cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

copy_page_mck.S (5959B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * McKinley-optimized version of copy_page().
      4 *
      5 * Copyright (C) 2002 Hewlett-Packard Co
      6 *	David Mosberger <davidm@hpl.hp.com>
      7 *
      8 * Inputs:
      9 *	in0:	address of target page
     10 *	in1:	address of source page
     11 * Output:
     12 *	no return value
     13 *
     14 * General idea:
     15 *	- use regular loads and stores to prefetch data to avoid consuming M-slot just for
     16 *	  lfetches => good for in-cache performance
     17 *	- avoid l2 bank-conflicts by not storing into the same 16-byte bank within a single
     18 *	  cycle
     19 *
     20 * Principle of operation:
     21 *	First, note that L1 has a line-size of 64 bytes and L2 a line-size of 128 bytes.
     22 *	To avoid secondary misses in L2, we prefetch both source and destination with a line-size
     23 *	of 128 bytes.  When both of these lines are in the L2 and the first half of the
     24 *	source line is in L1, we start copying the remaining words.  The second half of the
     25 *	source line is prefetched in an earlier iteration, so that by the time we start
     26 *	accessing it, it's also present in the L1.
     27 *
     28 *	We use a software-pipelined loop to control the overall operation.  The pipeline
     29 *	has 2*PREFETCH_DIST+K stages.  The first PREFETCH_DIST stages are used for prefetching
     30 *	source cache-lines.  The second PREFETCH_DIST stages are used for prefetching destination
     31 *	cache-lines, the last K stages are used to copy the cache-line words not copied by
     32 *	the prefetches.  The four relevant points in the pipelined are called A, B, C, D:
     33 *	p[A] is TRUE if a source-line should be prefetched, p[B] is TRUE if a destination-line
     34 *	should be prefetched, p[C] is TRUE if the second half of an L2 line should be brought
     35 *	into L1D and p[D] is TRUE if a cacheline needs to be copied.
     36 *
     37 *	This all sounds very complicated, but thanks to the modulo-scheduled loop support,
     38 *	the resulting code is very regular and quite easy to follow (once you get the idea).
     39 *
     40 *	As a secondary optimization, the first 2*PREFETCH_DIST iterations are implemented
     41 *	as the separate .prefetch_loop.  Logically, this loop performs exactly like the
     42 *	main-loop (.line_copy), but has all known-to-be-predicated-off instructions removed,
     43 *	so that each loop iteration is faster (again, good for cached case).
     44 *
     45 *	When reading the code, it helps to keep the following picture in mind:
     46 *
     47 *	       word 0 word 1
     48 *            +------+------+---
     49 *	      |	v[x] | 	t1  | ^
     50 *	      |	t2   |	t3  | |
     51 *	      |	t4   |	t5  | |
     52 *	      |	t6   |	t7  | | 128 bytes
     53 *     	      |	n[y] | 	t9  | |	(L2 cache line)
     54 *	      |	t10  | 	t11 | |
     55 *	      |	t12  | 	t13 | |
     56 *	      |	t14  | 	t15 | v
     57 *	      +------+------+---
     58 *
     59 *	Here, v[x] is copied by the (memory) prefetch.  n[y] is loaded at p[C]
     60 *	to fetch the second-half of the L2 cache line into L1, and the tX words are copied in
     61 *	an order that avoids bank conflicts.
     62 */
     63#include <asm/asmmacro.h>
     64#include <asm/page.h>
     65#include <asm/export.h>
     66
     67#define PREFETCH_DIST	8		// McKinley sustains 16 outstanding L2 misses (8 ld, 8 st)
     68
     69#define src0		r2
     70#define src1		r3
     71#define dst0		r9
     72#define dst1		r10
     73#define src_pre_mem	r11
     74#define dst_pre_mem	r14
     75#define src_pre_l2	r15
     76#define dst_pre_l2	r16
     77#define t1		r17
     78#define t2		r18
     79#define t3		r19
     80#define t4		r20
     81#define t5		t1	// alias!
     82#define t6		t2	// alias!
     83#define t7		t3	// alias!
     84#define t9		t5	// alias!
     85#define t10		t4	// alias!
     86#define t11		t7	// alias!
     87#define t12		t6	// alias!
     88#define t14		t10	// alias!
     89#define t13		r21
     90#define t15		r22
     91
     92#define saved_lc	r23
     93#define saved_pr	r24
     94
     95#define	A	0
     96#define B	(PREFETCH_DIST)
     97#define C	(B + PREFETCH_DIST)
     98#define D	(C + 3)
     99#define N	(D + 1)
    100#define Nrot	((N + 7) & ~7)
    101
    102GLOBAL_ENTRY(copy_page)
    103	.prologue
    104	alloc r8 = ar.pfs, 2, Nrot-2, 0, Nrot
    105
    106	.rotr v[2*PREFETCH_DIST], n[D-C+1]
    107	.rotp p[N]
    108
    109	.save ar.lc, saved_lc
    110	mov saved_lc = ar.lc
    111	.save pr, saved_pr
    112	mov saved_pr = pr
    113	.body
    114
    115	mov src_pre_mem = in1
    116	mov pr.rot = 0x10000
    117	mov ar.ec = 1				// special unrolled loop
    118
    119	mov dst_pre_mem = in0
    120	mov ar.lc = 2*PREFETCH_DIST - 1
    121
    122	add src_pre_l2 = 8*8, in1
    123	add dst_pre_l2 = 8*8, in0
    124	add src0 = 8, in1			// first t1 src
    125	add src1 = 3*8, in1			// first t3 src
    126	add dst0 = 8, in0			// first t1 dst
    127	add dst1 = 3*8, in0			// first t3 dst
    128	mov t1 = (PAGE_SIZE/128) - (2*PREFETCH_DIST) - 1
    129	nop.m 0
    130	nop.i 0
    131	;;
    132	// same as .line_copy loop, but with all predicated-off instructions removed:
    133.prefetch_loop:
    134(p[A])	ld8 v[A] = [src_pre_mem], 128		// M0
    135(p[B])	st8 [dst_pre_mem] = v[B], 128		// M2
    136	br.ctop.sptk .prefetch_loop
    137	;;
    138	cmp.eq p16, p0 = r0, r0			// reset p16 to 1 (br.ctop cleared it to zero)
    139	mov ar.lc = t1				// with 64KB pages, t1 is too big to fit in 8 bits!
    140	mov ar.ec = N				// # of stages in pipeline
    141	;;
    142.line_copy:
    143(p[D])	ld8 t2 = [src0], 3*8			// M0
    144(p[D])	ld8 t4 = [src1], 3*8			// M1
    145(p[B])	st8 [dst_pre_mem] = v[B], 128		// M2 prefetch dst from memory
    146(p[D])	st8 [dst_pre_l2] = n[D-C], 128		// M3 prefetch dst from L2
    147	;;
    148(p[A])	ld8 v[A] = [src_pre_mem], 128		// M0 prefetch src from memory
    149(p[C])	ld8 n[0] = [src_pre_l2], 128		// M1 prefetch src from L2
    150(p[D])	st8 [dst0] =  t1, 8			// M2
    151(p[D])	st8 [dst1] =  t3, 8			// M3
    152	;;
    153(p[D])	ld8  t5 = [src0], 8
    154(p[D])	ld8  t7 = [src1], 3*8
    155(p[D])	st8 [dst0] =  t2, 3*8
    156(p[D])	st8 [dst1] =  t4, 3*8
    157	;;
    158(p[D])	ld8  t6 = [src0], 3*8
    159(p[D])	ld8 t10 = [src1], 8
    160(p[D])	st8 [dst0] =  t5, 8
    161(p[D])	st8 [dst1] =  t7, 3*8
    162	;;
    163(p[D])	ld8  t9 = [src0], 3*8
    164(p[D])	ld8 t11 = [src1], 3*8
    165(p[D])	st8 [dst0] =  t6, 3*8
    166(p[D])	st8 [dst1] = t10, 8
    167	;;
    168(p[D])	ld8 t12 = [src0], 8
    169(p[D])	ld8 t14 = [src1], 8
    170(p[D])	st8 [dst0] =  t9, 3*8
    171(p[D])	st8 [dst1] = t11, 3*8
    172	;;
    173(p[D])	ld8 t13 = [src0], 4*8
    174(p[D])	ld8 t15 = [src1], 4*8
    175(p[D])	st8 [dst0] = t12, 8
    176(p[D])	st8 [dst1] = t14, 8
    177	;;
    178(p[D-1])ld8  t1 = [src0], 8
    179(p[D-1])ld8  t3 = [src1], 8
    180(p[D])	st8 [dst0] = t13, 4*8
    181(p[D])	st8 [dst1] = t15, 4*8
    182	br.ctop.sptk .line_copy
    183	;;
    184	mov ar.lc = saved_lc
    185	mov pr = saved_pr, -1
    186	br.ret.sptk.many rp
    187END(copy_page)
    188EXPORT_SYMBOL(copy_page)