cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

discontig.c (17178B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
      4 * Copyright (c) 2001 Intel Corp.
      5 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
      6 * Copyright (c) 2002 NEC Corp.
      7 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
      8 * Copyright (c) 2004 Silicon Graphics, Inc
      9 *	Russ Anderson <rja@sgi.com>
     10 *	Jesse Barnes <jbarnes@sgi.com>
     11 *	Jack Steiner <steiner@sgi.com>
     12 */
     13
     14/*
     15 * Platform initialization for Discontig Memory
     16 */
     17
     18#include <linux/kernel.h>
     19#include <linux/mm.h>
     20#include <linux/nmi.h>
     21#include <linux/swap.h>
     22#include <linux/memblock.h>
     23#include <linux/acpi.h>
     24#include <linux/efi.h>
     25#include <linux/nodemask.h>
     26#include <linux/slab.h>
     27#include <asm/efi.h>
     28#include <asm/tlb.h>
     29#include <asm/meminit.h>
     30#include <asm/numa.h>
     31#include <asm/sections.h>
     32
     33/*
     34 * Track per-node information needed to setup the boot memory allocator, the
     35 * per-node areas, and the real VM.
     36 */
     37struct early_node_data {
     38	struct ia64_node_data *node_data;
     39	unsigned long pernode_addr;
     40	unsigned long pernode_size;
     41	unsigned long min_pfn;
     42	unsigned long max_pfn;
     43};
     44
     45static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
     46static nodemask_t memory_less_mask __initdata;
     47
     48pg_data_t *pgdat_list[MAX_NUMNODES];
     49
     50/*
     51 * To prevent cache aliasing effects, align per-node structures so that they
     52 * start at addresses that are strided by node number.
     53 */
     54#define MAX_NODE_ALIGN_OFFSET	(32 * 1024 * 1024)
     55#define NODEDATA_ALIGN(addr, node)						\
     56	((((addr) + 1024*1024-1) & ~(1024*1024-1)) + 				\
     57	     (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
     58
     59/**
     60 * build_node_maps - callback to setup mem_data structs for each node
     61 * @start: physical start of range
     62 * @len: length of range
     63 * @node: node where this range resides
     64 *
     65 * Detect extents of each piece of memory that we wish to
     66 * treat as a virtually contiguous block (i.e. each node). Each such block
     67 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
     68 * if necessary.  Any non-existent pages will simply be part of the virtual
     69 * memmap.
     70 */
     71static int __init build_node_maps(unsigned long start, unsigned long len,
     72				  int node)
     73{
     74	unsigned long spfn, epfn, end = start + len;
     75
     76	epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
     77	spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
     78
     79	if (!mem_data[node].min_pfn) {
     80		mem_data[node].min_pfn = spfn;
     81		mem_data[node].max_pfn = epfn;
     82	} else {
     83		mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn);
     84		mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn);
     85	}
     86
     87	return 0;
     88}
     89
     90/**
     91 * early_nr_cpus_node - return number of cpus on a given node
     92 * @node: node to check
     93 *
     94 * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
     95 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
     96 * called yet.  Note that node 0 will also count all non-existent cpus.
     97 */
     98static int early_nr_cpus_node(int node)
     99{
    100	int cpu, n = 0;
    101
    102	for_each_possible_early_cpu(cpu)
    103		if (node == node_cpuid[cpu].nid)
    104			n++;
    105
    106	return n;
    107}
    108
    109/**
    110 * compute_pernodesize - compute size of pernode data
    111 * @node: the node id.
    112 */
    113static unsigned long compute_pernodesize(int node)
    114{
    115	unsigned long pernodesize = 0, cpus;
    116
    117	cpus = early_nr_cpus_node(node);
    118	pernodesize += PERCPU_PAGE_SIZE * cpus;
    119	pernodesize += node * L1_CACHE_BYTES;
    120	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
    121	pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
    122	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
    123	pernodesize = PAGE_ALIGN(pernodesize);
    124	return pernodesize;
    125}
    126
    127/**
    128 * per_cpu_node_setup - setup per-cpu areas on each node
    129 * @cpu_data: per-cpu area on this node
    130 * @node: node to setup
    131 *
    132 * Copy the static per-cpu data into the region we just set aside and then
    133 * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
    134 * the end of the area.
    135 */
    136static void *per_cpu_node_setup(void *cpu_data, int node)
    137{
    138#ifdef CONFIG_SMP
    139	int cpu;
    140
    141	for_each_possible_early_cpu(cpu) {
    142		void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
    143
    144		if (node != node_cpuid[cpu].nid)
    145			continue;
    146
    147		memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
    148		__per_cpu_offset[cpu] = (char *)__va(cpu_data) -
    149			__per_cpu_start;
    150
    151		/*
    152		 * percpu area for cpu0 is moved from the __init area
    153		 * which is setup by head.S and used till this point.
    154		 * Update ar.k3.  This move is ensures that percpu
    155		 * area for cpu0 is on the correct node and its
    156		 * virtual address isn't insanely far from other
    157		 * percpu areas which is important for congruent
    158		 * percpu allocator.
    159		 */
    160		if (cpu == 0)
    161			ia64_set_kr(IA64_KR_PER_CPU_DATA,
    162				    (unsigned long)cpu_data -
    163				    (unsigned long)__per_cpu_start);
    164
    165		cpu_data += PERCPU_PAGE_SIZE;
    166	}
    167#endif
    168	return cpu_data;
    169}
    170
    171#ifdef CONFIG_SMP
    172/**
    173 * setup_per_cpu_areas - setup percpu areas
    174 *
    175 * Arch code has already allocated and initialized percpu areas.  All
    176 * this function has to do is to teach the determined layout to the
    177 * dynamic percpu allocator, which happens to be more complex than
    178 * creating whole new ones using helpers.
    179 */
    180void __init setup_per_cpu_areas(void)
    181{
    182	struct pcpu_alloc_info *ai;
    183	struct pcpu_group_info *gi;
    184	unsigned int *cpu_map;
    185	void *base;
    186	unsigned long base_offset;
    187	unsigned int cpu;
    188	ssize_t static_size, reserved_size, dyn_size;
    189	int node, prev_node, unit, nr_units;
    190
    191	ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
    192	if (!ai)
    193		panic("failed to allocate pcpu_alloc_info");
    194	cpu_map = ai->groups[0].cpu_map;
    195
    196	/* determine base */
    197	base = (void *)ULONG_MAX;
    198	for_each_possible_cpu(cpu)
    199		base = min(base,
    200			   (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
    201	base_offset = (void *)__per_cpu_start - base;
    202
    203	/* build cpu_map, units are grouped by node */
    204	unit = 0;
    205	for_each_node(node)
    206		for_each_possible_cpu(cpu)
    207			if (node == node_cpuid[cpu].nid)
    208				cpu_map[unit++] = cpu;
    209	nr_units = unit;
    210
    211	/* set basic parameters */
    212	static_size = __per_cpu_end - __per_cpu_start;
    213	reserved_size = PERCPU_MODULE_RESERVE;
    214	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
    215	if (dyn_size < 0)
    216		panic("percpu area overflow static=%zd reserved=%zd\n",
    217		      static_size, reserved_size);
    218
    219	ai->static_size		= static_size;
    220	ai->reserved_size	= reserved_size;
    221	ai->dyn_size		= dyn_size;
    222	ai->unit_size		= PERCPU_PAGE_SIZE;
    223	ai->atom_size		= PAGE_SIZE;
    224	ai->alloc_size		= PERCPU_PAGE_SIZE;
    225
    226	/*
    227	 * CPUs are put into groups according to node.  Walk cpu_map
    228	 * and create new groups at node boundaries.
    229	 */
    230	prev_node = NUMA_NO_NODE;
    231	ai->nr_groups = 0;
    232	for (unit = 0; unit < nr_units; unit++) {
    233		cpu = cpu_map[unit];
    234		node = node_cpuid[cpu].nid;
    235
    236		if (node == prev_node) {
    237			gi->nr_units++;
    238			continue;
    239		}
    240		prev_node = node;
    241
    242		gi = &ai->groups[ai->nr_groups++];
    243		gi->nr_units		= 1;
    244		gi->base_offset		= __per_cpu_offset[cpu] + base_offset;
    245		gi->cpu_map		= &cpu_map[unit];
    246	}
    247
    248	pcpu_setup_first_chunk(ai, base);
    249	pcpu_free_alloc_info(ai);
    250}
    251#endif
    252
    253/**
    254 * fill_pernode - initialize pernode data.
    255 * @node: the node id.
    256 * @pernode: physical address of pernode data
    257 * @pernodesize: size of the pernode data
    258 */
    259static void __init fill_pernode(int node, unsigned long pernode,
    260	unsigned long pernodesize)
    261{
    262	void *cpu_data;
    263	int cpus = early_nr_cpus_node(node);
    264
    265	mem_data[node].pernode_addr = pernode;
    266	mem_data[node].pernode_size = pernodesize;
    267	memset(__va(pernode), 0, pernodesize);
    268
    269	cpu_data = (void *)pernode;
    270	pernode += PERCPU_PAGE_SIZE * cpus;
    271	pernode += node * L1_CACHE_BYTES;
    272
    273	pgdat_list[node] = __va(pernode);
    274	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
    275
    276	mem_data[node].node_data = __va(pernode);
    277	pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
    278	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
    279
    280	cpu_data = per_cpu_node_setup(cpu_data, node);
    281
    282	return;
    283}
    284
    285/**
    286 * find_pernode_space - allocate memory for memory map and per-node structures
    287 * @start: physical start of range
    288 * @len: length of range
    289 * @node: node where this range resides
    290 *
    291 * This routine reserves space for the per-cpu data struct, the list of
    292 * pg_data_ts and the per-node data struct.  Each node will have something like
    293 * the following in the first chunk of addr. space large enough to hold it.
    294 *
    295 *    ________________________
    296 *   |                        |
    297 *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
    298 *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
    299 *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
    300 *   |------------------------|
    301 *   |   local pg_data_t *    |
    302 *   |------------------------|
    303 *   |  local ia64_node_data  |
    304 *   |------------------------|
    305 *   |          ???           |
    306 *   |________________________|
    307 *
    308 * Once this space has been set aside, the bootmem maps are initialized.  We
    309 * could probably move the allocation of the per-cpu and ia64_node_data space
    310 * outside of this function and use alloc_bootmem_node(), but doing it here
    311 * is straightforward and we get the alignments we want so...
    312 */
    313static int __init find_pernode_space(unsigned long start, unsigned long len,
    314				     int node)
    315{
    316	unsigned long spfn, epfn;
    317	unsigned long pernodesize = 0, pernode;
    318
    319	spfn = start >> PAGE_SHIFT;
    320	epfn = (start + len) >> PAGE_SHIFT;
    321
    322	/*
    323	 * Make sure this memory falls within this node's usable memory
    324	 * since we may have thrown some away in build_maps().
    325	 */
    326	if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn)
    327		return 0;
    328
    329	/* Don't setup this node's local space twice... */
    330	if (mem_data[node].pernode_addr)
    331		return 0;
    332
    333	/*
    334	 * Calculate total size needed, incl. what's necessary
    335	 * for good alignment and alias prevention.
    336	 */
    337	pernodesize = compute_pernodesize(node);
    338	pernode = NODEDATA_ALIGN(start, node);
    339
    340	/* Is this range big enough for what we want to store here? */
    341	if (start + len > (pernode + pernodesize))
    342		fill_pernode(node, pernode, pernodesize);
    343
    344	return 0;
    345}
    346
    347/**
    348 * reserve_pernode_space - reserve memory for per-node space
    349 *
    350 * Reserve the space used by the bootmem maps & per-node space in the boot
    351 * allocator so that when we actually create the real mem maps we don't
    352 * use their memory.
    353 */
    354static void __init reserve_pernode_space(void)
    355{
    356	unsigned long base, size;
    357	int node;
    358
    359	for_each_online_node(node) {
    360		if (node_isset(node, memory_less_mask))
    361			continue;
    362
    363		/* Now the per-node space */
    364		size = mem_data[node].pernode_size;
    365		base = __pa(mem_data[node].pernode_addr);
    366		memblock_reserve(base, size);
    367	}
    368}
    369
    370static void scatter_node_data(void)
    371{
    372	pg_data_t **dst;
    373	int node;
    374
    375	/*
    376	 * for_each_online_node() can't be used at here.
    377	 * node_online_map is not set for hot-added nodes at this time,
    378	 * because we are halfway through initialization of the new node's
    379	 * structures.  If for_each_online_node() is used, a new node's
    380	 * pg_data_ptrs will be not initialized. Instead of using it,
    381	 * pgdat_list[] is checked.
    382	 */
    383	for_each_node(node) {
    384		if (pgdat_list[node]) {
    385			dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
    386			memcpy(dst, pgdat_list, sizeof(pgdat_list));
    387		}
    388	}
    389}
    390
    391/**
    392 * initialize_pernode_data - fixup per-cpu & per-node pointers
    393 *
    394 * Each node's per-node area has a copy of the global pg_data_t list, so
    395 * we copy that to each node here, as well as setting the per-cpu pointer
    396 * to the local node data structure.
    397 */
    398static void __init initialize_pernode_data(void)
    399{
    400	int cpu, node;
    401
    402	scatter_node_data();
    403
    404#ifdef CONFIG_SMP
    405	/* Set the node_data pointer for each per-cpu struct */
    406	for_each_possible_early_cpu(cpu) {
    407		node = node_cpuid[cpu].nid;
    408		per_cpu(ia64_cpu_info, cpu).node_data =
    409			mem_data[node].node_data;
    410	}
    411#else
    412	{
    413		struct cpuinfo_ia64 *cpu0_cpu_info;
    414		cpu = 0;
    415		node = node_cpuid[cpu].nid;
    416		cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
    417			((char *)&ia64_cpu_info - __per_cpu_start));
    418		cpu0_cpu_info->node_data = mem_data[node].node_data;
    419	}
    420#endif /* CONFIG_SMP */
    421}
    422
    423/**
    424 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
    425 * 	node but fall back to any other node when __alloc_bootmem_node fails
    426 *	for best.
    427 * @nid: node id
    428 * @pernodesize: size of this node's pernode data
    429 */
    430static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
    431{
    432	void *ptr = NULL;
    433	u8 best = 0xff;
    434	int bestnode = NUMA_NO_NODE, node, anynode = 0;
    435
    436	for_each_online_node(node) {
    437		if (node_isset(node, memory_less_mask))
    438			continue;
    439		else if (node_distance(nid, node) < best) {
    440			best = node_distance(nid, node);
    441			bestnode = node;
    442		}
    443		anynode = node;
    444	}
    445
    446	if (bestnode == NUMA_NO_NODE)
    447		bestnode = anynode;
    448
    449	ptr = memblock_alloc_try_nid(pernodesize, PERCPU_PAGE_SIZE,
    450				     __pa(MAX_DMA_ADDRESS),
    451				     MEMBLOCK_ALLOC_ACCESSIBLE,
    452				     bestnode);
    453	if (!ptr)
    454		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%lx\n",
    455		      __func__, pernodesize, PERCPU_PAGE_SIZE, bestnode,
    456		      __pa(MAX_DMA_ADDRESS));
    457
    458	return ptr;
    459}
    460
    461/**
    462 * memory_less_nodes - allocate and initialize CPU only nodes pernode
    463 *	information.
    464 */
    465static void __init memory_less_nodes(void)
    466{
    467	unsigned long pernodesize;
    468	void *pernode;
    469	int node;
    470
    471	for_each_node_mask(node, memory_less_mask) {
    472		pernodesize = compute_pernodesize(node);
    473		pernode = memory_less_node_alloc(node, pernodesize);
    474		fill_pernode(node, __pa(pernode), pernodesize);
    475	}
    476
    477	return;
    478}
    479
    480/**
    481 * find_memory - walk the EFI memory map and setup the bootmem allocator
    482 *
    483 * Called early in boot to setup the bootmem allocator, and to
    484 * allocate the per-cpu and per-node structures.
    485 */
    486void __init find_memory(void)
    487{
    488	int node;
    489
    490	reserve_memory();
    491	efi_memmap_walk(filter_memory, register_active_ranges);
    492
    493	if (num_online_nodes() == 0) {
    494		printk(KERN_ERR "node info missing!\n");
    495		node_set_online(0);
    496	}
    497
    498	nodes_or(memory_less_mask, memory_less_mask, node_online_map);
    499	min_low_pfn = -1;
    500	max_low_pfn = 0;
    501
    502	/* These actually end up getting called by call_pernode_memory() */
    503	efi_memmap_walk(filter_rsvd_memory, build_node_maps);
    504	efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
    505	efi_memmap_walk(find_max_min_low_pfn, NULL);
    506
    507	for_each_online_node(node)
    508		if (mem_data[node].min_pfn)
    509			node_clear(node, memory_less_mask);
    510
    511	reserve_pernode_space();
    512	memory_less_nodes();
    513	initialize_pernode_data();
    514
    515	max_pfn = max_low_pfn;
    516
    517	find_initrd();
    518}
    519
    520#ifdef CONFIG_SMP
    521/**
    522 * per_cpu_init - setup per-cpu variables
    523 *
    524 * find_pernode_space() does most of this already, we just need to set
    525 * local_per_cpu_offset
    526 */
    527void *per_cpu_init(void)
    528{
    529	int cpu;
    530	static int first_time = 1;
    531
    532	if (first_time) {
    533		first_time = 0;
    534		for_each_possible_early_cpu(cpu)
    535			per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
    536	}
    537
    538	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
    539}
    540#endif /* CONFIG_SMP */
    541
    542/**
    543 * call_pernode_memory - use SRAT to call callback functions with node info
    544 * @start: physical start of range
    545 * @len: length of range
    546 * @arg: function to call for each range
    547 *
    548 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
    549 * out to which node a block of memory belongs.  Ignore memory that we cannot
    550 * identify, and split blocks that run across multiple nodes.
    551 *
    552 * Take this opportunity to round the start address up and the end address
    553 * down to page boundaries.
    554 */
    555void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
    556{
    557	unsigned long rs, re, end = start + len;
    558	void (*func)(unsigned long, unsigned long, int);
    559	int i;
    560
    561	start = PAGE_ALIGN(start);
    562	end &= PAGE_MASK;
    563	if (start >= end)
    564		return;
    565
    566	func = arg;
    567
    568	if (!num_node_memblks) {
    569		/* No SRAT table, so assume one node (node 0) */
    570		if (start < end)
    571			(*func)(start, end - start, 0);
    572		return;
    573	}
    574
    575	for (i = 0; i < num_node_memblks; i++) {
    576		rs = max(start, node_memblk[i].start_paddr);
    577		re = min(end, node_memblk[i].start_paddr +
    578			 node_memblk[i].size);
    579
    580		if (rs < re)
    581			(*func)(rs, re - rs, node_memblk[i].nid);
    582
    583		if (re == end)
    584			break;
    585	}
    586}
    587
    588/**
    589 * paging_init - setup page tables
    590 *
    591 * paging_init() sets up the page tables for each node of the system and frees
    592 * the bootmem allocator memory for general use.
    593 */
    594void __init paging_init(void)
    595{
    596	unsigned long max_dma;
    597	unsigned long max_zone_pfns[MAX_NR_ZONES];
    598
    599	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
    600
    601	sparse_init();
    602
    603	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
    604	max_zone_pfns[ZONE_DMA32] = max_dma;
    605	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
    606	free_area_init(max_zone_pfns);
    607
    608	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
    609}
    610
    611pg_data_t * __init arch_alloc_nodedata(int nid)
    612{
    613	unsigned long size = compute_pernodesize(nid);
    614
    615	return memblock_alloc(size, SMP_CACHE_BYTES);
    616}
    617
    618void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
    619{
    620	pgdat_list[update_node] = update_pgdat;
    621	scatter_node_data();
    622}
    623
    624#ifdef CONFIG_SPARSEMEM_VMEMMAP
    625int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
    626		struct vmem_altmap *altmap)
    627{
    628	return vmemmap_populate_basepages(start, end, node, NULL);
    629}
    630
    631void vmemmap_free(unsigned long start, unsigned long end,
    632		struct vmem_altmap *altmap)
    633{
    634}
    635#endif