cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

topology.c (9982B)


      1/*
      2 * This file is subject to the terms and conditions of the GNU General Public
      3 * License.  See the file "COPYING" in the main directory of this archive
      4 * for more details.
      5 *
      6 * This file contains NUMA specific variables and functions which are used on
      7 * NUMA machines with contiguous memory.
      8 * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
      9 * Populate cpu entries in sysfs for non-numa systems as well
     10 *  	Intel Corporation - Ashok Raj
     11 * 02/27/2006 Zhang, Yanmin
     12 *	Populate cpu cache entries in sysfs for cpu cache info
     13 */
     14
     15#include <linux/cpu.h>
     16#include <linux/kernel.h>
     17#include <linux/mm.h>
     18#include <linux/node.h>
     19#include <linux/slab.h>
     20#include <linux/init.h>
     21#include <linux/memblock.h>
     22#include <linux/nodemask.h>
     23#include <linux/notifier.h>
     24#include <linux/export.h>
     25#include <asm/mmzone.h>
     26#include <asm/numa.h>
     27#include <asm/cpu.h>
     28
     29static struct ia64_cpu *sysfs_cpus;
     30
     31void arch_fix_phys_package_id(int num, u32 slot)
     32{
     33#ifdef CONFIG_SMP
     34	if (cpu_data(num)->socket_id == -1)
     35		cpu_data(num)->socket_id = slot;
     36#endif
     37}
     38EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
     39
     40
     41#ifdef CONFIG_HOTPLUG_CPU
     42int __ref arch_register_cpu(int num)
     43{
     44	/*
     45	 * If CPEI can be re-targeted or if this is not
     46	 * CPEI target, then it is hotpluggable
     47	 */
     48	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
     49		sysfs_cpus[num].cpu.hotpluggable = 1;
     50	map_cpu_to_node(num, node_cpuid[num].nid);
     51	return register_cpu(&sysfs_cpus[num].cpu, num);
     52}
     53EXPORT_SYMBOL(arch_register_cpu);
     54
     55void __ref arch_unregister_cpu(int num)
     56{
     57	unregister_cpu(&sysfs_cpus[num].cpu);
     58	unmap_cpu_from_node(num, cpu_to_node(num));
     59}
     60EXPORT_SYMBOL(arch_unregister_cpu);
     61#else
     62static int __init arch_register_cpu(int num)
     63{
     64	return register_cpu(&sysfs_cpus[num].cpu, num);
     65}
     66#endif /*CONFIG_HOTPLUG_CPU*/
     67
     68
     69static int __init topology_init(void)
     70{
     71	int i, err = 0;
     72
     73	sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
     74	if (!sysfs_cpus)
     75		panic("kzalloc in topology_init failed - NR_CPUS too big?");
     76
     77	for_each_present_cpu(i) {
     78		if((err = arch_register_cpu(i)))
     79			goto out;
     80	}
     81out:
     82	return err;
     83}
     84
     85subsys_initcall(topology_init);
     86
     87
     88/*
     89 * Export cpu cache information through sysfs
     90 */
     91
     92/*
     93 *  A bunch of string array to get pretty printing
     94 */
     95static const char *cache_types[] = {
     96	"",			/* not used */
     97	"Instruction",
     98	"Data",
     99	"Unified"	/* unified */
    100};
    101
    102static const char *cache_mattrib[]={
    103	"WriteThrough",
    104	"WriteBack",
    105	"",		/* reserved */
    106	""		/* reserved */
    107};
    108
    109struct cache_info {
    110	pal_cache_config_info_t	cci;
    111	cpumask_t shared_cpu_map;
    112	int level;
    113	int type;
    114	struct kobject kobj;
    115};
    116
    117struct cpu_cache_info {
    118	struct cache_info *cache_leaves;
    119	int	num_cache_leaves;
    120	struct kobject kobj;
    121};
    122
    123static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS];
    124#define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
    125
    126#ifdef CONFIG_SMP
    127static void cache_shared_cpu_map_setup(unsigned int cpu,
    128		struct cache_info * this_leaf)
    129{
    130	pal_cache_shared_info_t	csi;
    131	int num_shared, i = 0;
    132	unsigned int j;
    133
    134	if (cpu_data(cpu)->threads_per_core <= 1 &&
    135		cpu_data(cpu)->cores_per_socket <= 1) {
    136		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
    137		return;
    138	}
    139
    140	if (ia64_pal_cache_shared_info(this_leaf->level,
    141					this_leaf->type,
    142					0,
    143					&csi) != PAL_STATUS_SUCCESS)
    144		return;
    145
    146	num_shared = (int) csi.num_shared;
    147	do {
    148		for_each_possible_cpu(j)
    149			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
    150				&& cpu_data(j)->core_id == csi.log1_cid
    151				&& cpu_data(j)->thread_id == csi.log1_tid)
    152				cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
    153
    154		i++;
    155	} while (i < num_shared &&
    156		ia64_pal_cache_shared_info(this_leaf->level,
    157				this_leaf->type,
    158				i,
    159				&csi) == PAL_STATUS_SUCCESS);
    160}
    161#else
    162static void cache_shared_cpu_map_setup(unsigned int cpu,
    163		struct cache_info * this_leaf)
    164{
    165	cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
    166	return;
    167}
    168#endif
    169
    170static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
    171					char *buf)
    172{
    173	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
    174}
    175
    176static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
    177					char *buf)
    178{
    179	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
    180}
    181
    182static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
    183{
    184	return sprintf(buf,
    185			"%s\n",
    186			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
    187}
    188
    189static ssize_t show_size(struct cache_info *this_leaf, char *buf)
    190{
    191	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
    192}
    193
    194static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
    195{
    196	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
    197	number_of_sets /= this_leaf->cci.pcci_assoc;
    198	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
    199
    200	return sprintf(buf, "%u\n", number_of_sets);
    201}
    202
    203static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
    204{
    205	cpumask_t shared_cpu_map;
    206
    207	cpumask_and(&shared_cpu_map,
    208				&this_leaf->shared_cpu_map, cpu_online_mask);
    209	return scnprintf(buf, PAGE_SIZE, "%*pb\n",
    210			 cpumask_pr_args(&shared_cpu_map));
    211}
    212
    213static ssize_t show_type(struct cache_info *this_leaf, char *buf)
    214{
    215	int type = this_leaf->type + this_leaf->cci.pcci_unified;
    216	return sprintf(buf, "%s\n", cache_types[type]);
    217}
    218
    219static ssize_t show_level(struct cache_info *this_leaf, char *buf)
    220{
    221	return sprintf(buf, "%u\n", this_leaf->level);
    222}
    223
    224struct cache_attr {
    225	struct attribute attr;
    226	ssize_t (*show)(struct cache_info *, char *);
    227	ssize_t (*store)(struct cache_info *, const char *, size_t count);
    228};
    229
    230#ifdef define_one_ro
    231	#undef define_one_ro
    232#endif
    233#define define_one_ro(_name) \
    234	static struct cache_attr _name = \
    235__ATTR(_name, 0444, show_##_name, NULL)
    236
    237define_one_ro(level);
    238define_one_ro(type);
    239define_one_ro(coherency_line_size);
    240define_one_ro(ways_of_associativity);
    241define_one_ro(size);
    242define_one_ro(number_of_sets);
    243define_one_ro(shared_cpu_map);
    244define_one_ro(attributes);
    245
    246static struct attribute * cache_default_attrs[] = {
    247	&type.attr,
    248	&level.attr,
    249	&coherency_line_size.attr,
    250	&ways_of_associativity.attr,
    251	&attributes.attr,
    252	&size.attr,
    253	&number_of_sets.attr,
    254	&shared_cpu_map.attr,
    255	NULL
    256};
    257ATTRIBUTE_GROUPS(cache_default);
    258
    259#define to_object(k) container_of(k, struct cache_info, kobj)
    260#define to_attr(a) container_of(a, struct cache_attr, attr)
    261
    262static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
    263{
    264	struct cache_attr *fattr = to_attr(attr);
    265	struct cache_info *this_leaf = to_object(kobj);
    266	ssize_t ret;
    267
    268	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
    269	return ret;
    270}
    271
    272static const struct sysfs_ops cache_sysfs_ops = {
    273	.show   = ia64_cache_show
    274};
    275
    276static struct kobj_type cache_ktype = {
    277	.sysfs_ops	= &cache_sysfs_ops,
    278	.default_groups	= cache_default_groups,
    279};
    280
    281static struct kobj_type cache_ktype_percpu_entry = {
    282	.sysfs_ops	= &cache_sysfs_ops,
    283};
    284
    285static void cpu_cache_sysfs_exit(unsigned int cpu)
    286{
    287	kfree(all_cpu_cache_info[cpu].cache_leaves);
    288	all_cpu_cache_info[cpu].cache_leaves = NULL;
    289	all_cpu_cache_info[cpu].num_cache_leaves = 0;
    290	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
    291	return;
    292}
    293
    294static int cpu_cache_sysfs_init(unsigned int cpu)
    295{
    296	unsigned long i, levels, unique_caches;
    297	pal_cache_config_info_t cci;
    298	int j;
    299	long status;
    300	struct cache_info *this_cache;
    301	int num_cache_leaves = 0;
    302
    303	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
    304		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
    305		return -1;
    306	}
    307
    308	this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
    309			   GFP_KERNEL);
    310	if (this_cache == NULL)
    311		return -ENOMEM;
    312
    313	for (i=0; i < levels; i++) {
    314		for (j=2; j >0 ; j--) {
    315			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
    316					PAL_STATUS_SUCCESS)
    317				continue;
    318
    319			this_cache[num_cache_leaves].cci = cci;
    320			this_cache[num_cache_leaves].level = i + 1;
    321			this_cache[num_cache_leaves].type = j;
    322
    323			cache_shared_cpu_map_setup(cpu,
    324					&this_cache[num_cache_leaves]);
    325			num_cache_leaves ++;
    326		}
    327	}
    328
    329	all_cpu_cache_info[cpu].cache_leaves = this_cache;
    330	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
    331
    332	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
    333
    334	return 0;
    335}
    336
    337/* Add cache interface for CPU device */
    338static int cache_add_dev(unsigned int cpu)
    339{
    340	struct device *sys_dev = get_cpu_device(cpu);
    341	unsigned long i, j;
    342	struct cache_info *this_object;
    343	int retval = 0;
    344
    345	if (all_cpu_cache_info[cpu].kobj.parent)
    346		return 0;
    347
    348
    349	retval = cpu_cache_sysfs_init(cpu);
    350	if (unlikely(retval < 0))
    351		return retval;
    352
    353	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
    354				      &cache_ktype_percpu_entry, &sys_dev->kobj,
    355				      "%s", "cache");
    356	if (unlikely(retval < 0)) {
    357		cpu_cache_sysfs_exit(cpu);
    358		return retval;
    359	}
    360
    361	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
    362		this_object = LEAF_KOBJECT_PTR(cpu,i);
    363		retval = kobject_init_and_add(&(this_object->kobj),
    364					      &cache_ktype,
    365					      &all_cpu_cache_info[cpu].kobj,
    366					      "index%1lu", i);
    367		if (unlikely(retval)) {
    368			for (j = 0; j < i; j++) {
    369				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
    370			}
    371			kobject_put(&all_cpu_cache_info[cpu].kobj);
    372			cpu_cache_sysfs_exit(cpu);
    373			return retval;
    374		}
    375		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
    376	}
    377	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
    378	return retval;
    379}
    380
    381/* Remove cache interface for CPU device */
    382static int cache_remove_dev(unsigned int cpu)
    383{
    384	unsigned long i;
    385
    386	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
    387		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
    388
    389	if (all_cpu_cache_info[cpu].kobj.parent) {
    390		kobject_put(&all_cpu_cache_info[cpu].kobj);
    391		memset(&all_cpu_cache_info[cpu].kobj,
    392			0,
    393			sizeof(struct kobject));
    394	}
    395
    396	cpu_cache_sysfs_exit(cpu);
    397
    398	return 0;
    399}
    400
    401static int __init cache_sysfs_init(void)
    402{
    403	int ret;
    404
    405	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
    406				cache_add_dev, cache_remove_dev);
    407	WARN_ON(ret < 0);
    408	return 0;
    409}
    410device_initcall(cache_sysfs_init);