cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pci.c (14408B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * pci.c - Low-Level PCI Access in IA-64
      4 *
      5 * Derived from bios32.c of i386 tree.
      6 *
      7 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
      8 *	David Mosberger-Tang <davidm@hpl.hp.com>
      9 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
     10 * Copyright (C) 2004 Silicon Graphics, Inc.
     11 *
     12 * Note: Above list of copyright holders is incomplete...
     13 */
     14
     15#include <linux/acpi.h>
     16#include <linux/types.h>
     17#include <linux/kernel.h>
     18#include <linux/pci.h>
     19#include <linux/pci-acpi.h>
     20#include <linux/init.h>
     21#include <linux/ioport.h>
     22#include <linux/slab.h>
     23#include <linux/spinlock.h>
     24#include <linux/memblock.h>
     25#include <linux/export.h>
     26
     27#include <asm/page.h>
     28#include <asm/io.h>
     29#include <asm/sal.h>
     30#include <asm/smp.h>
     31#include <asm/irq.h>
     32#include <asm/hw_irq.h>
     33
     34/*
     35 * Low-level SAL-based PCI configuration access functions. Note that SAL
     36 * calls are already serialized (via sal_lock), so we don't need another
     37 * synchronization mechanism here.
     38 */
     39
     40#define PCI_SAL_ADDRESS(seg, bus, devfn, reg)		\
     41	(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
     42
     43/* SAL 3.2 adds support for extended config space. */
     44
     45#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\
     46	(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
     47
     48int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
     49	      int reg, int len, u32 *value)
     50{
     51	u64 addr, data = 0;
     52	int mode, result;
     53
     54	if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
     55		return -EINVAL;
     56
     57	if ((seg | reg) <= 255) {
     58		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
     59		mode = 0;
     60	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
     61		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
     62		mode = 1;
     63	} else {
     64		return -EINVAL;
     65	}
     66
     67	result = ia64_sal_pci_config_read(addr, mode, len, &data);
     68	if (result != 0)
     69		return -EINVAL;
     70
     71	*value = (u32) data;
     72	return 0;
     73}
     74
     75int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
     76	       int reg, int len, u32 value)
     77{
     78	u64 addr;
     79	int mode, result;
     80
     81	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
     82		return -EINVAL;
     83
     84	if ((seg | reg) <= 255) {
     85		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
     86		mode = 0;
     87	} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
     88		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
     89		mode = 1;
     90	} else {
     91		return -EINVAL;
     92	}
     93	result = ia64_sal_pci_config_write(addr, mode, len, value);
     94	if (result != 0)
     95		return -EINVAL;
     96	return 0;
     97}
     98
     99static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
    100							int size, u32 *value)
    101{
    102	return raw_pci_read(pci_domain_nr(bus), bus->number,
    103				 devfn, where, size, value);
    104}
    105
    106static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
    107							int size, u32 value)
    108{
    109	return raw_pci_write(pci_domain_nr(bus), bus->number,
    110				  devfn, where, size, value);
    111}
    112
    113struct pci_ops pci_root_ops = {
    114	.read = pci_read,
    115	.write = pci_write,
    116};
    117
    118struct pci_root_info {
    119	struct acpi_pci_root_info common;
    120	struct pci_controller controller;
    121	struct list_head io_resources;
    122};
    123
    124static unsigned int new_space(u64 phys_base, int sparse)
    125{
    126	u64 mmio_base;
    127	int i;
    128
    129	if (phys_base == 0)
    130		return 0;	/* legacy I/O port space */
    131
    132	mmio_base = (u64) ioremap(phys_base, 0);
    133	for (i = 0; i < num_io_spaces; i++)
    134		if (io_space[i].mmio_base == mmio_base &&
    135		    io_space[i].sparse == sparse)
    136			return i;
    137
    138	if (num_io_spaces == MAX_IO_SPACES) {
    139		pr_err("PCI: Too many IO port spaces "
    140			"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
    141		return ~0;
    142	}
    143
    144	i = num_io_spaces++;
    145	io_space[i].mmio_base = mmio_base;
    146	io_space[i].sparse = sparse;
    147
    148	return i;
    149}
    150
    151static int add_io_space(struct device *dev, struct pci_root_info *info,
    152			struct resource_entry *entry)
    153{
    154	struct resource_entry *iospace;
    155	struct resource *resource, *res = entry->res;
    156	char *name;
    157	unsigned long base, min, max, base_port;
    158	unsigned int sparse = 0, space_nr, len;
    159
    160	len = strlen(info->common.name) + 32;
    161	iospace = resource_list_create_entry(NULL, len);
    162	if (!iospace) {
    163		dev_err(dev, "PCI: No memory for %s I/O port space\n",
    164			info->common.name);
    165		return -ENOMEM;
    166	}
    167
    168	if (res->flags & IORESOURCE_IO_SPARSE)
    169		sparse = 1;
    170	space_nr = new_space(entry->offset, sparse);
    171	if (space_nr == ~0)
    172		goto free_resource;
    173
    174	name = (char *)(iospace + 1);
    175	min = res->start - entry->offset;
    176	max = res->end - entry->offset;
    177	base = __pa(io_space[space_nr].mmio_base);
    178	base_port = IO_SPACE_BASE(space_nr);
    179	snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->common.name,
    180		 base_port + min, base_port + max);
    181
    182	/*
    183	 * The SDM guarantees the legacy 0-64K space is sparse, but if the
    184	 * mapping is done by the processor (not the bridge), ACPI may not
    185	 * mark it as sparse.
    186	 */
    187	if (space_nr == 0)
    188		sparse = 1;
    189
    190	resource = iospace->res;
    191	resource->name  = name;
    192	resource->flags = IORESOURCE_MEM;
    193	resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
    194	resource->end   = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
    195	if (insert_resource(&iomem_resource, resource)) {
    196		dev_err(dev,
    197			"can't allocate host bridge io space resource  %pR\n",
    198			resource);
    199		goto free_resource;
    200	}
    201
    202	entry->offset = base_port;
    203	res->start = min + base_port;
    204	res->end = max + base_port;
    205	resource_list_add_tail(iospace, &info->io_resources);
    206
    207	return 0;
    208
    209free_resource:
    210	resource_list_free_entry(iospace);
    211	return -ENOSPC;
    212}
    213
    214/*
    215 * An IO port or MMIO resource assigned to a PCI host bridge may be
    216 * consumed by the host bridge itself or available to its child
    217 * bus/devices. The ACPI specification defines a bit (Producer/Consumer)
    218 * to tell whether the resource is consumed by the host bridge itself,
    219 * but firmware hasn't used that bit consistently, so we can't rely on it.
    220 *
    221 * On x86 and IA64 platforms, all IO port and MMIO resources are assumed
    222 * to be available to child bus/devices except one special case:
    223 *     IO port [0xCF8-0xCFF] is consumed by the host bridge itself
    224 *     to access PCI configuration space.
    225 *
    226 * So explicitly filter out PCI CFG IO ports[0xCF8-0xCFF].
    227 */
    228static bool resource_is_pcicfg_ioport(struct resource *res)
    229{
    230	return (res->flags & IORESOURCE_IO) &&
    231		res->start == 0xCF8 && res->end == 0xCFF;
    232}
    233
    234static int pci_acpi_root_prepare_resources(struct acpi_pci_root_info *ci)
    235{
    236	struct device *dev = &ci->bridge->dev;
    237	struct pci_root_info *info;
    238	struct resource *res;
    239	struct resource_entry *entry, *tmp;
    240	int status;
    241
    242	status = acpi_pci_probe_root_resources(ci);
    243	if (status > 0) {
    244		info = container_of(ci, struct pci_root_info, common);
    245		resource_list_for_each_entry_safe(entry, tmp, &ci->resources) {
    246			res = entry->res;
    247			if (res->flags & IORESOURCE_MEM) {
    248				/*
    249				 * HP's firmware has a hack to work around a
    250				 * Windows bug. Ignore these tiny memory ranges.
    251				 */
    252				if (resource_size(res) <= 16) {
    253					resource_list_del(entry);
    254					insert_resource(&iomem_resource,
    255							entry->res);
    256					resource_list_add_tail(entry,
    257							&info->io_resources);
    258				}
    259			} else if (res->flags & IORESOURCE_IO) {
    260				if (resource_is_pcicfg_ioport(entry->res))
    261					resource_list_destroy_entry(entry);
    262				else if (add_io_space(dev, info, entry))
    263					resource_list_destroy_entry(entry);
    264			}
    265		}
    266	}
    267
    268	return status;
    269}
    270
    271static void pci_acpi_root_release_info(struct acpi_pci_root_info *ci)
    272{
    273	struct pci_root_info *info;
    274	struct resource_entry *entry, *tmp;
    275
    276	info = container_of(ci, struct pci_root_info, common);
    277	resource_list_for_each_entry_safe(entry, tmp, &info->io_resources) {
    278		release_resource(entry->res);
    279		resource_list_destroy_entry(entry);
    280	}
    281	kfree(info);
    282}
    283
    284static struct acpi_pci_root_ops pci_acpi_root_ops = {
    285	.pci_ops = &pci_root_ops,
    286	.release_info = pci_acpi_root_release_info,
    287	.prepare_resources = pci_acpi_root_prepare_resources,
    288};
    289
    290struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
    291{
    292	struct acpi_device *device = root->device;
    293	struct pci_root_info *info;
    294
    295	info = kzalloc(sizeof(*info), GFP_KERNEL);
    296	if (!info) {
    297		dev_err(&device->dev,
    298			"pci_bus %04x:%02x: ignored (out of memory)\n",
    299			root->segment, (int)root->secondary.start);
    300		return NULL;
    301	}
    302
    303	info->controller.segment = root->segment;
    304	info->controller.companion = device;
    305	info->controller.node = acpi_get_node(device->handle);
    306	INIT_LIST_HEAD(&info->io_resources);
    307	return acpi_pci_root_create(root, &pci_acpi_root_ops,
    308				    &info->common, &info->controller);
    309}
    310
    311int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
    312{
    313	/*
    314	 * We pass NULL as parent to pci_create_root_bus(), so if it is not NULL
    315	 * here, pci_create_root_bus() has been called by someone else and
    316	 * sysdata is likely to be different from what we expect.  Let it go in
    317	 * that case.
    318	 */
    319	if (!bridge->dev.parent) {
    320		struct pci_controller *controller = bridge->bus->sysdata;
    321		ACPI_COMPANION_SET(&bridge->dev, controller->companion);
    322	}
    323	return 0;
    324}
    325
    326void pcibios_fixup_device_resources(struct pci_dev *dev)
    327{
    328	int idx;
    329
    330	if (!dev->bus)
    331		return;
    332
    333	for (idx = 0; idx < PCI_BRIDGE_RESOURCES; idx++) {
    334		struct resource *r = &dev->resource[idx];
    335
    336		if (!r->flags || r->parent || !r->start)
    337			continue;
    338
    339		pci_claim_resource(dev, idx);
    340	}
    341}
    342EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
    343
    344static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
    345{
    346	int idx;
    347
    348	if (!dev->bus)
    349		return;
    350
    351	for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
    352		struct resource *r = &dev->resource[idx];
    353
    354		if (!r->flags || r->parent || !r->start)
    355			continue;
    356
    357		pci_claim_bridge_resource(dev, idx);
    358	}
    359}
    360
    361/*
    362 *  Called after each bus is probed, but before its children are examined.
    363 */
    364void pcibios_fixup_bus(struct pci_bus *b)
    365{
    366	struct pci_dev *dev;
    367
    368	if (b->self) {
    369		pci_read_bridge_bases(b);
    370		pcibios_fixup_bridge_resources(b->self);
    371	}
    372	list_for_each_entry(dev, &b->devices, bus_list)
    373		pcibios_fixup_device_resources(dev);
    374}
    375
    376void pcibios_add_bus(struct pci_bus *bus)
    377{
    378	acpi_pci_add_bus(bus);
    379}
    380
    381void pcibios_remove_bus(struct pci_bus *bus)
    382{
    383	acpi_pci_remove_bus(bus);
    384}
    385
    386void pcibios_set_master (struct pci_dev *dev)
    387{
    388	/* No special bus mastering setup handling */
    389}
    390
    391int
    392pcibios_enable_device (struct pci_dev *dev, int mask)
    393{
    394	int ret;
    395
    396	ret = pci_enable_resources(dev, mask);
    397	if (ret < 0)
    398		return ret;
    399
    400	if (!pci_dev_msi_enabled(dev))
    401		return acpi_pci_irq_enable(dev);
    402	return 0;
    403}
    404
    405void
    406pcibios_disable_device (struct pci_dev *dev)
    407{
    408	BUG_ON(atomic_read(&dev->enable_cnt));
    409	if (!pci_dev_msi_enabled(dev))
    410		acpi_pci_irq_disable(dev);
    411}
    412
    413/**
    414 * pci_get_legacy_mem - generic legacy mem routine
    415 * @bus: bus to get legacy memory base address for
    416 *
    417 * Find the base of legacy memory for @bus.  This is typically the first
    418 * megabyte of bus address space for @bus or is simply 0 on platforms whose
    419 * chipsets support legacy I/O and memory routing.  Returns the base address
    420 * or an error pointer if an error occurred.
    421 *
    422 * This is the ia64 generic version of this routine.  Other platforms
    423 * are free to override it with a machine vector.
    424 */
    425char *pci_get_legacy_mem(struct pci_bus *bus)
    426{
    427	return (char *)__IA64_UNCACHED_OFFSET;
    428}
    429
    430/**
    431 * pci_mmap_legacy_page_range - map legacy memory space to userland
    432 * @bus: bus whose legacy space we're mapping
    433 * @vma: vma passed in by mmap
    434 *
    435 * Map legacy memory space for this device back to userspace using a machine
    436 * vector to get the base address.
    437 */
    438int
    439pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
    440			   enum pci_mmap_state mmap_state)
    441{
    442	unsigned long size = vma->vm_end - vma->vm_start;
    443	pgprot_t prot;
    444	char *addr;
    445
    446	/* We only support mmap'ing of legacy memory space */
    447	if (mmap_state != pci_mmap_mem)
    448		return -ENOSYS;
    449
    450	/*
    451	 * Avoid attribute aliasing.  See Documentation/ia64/aliasing.rst
    452	 * for more details.
    453	 */
    454	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
    455		return -EINVAL;
    456	prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
    457				    vma->vm_page_prot);
    458
    459	addr = pci_get_legacy_mem(bus);
    460	if (IS_ERR(addr))
    461		return PTR_ERR(addr);
    462
    463	vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
    464	vma->vm_page_prot = prot;
    465
    466	if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
    467			    size, vma->vm_page_prot))
    468		return -EAGAIN;
    469
    470	return 0;
    471}
    472
    473/**
    474 * pci_legacy_read - read from legacy I/O space
    475 * @bus: bus to read
    476 * @port: legacy port value
    477 * @val: caller allocated storage for returned value
    478 * @size: number of bytes to read
    479 *
    480 * Simply reads @size bytes from @port and puts the result in @val.
    481 *
    482 * Again, this (and the write routine) are generic versions that can be
    483 * overridden by the platform.  This is necessary on platforms that don't
    484 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
    485 */
    486int pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
    487{
    488	int ret = size;
    489
    490	switch (size) {
    491	case 1:
    492		*val = inb(port);
    493		break;
    494	case 2:
    495		*val = inw(port);
    496		break;
    497	case 4:
    498		*val = inl(port);
    499		break;
    500	default:
    501		ret = -EINVAL;
    502		break;
    503	}
    504
    505	return ret;
    506}
    507
    508/**
    509 * pci_legacy_write - perform a legacy I/O write
    510 * @bus: bus pointer
    511 * @port: port to write
    512 * @val: value to write
    513 * @size: number of bytes to write from @val
    514 *
    515 * Simply writes @size bytes of @val to @port.
    516 */
    517int pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
    518{
    519	int ret = size;
    520
    521	switch (size) {
    522	case 1:
    523		outb(val, port);
    524		break;
    525	case 2:
    526		outw(val, port);
    527		break;
    528	case 4:
    529		outl(val, port);
    530		break;
    531	default:
    532		ret = -EINVAL;
    533		break;
    534	}
    535
    536	return ret;
    537}
    538
    539/**
    540 * set_pci_cacheline_size - determine cacheline size for PCI devices
    541 *
    542 * We want to use the line-size of the outer-most cache.  We assume
    543 * that this line-size is the same for all CPUs.
    544 *
    545 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
    546 */
    547static void __init set_pci_dfl_cacheline_size(void)
    548{
    549	unsigned long levels, unique_caches;
    550	long status;
    551	pal_cache_config_info_t cci;
    552
    553	status = ia64_pal_cache_summary(&levels, &unique_caches);
    554	if (status != 0) {
    555		pr_err("%s: ia64_pal_cache_summary() failed "
    556			"(status=%ld)\n", __func__, status);
    557		return;
    558	}
    559
    560	status = ia64_pal_cache_config_info(levels - 1,
    561				/* cache_type (data_or_unified)= */ 2, &cci);
    562	if (status != 0) {
    563		pr_err("%s: ia64_pal_cache_config_info() failed "
    564			"(status=%ld)\n", __func__, status);
    565		return;
    566	}
    567	pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
    568}
    569
    570static int __init pcibios_init(void)
    571{
    572	set_pci_dfl_cacheline_size();
    573	return 0;
    574}
    575
    576subsys_initcall(pcibios_init);