bindec.S (28114B)
1| 2| bindec.sa 3.4 1/3/91 3| 4| bindec 5| 6| Description: 7| Converts an input in extended precision format 8| to bcd format. 9| 10| Input: 11| a0 points to the input extended precision value 12| value in memory; d0 contains the k-factor sign-extended 13| to 32-bits. The input may be either normalized, 14| unnormalized, or denormalized. 15| 16| Output: result in the FP_SCR1 space on the stack. 17| 18| Saves and Modifies: D2-D7,A2,FP2 19| 20| Algorithm: 21| 22| A1. Set RM and size ext; Set SIGMA = sign of input. 23| The k-factor is saved for use in d7. Clear the 24| BINDEC_FLG for separating normalized/denormalized 25| input. If input is unnormalized or denormalized, 26| normalize it. 27| 28| A2. Set X = abs(input). 29| 30| A3. Compute ILOG. 31| ILOG is the log base 10 of the input value. It is 32| approximated by adding e + 0.f when the original 33| value is viewed as 2^^e * 1.f in extended precision. 34| This value is stored in d6. 35| 36| A4. Clr INEX bit. 37| The operation in A3 above may have set INEX2. 38| 39| A5. Set ICTR = 0; 40| ICTR is a flag used in A13. It must be set before the 41| loop entry A6. 42| 43| A6. Calculate LEN. 44| LEN is the number of digits to be displayed. The 45| k-factor can dictate either the total number of digits, 46| if it is a positive number, or the number of digits 47| after the decimal point which are to be included as 48| significant. See the 68882 manual for examples. 49| If LEN is computed to be greater than 17, set OPERR in 50| USER_FPSR. LEN is stored in d4. 51| 52| A7. Calculate SCALE. 53| SCALE is equal to 10^ISCALE, where ISCALE is the number 54| of decimal places needed to insure LEN integer digits 55| in the output before conversion to bcd. LAMBDA is the 56| sign of ISCALE, used in A9. Fp1 contains 57| 10^^(abs(ISCALE)) using a rounding mode which is a 58| function of the original rounding mode and the signs 59| of ISCALE and X. A table is given in the code. 60| 61| A8. Clr INEX; Force RZ. 62| The operation in A3 above may have set INEX2. 63| RZ mode is forced for the scaling operation to insure 64| only one rounding error. The grs bits are collected in 65| the INEX flag for use in A10. 66| 67| A9. Scale X -> Y. 68| The mantissa is scaled to the desired number of 69| significant digits. The excess digits are collected 70| in INEX2. 71| 72| A10. Or in INEX. 73| If INEX is set, round error occurred. This is 74| compensated for by 'or-ing' in the INEX2 flag to 75| the lsb of Y. 76| 77| A11. Restore original FPCR; set size ext. 78| Perform FINT operation in the user's rounding mode. 79| Keep the size to extended. 80| 81| A12. Calculate YINT = FINT(Y) according to user's rounding 82| mode. The FPSP routine sintd0 is used. The output 83| is in fp0. 84| 85| A13. Check for LEN digits. 86| If the int operation results in more than LEN digits, 87| or less than LEN -1 digits, adjust ILOG and repeat from 88| A6. This test occurs only on the first pass. If the 89| result is exactly 10^LEN, decrement ILOG and divide 90| the mantissa by 10. 91| 92| A14. Convert the mantissa to bcd. 93| The binstr routine is used to convert the LEN digit 94| mantissa to bcd in memory. The input to binstr is 95| to be a fraction; i.e. (mantissa)/10^LEN and adjusted 96| such that the decimal point is to the left of bit 63. 97| The bcd digits are stored in the correct position in 98| the final string area in memory. 99| 100| A15. Convert the exponent to bcd. 101| As in A14 above, the exp is converted to bcd and the 102| digits are stored in the final string. 103| Test the length of the final exponent string. If the 104| length is 4, set operr. 105| 106| A16. Write sign bits to final string. 107| 108| Implementation Notes: 109| 110| The registers are used as follows: 111| 112| d0: scratch; LEN input to binstr 113| d1: scratch 114| d2: upper 32-bits of mantissa for binstr 115| d3: scratch;lower 32-bits of mantissa for binstr 116| d4: LEN 117| d5: LAMBDA/ICTR 118| d6: ILOG 119| d7: k-factor 120| a0: ptr for original operand/final result 121| a1: scratch pointer 122| a2: pointer to FP_X; abs(original value) in ext 123| fp0: scratch 124| fp1: scratch 125| fp2: scratch 126| F_SCR1: 127| F_SCR2: 128| L_SCR1: 129| L_SCR2: 130 131| Copyright (C) Motorola, Inc. 1990 132| All Rights Reserved 133| 134| For details on the license for this file, please see the 135| file, README, in this same directory. 136 137|BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package 138 139#include "fpsp.h" 140 141 |section 8 142 143| Constants in extended precision 144LOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 145LOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 146 147| Constants in single precision 148FONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000 149FTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000 150FTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000 151F4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000 152 153RBDTBL: .byte 0,0,0,0 154 .byte 3,3,2,2 155 .byte 3,2,2,3 156 .byte 2,3,3,2 157 158 |xref binstr 159 |xref sintdo 160 |xref ptenrn,ptenrm,ptenrp 161 162 .global bindec 163 .global sc_mul 164bindec: 165 moveml %d2-%d7/%a2,-(%a7) 166 fmovemx %fp0-%fp2,-(%a7) 167 168| A1. Set RM and size ext. Set SIGMA = sign input; 169| The k-factor is saved for use in d7. Clear BINDEC_FLG for 170| separating normalized/denormalized input. If the input 171| is a denormalized number, set the BINDEC_FLG memory word 172| to signal denorm. If the input is unnormalized, normalize 173| the input and test for denormalized result. 174| 175 fmovel #rm_mode,%FPCR |set RM and ext 176 movel (%a0),L_SCR2(%a6) |save exponent for sign check 177 movel %d0,%d7 |move k-factor to d7 178 clrb BINDEC_FLG(%a6) |clr norm/denorm flag 179 movew STAG(%a6),%d0 |get stag 180 andiw #0xe000,%d0 |isolate stag bits 181 beq A2_str |if zero, input is norm 182| 183| Normalize the denorm 184| 185un_de_norm: 186 movew (%a0),%d0 187 andiw #0x7fff,%d0 |strip sign of normalized exp 188 movel 4(%a0),%d1 189 movel 8(%a0),%d2 190norm_loop: 191 subw #1,%d0 192 lsll #1,%d2 193 roxll #1,%d1 194 tstl %d1 195 bges norm_loop 196| 197| Test if the normalized input is denormalized 198| 199 tstw %d0 200 bgts pos_exp |if greater than zero, it is a norm 201 st BINDEC_FLG(%a6) |set flag for denorm 202pos_exp: 203 andiw #0x7fff,%d0 |strip sign of normalized exp 204 movew %d0,(%a0) 205 movel %d1,4(%a0) 206 movel %d2,8(%a0) 207 208| A2. Set X = abs(input). 209| 210A2_str: 211 movel (%a0),FP_SCR2(%a6) | move input to work space 212 movel 4(%a0),FP_SCR2+4(%a6) | move input to work space 213 movel 8(%a0),FP_SCR2+8(%a6) | move input to work space 214 andil #0x7fffffff,FP_SCR2(%a6) |create abs(X) 215 216| A3. Compute ILOG. 217| ILOG is the log base 10 of the input value. It is approx- 218| imated by adding e + 0.f when the original value is viewed 219| as 2^^e * 1.f in extended precision. This value is stored 220| in d6. 221| 222| Register usage: 223| Input/Output 224| d0: k-factor/exponent 225| d2: x/x 226| d3: x/x 227| d4: x/x 228| d5: x/x 229| d6: x/ILOG 230| d7: k-factor/Unchanged 231| a0: ptr for original operand/final result 232| a1: x/x 233| a2: x/x 234| fp0: x/float(ILOG) 235| fp1: x/x 236| fp2: x/x 237| F_SCR1:x/x 238| F_SCR2:Abs(X)/Abs(X) with $3fff exponent 239| L_SCR1:x/x 240| L_SCR2:first word of X packed/Unchanged 241 242 tstb BINDEC_FLG(%a6) |check for denorm 243 beqs A3_cont |if clr, continue with norm 244 movel #-4933,%d6 |force ILOG = -4933 245 bras A4_str 246A3_cont: 247 movew FP_SCR2(%a6),%d0 |move exp to d0 248 movew #0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff 249 fmovex FP_SCR2(%a6),%fp0 |now fp0 has 1.f 250 subw #0x3fff,%d0 |strip off bias 251 faddw %d0,%fp0 |add in exp 252 fsubs FONE,%fp0 |subtract off 1.0 253 fbge pos_res |if pos, branch 254 fmulx LOG2UP1,%fp0 |if neg, mul by LOG2UP1 255 fmovel %fp0,%d6 |put ILOG in d6 as a lword 256 bras A4_str |go move out ILOG 257pos_res: 258 fmulx LOG2,%fp0 |if pos, mul by LOG2 259 fmovel %fp0,%d6 |put ILOG in d6 as a lword 260 261 262| A4. Clr INEX bit. 263| The operation in A3 above may have set INEX2. 264 265A4_str: 266 fmovel #0,%FPSR |zero all of fpsr - nothing needed 267 268 269| A5. Set ICTR = 0; 270| ICTR is a flag used in A13. It must be set before the 271| loop entry A6. The lower word of d5 is used for ICTR. 272 273 clrw %d5 |clear ICTR 274 275 276| A6. Calculate LEN. 277| LEN is the number of digits to be displayed. The k-factor 278| can dictate either the total number of digits, if it is 279| a positive number, or the number of digits after the 280| original decimal point which are to be included as 281| significant. See the 68882 manual for examples. 282| If LEN is computed to be greater than 17, set OPERR in 283| USER_FPSR. LEN is stored in d4. 284| 285| Register usage: 286| Input/Output 287| d0: exponent/Unchanged 288| d2: x/x/scratch 289| d3: x/x 290| d4: exc picture/LEN 291| d5: ICTR/Unchanged 292| d6: ILOG/Unchanged 293| d7: k-factor/Unchanged 294| a0: ptr for original operand/final result 295| a1: x/x 296| a2: x/x 297| fp0: float(ILOG)/Unchanged 298| fp1: x/x 299| fp2: x/x 300| F_SCR1:x/x 301| F_SCR2:Abs(X) with $3fff exponent/Unchanged 302| L_SCR1:x/x 303| L_SCR2:first word of X packed/Unchanged 304 305A6_str: 306 tstl %d7 |branch on sign of k 307 bles k_neg |if k <= 0, LEN = ILOG + 1 - k 308 movel %d7,%d4 |if k > 0, LEN = k 309 bras len_ck |skip to LEN check 310k_neg: 311 movel %d6,%d4 |first load ILOG to d4 312 subl %d7,%d4 |subtract off k 313 addql #1,%d4 |add in the 1 314len_ck: 315 tstl %d4 |LEN check: branch on sign of LEN 316 bles LEN_ng |if neg, set LEN = 1 317 cmpl #17,%d4 |test if LEN > 17 318 bles A7_str |if not, forget it 319 movel #17,%d4 |set max LEN = 17 320 tstl %d7 |if negative, never set OPERR 321 bles A7_str |if positive, continue 322 orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR 323 bras A7_str |finished here 324LEN_ng: 325 moveql #1,%d4 |min LEN is 1 326 327 328| A7. Calculate SCALE. 329| SCALE is equal to 10^ISCALE, where ISCALE is the number 330| of decimal places needed to insure LEN integer digits 331| in the output before conversion to bcd. LAMBDA is the sign 332| of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using 333| the rounding mode as given in the following table (see 334| Coonen, p. 7.23 as ref.; however, the SCALE variable is 335| of opposite sign in bindec.sa from Coonen). 336| 337| Initial USE 338| FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] 339| ---------------------------------------------- 340| RN 00 0 0 00/0 RN 341| RN 00 0 1 00/0 RN 342| RN 00 1 0 00/0 RN 343| RN 00 1 1 00/0 RN 344| RZ 01 0 0 11/3 RP 345| RZ 01 0 1 11/3 RP 346| RZ 01 1 0 10/2 RM 347| RZ 01 1 1 10/2 RM 348| RM 10 0 0 11/3 RP 349| RM 10 0 1 10/2 RM 350| RM 10 1 0 10/2 RM 351| RM 10 1 1 11/3 RP 352| RP 11 0 0 10/2 RM 353| RP 11 0 1 11/3 RP 354| RP 11 1 0 11/3 RP 355| RP 11 1 1 10/2 RM 356| 357| Register usage: 358| Input/Output 359| d0: exponent/scratch - final is 0 360| d2: x/0 or 24 for A9 361| d3: x/scratch - offset ptr into PTENRM array 362| d4: LEN/Unchanged 363| d5: 0/ICTR:LAMBDA 364| d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) 365| d7: k-factor/Unchanged 366| a0: ptr for original operand/final result 367| a1: x/ptr to PTENRM array 368| a2: x/x 369| fp0: float(ILOG)/Unchanged 370| fp1: x/10^ISCALE 371| fp2: x/x 372| F_SCR1:x/x 373| F_SCR2:Abs(X) with $3fff exponent/Unchanged 374| L_SCR1:x/x 375| L_SCR2:first word of X packed/Unchanged 376 377A7_str: 378 tstl %d7 |test sign of k 379 bgts k_pos |if pos and > 0, skip this 380 cmpl %d6,%d7 |test k - ILOG 381 blts k_pos |if ILOG >= k, skip this 382 movel %d7,%d6 |if ((k<0) & (ILOG < k)) ILOG = k 383k_pos: 384 movel %d6,%d0 |calc ILOG + 1 - LEN in d0 385 addql #1,%d0 |add the 1 386 subl %d4,%d0 |sub off LEN 387 swap %d5 |use upper word of d5 for LAMBDA 388 clrw %d5 |set it zero initially 389 clrw %d2 |set up d2 for very small case 390 tstl %d0 |test sign of ISCALE 391 bges iscale |if pos, skip next inst 392 addqw #1,%d5 |if neg, set LAMBDA true 393 cmpl #0xffffecd4,%d0 |test iscale <= -4908 394 bgts no_inf |if false, skip rest 395 addil #24,%d0 |add in 24 to iscale 396 movel #24,%d2 |put 24 in d2 for A9 397no_inf: 398 negl %d0 |and take abs of ISCALE 399iscale: 400 fmoves FONE,%fp1 |init fp1 to 1 401 bfextu USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits 402 lslw #1,%d1 |put them in bits 2:1 403 addw %d5,%d1 |add in LAMBDA 404 lslw #1,%d1 |put them in bits 3:1 405 tstl L_SCR2(%a6) |test sign of original x 406 bges x_pos |if pos, don't set bit 0 407 addql #1,%d1 |if neg, set bit 0 408x_pos: 409 leal RBDTBL,%a2 |load rbdtbl base 410 moveb (%a2,%d1),%d3 |load d3 with new rmode 411 lsll #4,%d3 |put bits in proper position 412 fmovel %d3,%fpcr |load bits into fpu 413 lsrl #4,%d3 |put bits in proper position 414 tstb %d3 |decode new rmode for pten table 415 bnes not_rn |if zero, it is RN 416 leal PTENRN,%a1 |load a1 with RN table base 417 bras rmode |exit decode 418not_rn: 419 lsrb #1,%d3 |get lsb in carry 420 bccs not_rp |if carry clear, it is RM 421 leal PTENRP,%a1 |load a1 with RP table base 422 bras rmode |exit decode 423not_rp: 424 leal PTENRM,%a1 |load a1 with RM table base 425rmode: 426 clrl %d3 |clr table index 427e_loop: 428 lsrl #1,%d0 |shift next bit into carry 429 bccs e_next |if zero, skip the mul 430 fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 431e_next: 432 addl #12,%d3 |inc d3 to next pwrten table entry 433 tstl %d0 |test if ISCALE is zero 434 bnes e_loop |if not, loop 435 436 437| A8. Clr INEX; Force RZ. 438| The operation in A3 above may have set INEX2. 439| RZ mode is forced for the scaling operation to insure 440| only one rounding error. The grs bits are collected in 441| the INEX flag for use in A10. 442| 443| Register usage: 444| Input/Output 445 446 fmovel #0,%FPSR |clr INEX 447 fmovel #rz_mode,%FPCR |set RZ rounding mode 448 449 450| A9. Scale X -> Y. 451| The mantissa is scaled to the desired number of significant 452| digits. The excess digits are collected in INEX2. If mul, 453| Check d2 for excess 10 exponential value. If not zero, 454| the iscale value would have caused the pwrten calculation 455| to overflow. Only a negative iscale can cause this, so 456| multiply by 10^(d2), which is now only allowed to be 24, 457| with a multiply by 10^8 and 10^16, which is exact since 458| 10^24 is exact. If the input was denormalized, we must 459| create a busy stack frame with the mul command and the 460| two operands, and allow the fpu to complete the multiply. 461| 462| Register usage: 463| Input/Output 464| d0: FPCR with RZ mode/Unchanged 465| d2: 0 or 24/unchanged 466| d3: x/x 467| d4: LEN/Unchanged 468| d5: ICTR:LAMBDA 469| d6: ILOG/Unchanged 470| d7: k-factor/Unchanged 471| a0: ptr for original operand/final result 472| a1: ptr to PTENRM array/Unchanged 473| a2: x/x 474| fp0: float(ILOG)/X adjusted for SCALE (Y) 475| fp1: 10^ISCALE/Unchanged 476| fp2: x/x 477| F_SCR1:x/x 478| F_SCR2:Abs(X) with $3fff exponent/Unchanged 479| L_SCR1:x/x 480| L_SCR2:first word of X packed/Unchanged 481 482A9_str: 483 fmovex (%a0),%fp0 |load X from memory 484 fabsx %fp0 |use abs(X) 485 tstw %d5 |LAMBDA is in lower word of d5 486 bne sc_mul |if neg (LAMBDA = 1), scale by mul 487 fdivx %fp1,%fp0 |calculate X / SCALE -> Y to fp0 488 bras A10_st |branch to A10 489 490sc_mul: 491 tstb BINDEC_FLG(%a6) |check for denorm 492 beqs A9_norm |if norm, continue with mul 493 fmovemx %fp1-%fp1,-(%a7) |load ETEMP with 10^ISCALE 494 movel 8(%a0),-(%a7) |load FPTEMP with input arg 495 movel 4(%a0),-(%a7) 496 movel (%a0),-(%a7) 497 movel #18,%d3 |load count for busy stack 498A9_loop: 499 clrl -(%a7) |clear lword on stack 500 dbf %d3,A9_loop 501 moveb VER_TMP(%a6),(%a7) |write current version number 502 moveb #BUSY_SIZE-4,1(%a7) |write current busy size 503 moveb #0x10,0x44(%a7) |set fcefpte[15] bit 504 movew #0x0023,0x40(%a7) |load cmdreg1b with mul command 505 moveb #0xfe,0x8(%a7) |load all 1s to cu savepc 506 frestore (%a7)+ |restore frame to fpu for completion 507 fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 508 fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 509 bras A10_st 510A9_norm: 511 tstw %d2 |test for small exp case 512 beqs A9_con |if zero, continue as normal 513 fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 514 fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 515A9_con: 516 fmulx %fp1,%fp0 |calculate X * SCALE -> Y to fp0 517 518 519| A10. Or in INEX. 520| If INEX is set, round error occurred. This is compensated 521| for by 'or-ing' in the INEX2 flag to the lsb of Y. 522| 523| Register usage: 524| Input/Output 525| d0: FPCR with RZ mode/FPSR with INEX2 isolated 526| d2: x/x 527| d3: x/x 528| d4: LEN/Unchanged 529| d5: ICTR:LAMBDA 530| d6: ILOG/Unchanged 531| d7: k-factor/Unchanged 532| a0: ptr for original operand/final result 533| a1: ptr to PTENxx array/Unchanged 534| a2: x/ptr to FP_SCR2(a6) 535| fp0: Y/Y with lsb adjusted 536| fp1: 10^ISCALE/Unchanged 537| fp2: x/x 538 539A10_st: 540 fmovel %FPSR,%d0 |get FPSR 541 fmovex %fp0,FP_SCR2(%a6) |move Y to memory 542 leal FP_SCR2(%a6),%a2 |load a2 with ptr to FP_SCR2 543 btstl #9,%d0 |check if INEX2 set 544 beqs A11_st |if clear, skip rest 545 oril #1,8(%a2) |or in 1 to lsb of mantissa 546 fmovex FP_SCR2(%a6),%fp0 |write adjusted Y back to fpu 547 548 549| A11. Restore original FPCR; set size ext. 550| Perform FINT operation in the user's rounding mode. Keep 551| the size to extended. The sintdo entry point in the sint 552| routine expects the FPCR value to be in USER_FPCR for 553| mode and precision. The original FPCR is saved in L_SCR1. 554 555A11_st: 556 movel USER_FPCR(%a6),L_SCR1(%a6) |save it for later 557 andil #0x00000030,USER_FPCR(%a6) |set size to ext, 558| ;block exceptions 559 560 561| A12. Calculate YINT = FINT(Y) according to user's rounding mode. 562| The FPSP routine sintd0 is used. The output is in fp0. 563| 564| Register usage: 565| Input/Output 566| d0: FPSR with AINEX cleared/FPCR with size set to ext 567| d2: x/x/scratch 568| d3: x/x 569| d4: LEN/Unchanged 570| d5: ICTR:LAMBDA/Unchanged 571| d6: ILOG/Unchanged 572| d7: k-factor/Unchanged 573| a0: ptr for original operand/src ptr for sintdo 574| a1: ptr to PTENxx array/Unchanged 575| a2: ptr to FP_SCR2(a6)/Unchanged 576| a6: temp pointer to FP_SCR2(a6) - orig value saved and restored 577| fp0: Y/YINT 578| fp1: 10^ISCALE/Unchanged 579| fp2: x/x 580| F_SCR1:x/x 581| F_SCR2:Y adjusted for inex/Y with original exponent 582| L_SCR1:x/original USER_FPCR 583| L_SCR2:first word of X packed/Unchanged 584 585A12_st: 586 moveml %d0-%d1/%a0-%a1,-(%a7) |save regs used by sintd0 587 movel L_SCR1(%a6),-(%a7) 588 movel L_SCR2(%a6),-(%a7) 589 leal FP_SCR2(%a6),%a0 |a0 is ptr to F_SCR2(a6) 590 fmovex %fp0,(%a0) |move Y to memory at FP_SCR2(a6) 591 tstl L_SCR2(%a6) |test sign of original operand 592 bges do_fint |if pos, use Y 593 orl #0x80000000,(%a0) |if neg, use -Y 594do_fint: 595 movel USER_FPSR(%a6),-(%a7) 596 bsr sintdo |sint routine returns int in fp0 597 moveb (%a7),USER_FPSR(%a6) 598 addl #4,%a7 599 movel (%a7)+,L_SCR2(%a6) 600 movel (%a7)+,L_SCR1(%a6) 601 moveml (%a7)+,%d0-%d1/%a0-%a1 |restore regs used by sint 602 movel L_SCR2(%a6),FP_SCR2(%a6) |restore original exponent 603 movel L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR 604 605 606| A13. Check for LEN digits. 607| If the int operation results in more than LEN digits, 608| or less than LEN -1 digits, adjust ILOG and repeat from 609| A6. This test occurs only on the first pass. If the 610| result is exactly 10^LEN, decrement ILOG and divide 611| the mantissa by 10. The calculation of 10^LEN cannot 612| be inexact, since all powers of ten up to 10^27 are exact 613| in extended precision, so the use of a previous power-of-ten 614| table will introduce no error. 615| 616| 617| Register usage: 618| Input/Output 619| d0: FPCR with size set to ext/scratch final = 0 620| d2: x/x 621| d3: x/scratch final = x 622| d4: LEN/LEN adjusted 623| d5: ICTR:LAMBDA/LAMBDA:ICTR 624| d6: ILOG/ILOG adjusted 625| d7: k-factor/Unchanged 626| a0: pointer into memory for packed bcd string formation 627| a1: ptr to PTENxx array/Unchanged 628| a2: ptr to FP_SCR2(a6)/Unchanged 629| fp0: int portion of Y/abs(YINT) adjusted 630| fp1: 10^ISCALE/Unchanged 631| fp2: x/10^LEN 632| F_SCR1:x/x 633| F_SCR2:Y with original exponent/Unchanged 634| L_SCR1:original USER_FPCR/Unchanged 635| L_SCR2:first word of X packed/Unchanged 636 637A13_st: 638 swap %d5 |put ICTR in lower word of d5 639 tstw %d5 |check if ICTR = 0 640 bne not_zr |if non-zero, go to second test 641| 642| Compute 10^(LEN-1) 643| 644 fmoves FONE,%fp2 |init fp2 to 1.0 645 movel %d4,%d0 |put LEN in d0 646 subql #1,%d0 |d0 = LEN -1 647 clrl %d3 |clr table index 648l_loop: 649 lsrl #1,%d0 |shift next bit into carry 650 bccs l_next |if zero, skip the mul 651 fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) 652l_next: 653 addl #12,%d3 |inc d3 to next pwrten table entry 654 tstl %d0 |test if LEN is zero 655 bnes l_loop |if not, loop 656| 657| 10^LEN-1 is computed for this test and A14. If the input was 658| denormalized, check only the case in which YINT > 10^LEN. 659| 660 tstb BINDEC_FLG(%a6) |check if input was norm 661 beqs A13_con |if norm, continue with checking 662 fabsx %fp0 |take abs of YINT 663 bra test_2 664| 665| Compare abs(YINT) to 10^(LEN-1) and 10^LEN 666| 667A13_con: 668 fabsx %fp0 |take abs of YINT 669 fcmpx %fp2,%fp0 |compare abs(YINT) with 10^(LEN-1) 670 fbge test_2 |if greater, do next test 671 subql #1,%d6 |subtract 1 from ILOG 672 movew #1,%d5 |set ICTR 673 fmovel #rm_mode,%FPCR |set rmode to RM 674 fmuls FTEN,%fp2 |compute 10^LEN 675 bra A6_str |return to A6 and recompute YINT 676test_2: 677 fmuls FTEN,%fp2 |compute 10^LEN 678 fcmpx %fp2,%fp0 |compare abs(YINT) with 10^LEN 679 fblt A14_st |if less, all is ok, go to A14 680 fbgt fix_ex |if greater, fix and redo 681 fdivs FTEN,%fp0 |if equal, divide by 10 682 addql #1,%d6 | and inc ILOG 683 bras A14_st | and continue elsewhere 684fix_ex: 685 addql #1,%d6 |increment ILOG by 1 686 movew #1,%d5 |set ICTR 687 fmovel #rm_mode,%FPCR |set rmode to RM 688 bra A6_str |return to A6 and recompute YINT 689| 690| Since ICTR <> 0, we have already been through one adjustment, 691| and shouldn't have another; this is to check if abs(YINT) = 10^LEN 692| 10^LEN is again computed using whatever table is in a1 since the 693| value calculated cannot be inexact. 694| 695not_zr: 696 fmoves FONE,%fp2 |init fp2 to 1.0 697 movel %d4,%d0 |put LEN in d0 698 clrl %d3 |clr table index 699z_loop: 700 lsrl #1,%d0 |shift next bit into carry 701 bccs z_next |if zero, skip the mul 702 fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) 703z_next: 704 addl #12,%d3 |inc d3 to next pwrten table entry 705 tstl %d0 |test if LEN is zero 706 bnes z_loop |if not, loop 707 fabsx %fp0 |get abs(YINT) 708 fcmpx %fp2,%fp0 |check if abs(YINT) = 10^LEN 709 fbne A14_st |if not, skip this 710 fdivs FTEN,%fp0 |divide abs(YINT) by 10 711 addql #1,%d6 |and inc ILOG by 1 712 addql #1,%d4 | and inc LEN 713 fmuls FTEN,%fp2 | if LEN++, the get 10^^LEN 714 715 716| A14. Convert the mantissa to bcd. 717| The binstr routine is used to convert the LEN digit 718| mantissa to bcd in memory. The input to binstr is 719| to be a fraction; i.e. (mantissa)/10^LEN and adjusted 720| such that the decimal point is to the left of bit 63. 721| The bcd digits are stored in the correct position in 722| the final string area in memory. 723| 724| 725| Register usage: 726| Input/Output 727| d0: x/LEN call to binstr - final is 0 728| d1: x/0 729| d2: x/ms 32-bits of mant of abs(YINT) 730| d3: x/ls 32-bits of mant of abs(YINT) 731| d4: LEN/Unchanged 732| d5: ICTR:LAMBDA/LAMBDA:ICTR 733| d6: ILOG 734| d7: k-factor/Unchanged 735| a0: pointer into memory for packed bcd string formation 736| /ptr to first mantissa byte in result string 737| a1: ptr to PTENxx array/Unchanged 738| a2: ptr to FP_SCR2(a6)/Unchanged 739| fp0: int portion of Y/abs(YINT) adjusted 740| fp1: 10^ISCALE/Unchanged 741| fp2: 10^LEN/Unchanged 742| F_SCR1:x/Work area for final result 743| F_SCR2:Y with original exponent/Unchanged 744| L_SCR1:original USER_FPCR/Unchanged 745| L_SCR2:first word of X packed/Unchanged 746 747A14_st: 748 fmovel #rz_mode,%FPCR |force rz for conversion 749 fdivx %fp2,%fp0 |divide abs(YINT) by 10^LEN 750 leal FP_SCR1(%a6),%a0 751 fmovex %fp0,(%a0) |move abs(YINT)/10^LEN to memory 752 movel 4(%a0),%d2 |move 2nd word of FP_RES to d2 753 movel 8(%a0),%d3 |move 3rd word of FP_RES to d3 754 clrl 4(%a0) |zero word 2 of FP_RES 755 clrl 8(%a0) |zero word 3 of FP_RES 756 movel (%a0),%d0 |move exponent to d0 757 swap %d0 |put exponent in lower word 758 beqs no_sft |if zero, don't shift 759 subil #0x3ffd,%d0 |sub bias less 2 to make fract 760 tstl %d0 |check if > 1 761 bgts no_sft |if so, don't shift 762 negl %d0 |make exp positive 763m_loop: 764 lsrl #1,%d2 |shift d2:d3 right, add 0s 765 roxrl #1,%d3 |the number of places 766 dbf %d0,m_loop |given in d0 767no_sft: 768 tstl %d2 |check for mantissa of zero 769 bnes no_zr |if not, go on 770 tstl %d3 |continue zero check 771 beqs zer_m |if zero, go directly to binstr 772no_zr: 773 clrl %d1 |put zero in d1 for addx 774 addil #0x00000080,%d3 |inc at bit 7 775 addxl %d1,%d2 |continue inc 776 andil #0xffffff80,%d3 |strip off lsb not used by 882 777zer_m: 778 movel %d4,%d0 |put LEN in d0 for binstr call 779 addql #3,%a0 |a0 points to M16 byte in result 780 bsr binstr |call binstr to convert mant 781 782 783| A15. Convert the exponent to bcd. 784| As in A14 above, the exp is converted to bcd and the 785| digits are stored in the final string. 786| 787| Digits are stored in L_SCR1(a6) on return from BINDEC as: 788| 789| 32 16 15 0 790| ----------------------------------------- 791| | 0 | e3 | e2 | e1 | e4 | X | X | X | 792| ----------------------------------------- 793| 794| And are moved into their proper places in FP_SCR1. If digit e4 795| is non-zero, OPERR is signaled. In all cases, all 4 digits are 796| written as specified in the 881/882 manual for packed decimal. 797| 798| Register usage: 799| Input/Output 800| d0: x/LEN call to binstr - final is 0 801| d1: x/scratch (0);shift count for final exponent packing 802| d2: x/ms 32-bits of exp fraction/scratch 803| d3: x/ls 32-bits of exp fraction 804| d4: LEN/Unchanged 805| d5: ICTR:LAMBDA/LAMBDA:ICTR 806| d6: ILOG 807| d7: k-factor/Unchanged 808| a0: ptr to result string/ptr to L_SCR1(a6) 809| a1: ptr to PTENxx array/Unchanged 810| a2: ptr to FP_SCR2(a6)/Unchanged 811| fp0: abs(YINT) adjusted/float(ILOG) 812| fp1: 10^ISCALE/Unchanged 813| fp2: 10^LEN/Unchanged 814| F_SCR1:Work area for final result/BCD result 815| F_SCR2:Y with original exponent/ILOG/10^4 816| L_SCR1:original USER_FPCR/Exponent digits on return from binstr 817| L_SCR2:first word of X packed/Unchanged 818 819A15_st: 820 tstb BINDEC_FLG(%a6) |check for denorm 821 beqs not_denorm 822 ftstx %fp0 |test for zero 823 fbeq den_zero |if zero, use k-factor or 4933 824 fmovel %d6,%fp0 |float ILOG 825 fabsx %fp0 |get abs of ILOG 826 bras convrt 827den_zero: 828 tstl %d7 |check sign of the k-factor 829 blts use_ilog |if negative, use ILOG 830 fmoves F4933,%fp0 |force exponent to 4933 831 bras convrt |do it 832use_ilog: 833 fmovel %d6,%fp0 |float ILOG 834 fabsx %fp0 |get abs of ILOG 835 bras convrt 836not_denorm: 837 ftstx %fp0 |test for zero 838 fbne not_zero |if zero, force exponent 839 fmoves FONE,%fp0 |force exponent to 1 840 bras convrt |do it 841not_zero: 842 fmovel %d6,%fp0 |float ILOG 843 fabsx %fp0 |get abs of ILOG 844convrt: 845 fdivx 24(%a1),%fp0 |compute ILOG/10^4 846 fmovex %fp0,FP_SCR2(%a6) |store fp0 in memory 847 movel 4(%a2),%d2 |move word 2 to d2 848 movel 8(%a2),%d3 |move word 3 to d3 849 movew (%a2),%d0 |move exp to d0 850 beqs x_loop_fin |if zero, skip the shift 851 subiw #0x3ffd,%d0 |subtract off bias 852 negw %d0 |make exp positive 853x_loop: 854 lsrl #1,%d2 |shift d2:d3 right 855 roxrl #1,%d3 |the number of places 856 dbf %d0,x_loop |given in d0 857x_loop_fin: 858 clrl %d1 |put zero in d1 for addx 859 addil #0x00000080,%d3 |inc at bit 6 860 addxl %d1,%d2 |continue inc 861 andil #0xffffff80,%d3 |strip off lsb not used by 882 862 movel #4,%d0 |put 4 in d0 for binstr call 863 leal L_SCR1(%a6),%a0 |a0 is ptr to L_SCR1 for exp digits 864 bsr binstr |call binstr to convert exp 865 movel L_SCR1(%a6),%d0 |load L_SCR1 lword to d0 866 movel #12,%d1 |use d1 for shift count 867 lsrl %d1,%d0 |shift d0 right by 12 868 bfins %d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1 869 lsrl %d1,%d0 |shift d0 right by 12 870 bfins %d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1 871 tstb %d0 |check if e4 is zero 872 beqs A16_st |if zero, skip rest 873 orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR 874 875 876| A16. Write sign bits to final string. 877| Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). 878| 879| Register usage: 880| Input/Output 881| d0: x/scratch - final is x 882| d2: x/x 883| d3: x/x 884| d4: LEN/Unchanged 885| d5: ICTR:LAMBDA/LAMBDA:ICTR 886| d6: ILOG/ILOG adjusted 887| d7: k-factor/Unchanged 888| a0: ptr to L_SCR1(a6)/Unchanged 889| a1: ptr to PTENxx array/Unchanged 890| a2: ptr to FP_SCR2(a6)/Unchanged 891| fp0: float(ILOG)/Unchanged 892| fp1: 10^ISCALE/Unchanged 893| fp2: 10^LEN/Unchanged 894| F_SCR1:BCD result with correct signs 895| F_SCR2:ILOG/10^4 896| L_SCR1:Exponent digits on return from binstr 897| L_SCR2:first word of X packed/Unchanged 898 899A16_st: 900 clrl %d0 |clr d0 for collection of signs 901 andib #0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1 902 tstl L_SCR2(%a6) |check sign of original mantissa 903 bges mant_p |if pos, don't set SM 904 moveql #2,%d0 |move 2 in to d0 for SM 905mant_p: 906 tstl %d6 |check sign of ILOG 907 bges wr_sgn |if pos, don't set SE 908 addql #1,%d0 |set bit 0 in d0 for SE 909wr_sgn: 910 bfins %d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1 911 912| Clean up and restore all registers used. 913 914 fmovel #0,%FPSR |clear possible inex2/ainex bits 915 fmovemx (%a7)+,%fp0-%fp2 916 moveml (%a7)+,%d2-%d7/%a2 917 rts 918 919 |end