cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

memset.S (9339B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/* Optimized version of the standard memset() function.
      3
      4   Copyright (c) 2002 Hewlett-Packard Co/CERN
      5	Sverre Jarp <Sverre.Jarp@cern.ch>
      6
      7   Return: dest
      8
      9   Inputs:
     10        in0:    dest
     11        in1:    value
     12        in2:    count
     13
     14   The algorithm is fairly straightforward: set byte by byte until we
     15   we get to a 16B-aligned address, then loop on 128 B chunks using an
     16   early store as prefetching, then loop on 32B chucks, then clear remaining
     17   words, finally clear remaining bytes.
     18   Since a stf.spill f0 can store 16B in one go, we use this instruction
     19   to get peak speed when value = 0.  */
     20
     21#include <asm/asmmacro.h>
     22#include <asm/export.h>
     23#undef ret
     24
     25#define dest		in0
     26#define value		in1
     27#define	cnt		in2
     28
     29#define tmp		r31
     30#define save_lc		r30
     31#define ptr0		r29
     32#define ptr1		r28
     33#define ptr2		r27
     34#define ptr3		r26
     35#define ptr9 		r24
     36#define	loopcnt		r23
     37#define linecnt		r22
     38#define bytecnt		r21
     39
     40#define fvalue		f6
     41
     42// This routine uses only scratch predicate registers (p6 - p15)
     43#define p_scr		p6			// default register for same-cycle branches
     44#define p_nz		p7
     45#define p_zr		p8
     46#define p_unalgn	p9
     47#define p_y		p11
     48#define p_n		p12
     49#define p_yy		p13
     50#define p_nn		p14
     51
     52#define MIN1		15
     53#define MIN1P1HALF	8
     54#define LINE_SIZE	128
     55#define LSIZE_SH        7			// shift amount
     56#define PREF_AHEAD	8
     57
     58GLOBAL_ENTRY(memset)
     59{ .mmi
     60	.prologue
     61	alloc	tmp = ar.pfs, 3, 0, 0, 0
     62	lfetch.nt1 [dest]			//
     63	.save   ar.lc, save_lc
     64	mov.i	save_lc = ar.lc
     65	.body
     66} { .mmi
     67	mov	ret0 = dest			// return value
     68	cmp.ne	p_nz, p_zr = value, r0		// use stf.spill if value is zero
     69	cmp.eq	p_scr, p0 = cnt, r0
     70;; }
     71{ .mmi
     72	and	ptr2 = -(MIN1+1), dest		// aligned address
     73	and	tmp = MIN1, dest		// prepare to check for correct alignment
     74	tbit.nz p_y, p_n = dest, 0		// Do we have an odd address? (M_B_U)
     75} { .mib
     76	mov	ptr1 = dest
     77	mux1	value = value, @brcst		// create 8 identical bytes in word
     78(p_scr)	br.ret.dpnt.many rp			// return immediately if count = 0
     79;; }
     80{ .mib
     81	cmp.ne	p_unalgn, p0 = tmp, r0		//
     82} { .mib
     83	sub	bytecnt = (MIN1+1), tmp		// NB: # of bytes to move is 1 higher than loopcnt
     84	cmp.gt	p_scr, p0 = 16, cnt		// is it a minimalistic task?
     85(p_scr)	br.cond.dptk.many .move_bytes_unaligned	// go move just a few (M_B_U)
     86;; }
     87{ .mmi
     88(p_unalgn) add	ptr1 = (MIN1+1), ptr2		// after alignment
     89(p_unalgn) add	ptr2 = MIN1P1HALF, ptr2		// after alignment
     90(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3	// should we do a st8 ?
     91;; }
     92{ .mib
     93(p_y)	add	cnt = -8, cnt			//
     94(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2	// should we do a st4 ?
     95} { .mib
     96(p_y)	st8	[ptr2] = value,-4		//
     97(p_n)	add	ptr2 = 4, ptr2			//
     98;; }
     99{ .mib
    100(p_yy)	add	cnt = -4, cnt			//
    101(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1	// should we do a st2 ?
    102} { .mib
    103(p_yy)	st4	[ptr2] = value,-2		//
    104(p_nn)	add	ptr2 = 2, ptr2			//
    105;; }
    106{ .mmi
    107	mov	tmp = LINE_SIZE+1		// for compare
    108(p_y)	add	cnt = -2, cnt			//
    109(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0	// should we do a st1 ?
    110} { .mmi
    111	setf.sig fvalue=value			// transfer value to FLP side
    112(p_y)	st2	[ptr2] = value,-1		//
    113(p_n)	add	ptr2 = 1, ptr2			//
    114;; }
    115
    116{ .mmi
    117(p_yy)	st1	[ptr2] = value 			//
    118  	cmp.gt	p_scr, p0 = tmp, cnt		// is it a minimalistic task?
    119} { .mbb
    120(p_yy)	add	cnt = -1, cnt			//
    121(p_scr)	br.cond.dpnt.many .fraction_of_line	// go move just a few
    122;; }
    123
    124{ .mib
    125	nop.m 0
    126	shr.u	linecnt = cnt, LSIZE_SH
    127(p_zr)	br.cond.dptk.many .l1b			// Jump to use stf.spill
    128;; }
    129
    130	TEXT_ALIGN(32) // --------------------- //  L1A: store ahead into cache lines; fill later
    131{ .mmi
    132	and	tmp = -(LINE_SIZE), cnt		// compute end of range
    133	mov	ptr9 = ptr1			// used for prefetching
    134	and	cnt = (LINE_SIZE-1), cnt	// remainder
    135} { .mmi
    136	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
    137	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
    138;; }
    139{ .mmi
    140(p_scr)	add	loopcnt = -1, linecnt		//
    141	add	ptr2 = 8, ptr1			// start of stores (beyond prefetch stores)
    142	add	ptr1 = tmp, ptr1		// first address beyond total range
    143;; }
    144{ .mmi
    145	add	tmp = -1, linecnt		// next loop count
    146	mov.i	ar.lc = loopcnt			//
    147;; }
    148.pref_l1a:
    149{ .mib
    150	stf8 [ptr9] = fvalue, 128		// Do stores one cache line apart
    151	nop.i	0
    152	br.cloop.dptk.few .pref_l1a
    153;; }
    154{ .mmi
    155	add	ptr0 = 16, ptr2			// Two stores in parallel
    156	mov.i	ar.lc = tmp			//
    157;; }
    158.l1ax:
    159 { .mmi
    160	stf8 [ptr2] = fvalue, 8
    161	stf8 [ptr0] = fvalue, 8
    162 ;; }
    163 { .mmi
    164	stf8 [ptr2] = fvalue, 24
    165	stf8 [ptr0] = fvalue, 24
    166 ;; }
    167 { .mmi
    168	stf8 [ptr2] = fvalue, 8
    169	stf8 [ptr0] = fvalue, 8
    170 ;; }
    171 { .mmi
    172	stf8 [ptr2] = fvalue, 24
    173	stf8 [ptr0] = fvalue, 24
    174 ;; }
    175 { .mmi
    176	stf8 [ptr2] = fvalue, 8
    177	stf8 [ptr0] = fvalue, 8
    178 ;; }
    179 { .mmi
    180	stf8 [ptr2] = fvalue, 24
    181	stf8 [ptr0] = fvalue, 24
    182 ;; }
    183 { .mmi
    184	stf8 [ptr2] = fvalue, 8
    185	stf8 [ptr0] = fvalue, 32
    186 	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
    187 ;; }
    188{ .mmb
    189	stf8 [ptr2] = fvalue, 24
    190(p_scr)	stf8 [ptr9] = fvalue, 128
    191	br.cloop.dptk.few .l1ax
    192;; }
    193{ .mbb
    194	cmp.le  p_scr, p0 = 8, cnt		// just a few bytes left ?
    195(p_scr) br.cond.dpnt.many  .fraction_of_line	// Branch no. 2
    196	br.cond.dpnt.many  .move_bytes_from_alignment	// Branch no. 3
    197;; }
    198
    199	TEXT_ALIGN(32)
    200.l1b:	// ------------------------------------ //  L1B: store ahead into cache lines; fill later
    201{ .mmi
    202	and	tmp = -(LINE_SIZE), cnt		// compute end of range
    203	mov	ptr9 = ptr1			// used for prefetching
    204	and	cnt = (LINE_SIZE-1), cnt	// remainder
    205} { .mmi
    206	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
    207	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
    208;; }
    209{ .mmi
    210(p_scr)	add	loopcnt = -1, linecnt
    211	add	ptr2 = 16, ptr1			// start of stores (beyond prefetch stores)
    212	add	ptr1 = tmp, ptr1		// first address beyond total range
    213;; }
    214{ .mmi
    215	add	tmp = -1, linecnt		// next loop count
    216	mov.i	ar.lc = loopcnt
    217;; }
    218.pref_l1b:
    219{ .mib
    220	stf.spill [ptr9] = f0, 128		// Do stores one cache line apart
    221	nop.i   0
    222	br.cloop.dptk.few .pref_l1b
    223;; }
    224{ .mmi
    225	add	ptr0 = 16, ptr2			// Two stores in parallel
    226	mov.i	ar.lc = tmp
    227;; }
    228.l1bx:
    229 { .mmi
    230	stf.spill [ptr2] = f0, 32
    231	stf.spill [ptr0] = f0, 32
    232 ;; }
    233 { .mmi
    234	stf.spill [ptr2] = f0, 32
    235	stf.spill [ptr0] = f0, 32
    236 ;; }
    237 { .mmi
    238	stf.spill [ptr2] = f0, 32
    239	stf.spill [ptr0] = f0, 64
    240 	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
    241 ;; }
    242{ .mmb
    243	stf.spill [ptr2] = f0, 32
    244(p_scr)	stf.spill [ptr9] = f0, 128
    245	br.cloop.dptk.few .l1bx
    246;; }
    247{ .mib
    248	cmp.gt  p_scr, p0 = 8, cnt		// just a few bytes left ?
    249(p_scr)	br.cond.dpnt.many  .move_bytes_from_alignment	//
    250;; }
    251
    252.fraction_of_line:
    253{ .mib
    254	add	ptr2 = 16, ptr1
    255	shr.u	loopcnt = cnt, 5   		// loopcnt = cnt / 32
    256;; }
    257{ .mib
    258	cmp.eq	p_scr, p0 = loopcnt, r0
    259	add	loopcnt = -1, loopcnt
    260(p_scr)	br.cond.dpnt.many .store_words
    261;; }
    262{ .mib
    263	and	cnt = 0x1f, cnt			// compute the remaining cnt
    264	mov.i   ar.lc = loopcnt
    265;; }
    266	TEXT_ALIGN(32)
    267.l2:	// ------------------------------------ //  L2A:  store 32B in 2 cycles
    268{ .mmb
    269	stf8	[ptr1] = fvalue, 8
    270	stf8	[ptr2] = fvalue, 8
    271;; } { .mmb
    272	stf8	[ptr1] = fvalue, 24
    273	stf8	[ptr2] = fvalue, 24
    274	br.cloop.dptk.many .l2
    275;; }
    276.store_words:
    277{ .mib
    278	cmp.gt	p_scr, p0 = 8, cnt		// just a few bytes left ?
    279(p_scr)	br.cond.dpnt.many .move_bytes_from_alignment	// Branch
    280;; }
    281
    282{ .mmi
    283	stf8	[ptr1] = fvalue, 8		// store
    284	cmp.le	p_y, p_n = 16, cnt
    285	add	cnt = -8, cnt			// subtract
    286;; }
    287{ .mmi
    288(p_y)	stf8	[ptr1] = fvalue, 8		// store
    289(p_y)	cmp.le.unc p_yy, p_nn = 16, cnt
    290(p_y)	add	cnt = -8, cnt			// subtract
    291;; }
    292{ .mmi						// store
    293(p_yy)	stf8	[ptr1] = fvalue, 8
    294(p_yy)	add	cnt = -8, cnt			// subtract
    295;; }
    296
    297.move_bytes_from_alignment:
    298{ .mib
    299	cmp.eq	p_scr, p0 = cnt, r0
    300	tbit.nz.unc p_y, p0 = cnt, 2		// should we terminate with a st4 ?
    301(p_scr)	br.cond.dpnt.few .restore_and_exit
    302;; }
    303{ .mib
    304(p_y)	st4	[ptr1] = value,4
    305	tbit.nz.unc p_yy, p0 = cnt, 1		// should we terminate with a st2 ?
    306;; }
    307{ .mib
    308(p_yy)	st2	[ptr1] = value,2
    309	tbit.nz.unc p_y, p0 = cnt, 0		// should we terminate with a st1 ?
    310;; }
    311
    312{ .mib
    313(p_y)	st1	[ptr1] = value
    314;; }
    315.restore_and_exit:
    316{ .mib
    317	nop.m	0
    318	mov.i	ar.lc = save_lc
    319	br.ret.sptk.many rp
    320;; }
    321
    322.move_bytes_unaligned:
    323{ .mmi
    324       .pred.rel "mutex",p_y, p_n
    325       .pred.rel "mutex",p_yy, p_nn
    326(p_n)	cmp.le  p_yy, p_nn = 4, cnt
    327(p_y)	cmp.le  p_yy, p_nn = 5, cnt
    328(p_n)	add	ptr2 = 2, ptr1
    329} { .mmi
    330(p_y)	add	ptr2 = 3, ptr1
    331(p_y)	st1	[ptr1] = value, 1		// fill 1 (odd-aligned) byte [15, 14 (or less) left]
    332(p_y)	add	cnt = -1, cnt
    333;; }
    334{ .mmi
    335(p_yy)	cmp.le.unc p_y, p0 = 8, cnt
    336	add	ptr3 = ptr1, cnt		// prepare last store
    337	mov.i	ar.lc = save_lc
    338} { .mmi
    339(p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
    340(p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [11, 10 (o less) left]
    341(p_yy)	add	cnt = -4, cnt
    342;; }
    343{ .mmi
    344(p_y)	cmp.le.unc p_yy, p0 = 8, cnt
    345	add	ptr3 = -1, ptr3			// last store
    346	tbit.nz p_scr, p0 = cnt, 1		// will there be a st2 at the end ?
    347} { .mmi
    348(p_y)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
    349(p_y)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [7, 6 (or less) left]
    350(p_y)	add	cnt = -4, cnt
    351;; }
    352{ .mmi
    353(p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
    354(p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [3, 2 (or less) left]
    355	tbit.nz p_y, p0 = cnt, 0		// will there be a st1 at the end ?
    356} { .mmi
    357(p_yy)	add	cnt = -4, cnt
    358;; }
    359{ .mmb
    360(p_scr)	st2	[ptr1] = value			// fill 2 (aligned) bytes
    361(p_y)	st1	[ptr3] = value			// fill last byte (using ptr3)
    362	br.ret.sptk.many rp
    363}
    364END(memset)
    365EXPORT_SYMBOL(memset)