		const void *kbuf, const void __user *ubuf)
   1668{
   1669	return do_regset_call(do_gpregs_set, target, regset, pos, count,
   1670		kbuf, ubuf);
   1671}
   1672
   1673static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
   1674{
   1675	do_sync_rbs(info, ia64_sync_user_rbs);
   1676}
   1677
   1678/*
   1679 * This is called to write back the register backing store.
   1680 * ptrace does this before it stops, so that a tracer reading the user
   1681 * memory after the thread stops will get the current register data.
   1682 */
   1683static int
   1684gpregs_writeback(struct task_struct *target,
   1685		 const struct user_regset *regset,
   1686		 int now)
   1687{
   1688	if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
   1689		return 0;
   1690	set_notify_resume(target);
   1691	return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
   1692		NULL, NULL);
   1693}
   1694
   1695static int
   1696fpregs_active(struct task_struct *target, const struct user_regset *regset)
   1697{
   1698	return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
   1699}
   1700
   1701static int fpregs_get(struct task_struct *target,
   1702		const struct user_regset *regset,
   1703		struct membuf to)
   1704{
   1705	struct regset_membuf info = {.to = to};
   1706	unwind_and_call(do_fpregs_get, target, &info);
   1707	return info.ret;
   1708}
   1709
   1710static int fpregs_set(struct task_struct *target,
   1711		const struct user_regset *regset,
   1712		unsigned int pos, unsigned int count,
   1713		const void *kbuf, const void __user *ubuf)
   1714{
   1715	return do_regset_call(do_fpregs_set, target, regset, pos, count,
   1716		kbuf, ubuf);
   1717}
   1718
   1719static int
   1720access_uarea(struct task_struct *child, unsigned long addr,
   1721	      unsigned long *data, int write_access)
   1722{
   1723	unsigned int pos = -1; /* an invalid value */
   1724	unsigned long *ptr, regnum;
   1725
   1726	if ((addr & 0x7) != 0) {
   1727		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
   1728		return -1;
   1729	}
   1730	if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
   1731		(addr >= PT_R7 + 8 && addr < PT_B1) ||
   1732		(addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
   1733		(addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
   1734		dprintk("ptrace: rejecting access to register "
   1735					"address 0x%lx\n", addr);
   1736		return -1;
   1737	}
   1738
   1739	switch (addr) {
   1740	case PT_F32 ... (PT_F127 + 15):
   1741		pos = addr - PT_F32 + ELF_FP_OFFSET(32);
   1742		break;
   1743	case PT_F2 ... (PT_F5 + 15):
   1744		pos = addr - PT_F2 + ELF_FP_OFFSET(2);
   1745		break;
   1746	case PT_F10 ... (PT_F31 + 15):
   1747		pos = addr - PT_F10 + ELF_FP_OFFSET(10);
   1748		break;
   1749	case PT_F6 ... (PT_F9 + 15):
   1750		pos = addr - PT_F6 + ELF_FP_OFFSET(6);
   1751		break;
   1752	}
   1753
   1754	if (pos != -1) {
   1755		unsigned reg = pos / sizeof(elf_fpreg_t);
   1756		int which_half = (pos / sizeof(unsigned long)) & 1;
   1757
   1758		if (reg < 32) { /* fr2-fr31 */
   1759			struct unw_frame_info info;
   1760			elf_fpreg_t fpreg;
   1761
   1762			memset(&info, 0, sizeof(info));
   1763			unw_init_from_blocked_task(&info, child);
   1764			if (unw_unwind_to_user(&info) < 0)
   1765				return 0;
   1766
   1767			if (unw_get_fr(&info, reg, &fpreg))
   1768				return -1;
   1769			if (write_access) {
   1770				fpreg.u.bits[which_half] = *data;
   1771				if (unw_set_fr(&info, reg, fpreg))
   1772					return -1;
   1773			} else {
   1774				*data = fpreg.u.bits[which_half];
   1775			}
   1776		} else { /* fph */
   1777			elf_fpreg_t *p = &child->thread.fph[reg - 32];
   1778			unsigned long *bits = &p->u.bits[which_half];
   1779
   1780			ia64_sync_fph(child);
   1781			if (write_access)
   1782				*bits = *data;
   1783			else if (child->thread.flags & IA64_THREAD_FPH_VALID)
   1784				*data = *bits;
   1785			else
   1786				*data = 0;
   1787		}
   1788		return 0;
   1789	}
   1790
   1791	switch (addr) {
   1792	case PT_NAT_BITS:
   1793		pos = ELF_NAT_OFFSET;
   1794		break;
   1795	case PT_R4 ... PT_R7:
   1796		pos = addr - PT_R4 + ELF_GR_OFFSET(4);
   1797		break;
   1798	case PT_B1 ... PT_B5:
   1799		pos = addr - PT_B1 + ELF_BR_OFFSET(1);
   1800		break;
   1801	case PT_AR_EC:
   1802		pos = ELF_AR_EC_OFFSET;
   1803		break;
   1804	case PT_AR_LC:
   1805		pos = ELF_AR_LC_OFFSET;
   1806		break;
   1807	case PT_CR_IPSR:
   1808		pos = ELF_CR_IPSR_OFFSET;
   1809		break;
   1810	case PT_CR_IIP:
   1811		pos = ELF_CR_IIP_OFFSET;
   1812		break;
   1813	case PT_CFM:
   1814		pos = ELF_CFM_OFFSET;
   1815		break;
   1816	case PT_AR_UNAT:
   1817		pos = ELF_AR_UNAT_OFFSET;
   1818		break;
   1819	case PT_AR_PFS:
   1820		pos = ELF_AR_PFS_OFFSET;
   1821		break;
   1822	case PT_AR_RSC:
   1823		pos = ELF_AR_RSC_OFFSET;
   1824		break;
   1825	case PT_AR_RNAT:
   1826		pos = ELF_AR_RNAT_OFFSET;
   1827		break;
   1828	case PT_AR_BSPSTORE:
   1829		pos = ELF_AR_BSPSTORE_OFFSET;
   1830		break;
   1831	case PT_PR:
   1832		pos = ELF_PR_OFFSET;
   1833		break;
   1834	case PT_B6:
   1835		pos = ELF_BR_OFFSET(6);
   1836		break;
   1837	case PT_AR_BSP:
   1838		pos = ELF_AR_BSP_OFFSET;
   1839		break;
   1840	case PT_R1 ... PT_R3:
   1841		pos = addr - PT_R1 + ELF_GR_OFFSET(1);
   1842		break;
   1843	case PT_R12 ... PT_R15:
   1844		pos = addr - PT_R12 + ELF_GR_OFFSET(12);
   1845		break;
   1846	case PT_R8 ... PT_R11:
   1847		pos = addr - PT_R8 + ELF_GR_OFFSET(8);
   1848		break;
   1849	case PT_R16 ... PT_R31:
   1850		pos = addr - PT_R16 + ELF_GR_OFFSET(16);
   1851		break;
   1852	case PT_AR_CCV:
   1853		pos = ELF_AR_CCV_OFFSET;
   1854		break;
   1855	case PT_AR_FPSR:
   1856		pos = ELF_AR_FPSR_OFFSET;
   1857		break;
   1858	case PT_B0:
   1859		pos = ELF_BR_OFFSET(0);
   1860		break;
   1861	case PT_B7:
   1862		pos = ELF_BR_OFFSET(7);
   1863		break;
   1864	case PT_AR_CSD:
   1865		pos = ELF_AR_CSD_OFFSET;
   1866		break;
   1867	case PT_AR_SSD:
   1868		pos = ELF_AR_SSD_OFFSET;
   1869		break;
   1870	}
   1871
   1872	if (pos != -1) {
   1873		struct unw_frame_info info;
   1874
   1875		memset(&info, 0, sizeof(info));
   1876		unw_init_from_blocked_task(&info, child);
   1877		if (unw_unwind_to_user(&info) < 0)
   1878			return 0;
   1879
   1880		return access_elf_reg(child, &info, pos, data, write_access);
   1881	}
   1882
   1883	/* access debug registers */
   1884	if (addr >= PT_IBR) {
   1885		regnum = (addr - PT_IBR) >> 3;
   1886		ptr = &child->thread.ibr[0];
   1887	} else {
   1888		regnum = (addr - PT_DBR) >> 3;
   1889		ptr = &child->thread.dbr[0];
   1890	}
   1891
   1892	if (regnum >= 8) {
   1893		dprintk("ptrace: rejecting access to register "
   1894				"address 0x%lx\n", addr);
   1895		return -1;
   1896	}
   1897
   1898	if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
   1899		child->thread.flags |= IA64_THREAD_DBG_VALID;
   1900		memset(child->thread.dbr, 0,
   1901				sizeof(child->thread.dbr));
   1902		memset(child->thread.ibr, 0,
   1903				sizeof(child->thread.ibr));
   1904	}
   1905
   1906	ptr += regnum;
   1907
   1908	if ((regnum & 1) && write_access) {
   1909		/* don't let the user set kernel-level breakpoints: */
   1910		*ptr = *data & ~(7UL << 56);
   1911		return 0;
   1912	}
   1913	if (write_access)
   1914		*ptr = *data;
   1915	else
   1916		*data = *ptr;
   1917	return 0;
   1918}
   1919
   1920static const struct user_regset native_regsets[] = {
   1921	{
   1922		.core_note_type = NT_PRSTATUS,
   1923		.n = ELF_NGREG,
   1924		.size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
   1925		.regset_get = gpregs_get, .set = gpregs_set,
   1926		.writeback = gpregs_writeback
   1927	},
   1928	{
   1929		.core_note_type = NT_PRFPREG,
   1930		.n = ELF_NFPREG,
   1931		.size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
   1932		.regset_get = fpregs_get, .set = fpregs_set, .active = fpregs_active
   1933	},
   1934};
   1935
   1936static const struct user_regset_view user_ia64_view = {
   1937	.name = "ia64",
   1938	.e_machine = EM_IA_64,
   1939	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
   1940};
   1941
   1942const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
   1943{
   1944	return &user_ia64_view;
   1945}
   1946
   1947struct syscall_get_args {
   1948	unsigned int i;
   1949	unsigned int n;
   1950	unsigned long *args;
   1951	struct pt_regs *regs;
   1952};
   1953
   1954static void syscall_get_args_cb(struct unw_frame_info *info, void *data)
   1955{
   1956	struct syscall_get_args *args = data;
   1957	struct pt_regs *pt = args->regs;
   1958	unsigned long *krbs, cfm, ndirty, nlocals, nouts;
   1959	int i, count;
   1960
   1961	if (unw_unwind_to_user(info) < 0)
   1962		return;
   1963
   1964	/*
   1965	 * We get here via a few paths:
   1966	 * - break instruction: cfm is shared with caller.
   1967	 *   syscall args are in out= regs, locals are non-empty.
   1968	 * - epsinstruction: cfm is set by br.call
   1969	 *   locals don't exist.
   1970	 *
   1971	 * For both cases arguments are reachable in cfm.sof - cfm.sol.
   1972	 * CFM: [ ... | sor: 17..14 | sol : 13..7 | sof : 6..0 ]
   1973	 */
   1974	cfm = pt->cr_ifs;
   1975	nlocals = (cfm >> 7) & 0x7f; /* aka sol */
   1976	nouts = (cfm & 0x7f) - nlocals; /* aka sof - sol */
   1977	krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
   1978	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
   1979
   1980	count = 0;
   1981	if (in_syscall(pt))
   1982		count = min_t(int, args->n, nouts);
   1983
   1984	/* Iterate over outs. */
   1985	for (i = 0; i < count; i++) {
   1986		int j = ndirty + nlocals + i + args->i;
   1987		args->args[i] = *ia64_rse_skip_regs(krbs, j);
   1988	}
   1989
   1990	while (i < args->n) {
   1991		args->args[i] = 0;
   1992		i++;
   1993	}
   1994}
   1995
   1996void syscall_get_arguments(struct task_struct *task,
   1997	struct pt_regs *regs, unsigned long *args)
   1998{
   1999	struct syscall_get_args data = {
   2000		.i = 0,
   2001		.n = 6,
   2002		.args = args,
   2003		.regs = regs,
   2004	};
   2005
   2006	if (task == current)
   2007		unw_init_running(syscall_get_args_cb, &data);
   2008	else {
   2009		struct unw_frame_info ufi;
   2010		memset(&ufi, 0, sizeof(ufi));
   2011		unw_init_from_blocked_task(&ufi, task);
   2012		syscall_get_args_cb(&ufi, &data);
   2013	}
   2014}