cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bindec.S (28114B)


      1|
      2|	bindec.sa 3.4 1/3/91
      3|
      4|	bindec
      5|
      6|	Description:
      7|		Converts an input in extended precision format
      8|		to bcd format.
      9|
     10|	Input:
     11|		a0 points to the input extended precision value
     12|		value in memory; d0 contains the k-factor sign-extended
     13|		to 32-bits.  The input may be either normalized,
     14|		unnormalized, or denormalized.
     15|
     16|	Output:	result in the FP_SCR1 space on the stack.
     17|
     18|	Saves and Modifies: D2-D7,A2,FP2
     19|
     20|	Algorithm:
     21|
     22|	A1.	Set RM and size ext;  Set SIGMA = sign of input.
     23|		The k-factor is saved for use in d7. Clear the
     24|		BINDEC_FLG for separating normalized/denormalized
     25|		input.  If input is unnormalized or denormalized,
     26|		normalize it.
     27|
     28|	A2.	Set X = abs(input).
     29|
     30|	A3.	Compute ILOG.
     31|		ILOG is the log base 10 of the input value.  It is
     32|		approximated by adding e + 0.f when the original
     33|		value is viewed as 2^^e * 1.f in extended precision.
     34|		This value is stored in d6.
     35|
     36|	A4.	Clr INEX bit.
     37|		The operation in A3 above may have set INEX2.
     38|
     39|	A5.	Set ICTR = 0;
     40|		ICTR is a flag used in A13.  It must be set before the
     41|		loop entry A6.
     42|
     43|	A6.	Calculate LEN.
     44|		LEN is the number of digits to be displayed.  The
     45|		k-factor can dictate either the total number of digits,
     46|		if it is a positive number, or the number of digits
     47|		after the decimal point which are to be included as
     48|		significant.  See the 68882 manual for examples.
     49|		If LEN is computed to be greater than 17, set OPERR in
     50|		USER_FPSR.  LEN is stored in d4.
     51|
     52|	A7.	Calculate SCALE.
     53|		SCALE is equal to 10^ISCALE, where ISCALE is the number
     54|		of decimal places needed to insure LEN integer digits
     55|		in the output before conversion to bcd. LAMBDA is the
     56|		sign of ISCALE, used in A9. Fp1 contains
     57|		10^^(abs(ISCALE)) using a rounding mode which is a
     58|		function of the original rounding mode and the signs
     59|		of ISCALE and X.  A table is given in the code.
     60|
     61|	A8.	Clr INEX; Force RZ.
     62|		The operation in A3 above may have set INEX2.
     63|		RZ mode is forced for the scaling operation to insure
     64|		only one rounding error.  The grs bits are collected in
     65|		the INEX flag for use in A10.
     66|
     67|	A9.	Scale X -> Y.
     68|		The mantissa is scaled to the desired number of
     69|		significant digits.  The excess digits are collected
     70|		in INEX2.
     71|
     72|	A10.	Or in INEX.
     73|		If INEX is set, round error occurred.  This is
     74|		compensated for by 'or-ing' in the INEX2 flag to
     75|		the lsb of Y.
     76|
     77|	A11.	Restore original FPCR; set size ext.
     78|		Perform FINT operation in the user's rounding mode.
     79|		Keep the size to extended.
     80|
     81|	A12.	Calculate YINT = FINT(Y) according to user's rounding
     82|		mode.  The FPSP routine sintd0 is used.  The output
     83|		is in fp0.
     84|
     85|	A13.	Check for LEN digits.
     86|		If the int operation results in more than LEN digits,
     87|		or less than LEN -1 digits, adjust ILOG and repeat from
     88|		A6.  This test occurs only on the first pass.  If the
     89|		result is exactly 10^LEN, decrement ILOG and divide
     90|		the mantissa by 10.
     91|
     92|	A14.	Convert the mantissa to bcd.
     93|		The binstr routine is used to convert the LEN digit
     94|		mantissa to bcd in memory.  The input to binstr is
     95|		to be a fraction; i.e. (mantissa)/10^LEN and adjusted
     96|		such that the decimal point is to the left of bit 63.
     97|		The bcd digits are stored in the correct position in
     98|		the final string area in memory.
     99|
    100|	A15.	Convert the exponent to bcd.
    101|		As in A14 above, the exp is converted to bcd and the
    102|		digits are stored in the final string.
    103|		Test the length of the final exponent string.  If the
    104|		length is 4, set operr.
    105|
    106|	A16.	Write sign bits to final string.
    107|
    108|	Implementation Notes:
    109|
    110|	The registers are used as follows:
    111|
    112|		d0: scratch; LEN input to binstr
    113|		d1: scratch
    114|		d2: upper 32-bits of mantissa for binstr
    115|		d3: scratch;lower 32-bits of mantissa for binstr
    116|		d4: LEN
    117|		d5: LAMBDA/ICTR
    118|		d6: ILOG
    119|		d7: k-factor
    120|		a0: ptr for original operand/final result
    121|		a1: scratch pointer
    122|		a2: pointer to FP_X; abs(original value) in ext
    123|		fp0: scratch
    124|		fp1: scratch
    125|		fp2: scratch
    126|		F_SCR1:
    127|		F_SCR2:
    128|		L_SCR1:
    129|		L_SCR2:
    130
    131|		Copyright (C) Motorola, Inc. 1990
    132|			All Rights Reserved
    133|
    134|       For details on the license for this file, please see the
    135|       file, README, in this same directory.
    136
    137|BINDEC    idnt    2,1 | Motorola 040 Floating Point Software Package
    138
    139#include "fpsp.h"
    140
    141	|section	8
    142
    143| Constants in extended precision
    144LOG2:	.long	0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
    145LOG2UP1:	.long	0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
    146
    147| Constants in single precision
    148FONE:	.long	0x3F800000,0x00000000,0x00000000,0x00000000
    149FTWO:	.long	0x40000000,0x00000000,0x00000000,0x00000000
    150FTEN:	.long	0x41200000,0x00000000,0x00000000,0x00000000
    151F4933:	.long	0x459A2800,0x00000000,0x00000000,0x00000000
    152
    153RBDTBL:	.byte	0,0,0,0
    154	.byte	3,3,2,2
    155	.byte	3,2,2,3
    156	.byte	2,3,3,2
    157
    158	|xref	binstr
    159	|xref	sintdo
    160	|xref	ptenrn,ptenrm,ptenrp
    161
    162	.global	bindec
    163	.global	sc_mul
    164bindec:
    165	moveml	%d2-%d7/%a2,-(%a7)
    166	fmovemx %fp0-%fp2,-(%a7)
    167
    168| A1. Set RM and size ext. Set SIGMA = sign input;
    169|     The k-factor is saved for use in d7.  Clear BINDEC_FLG for
    170|     separating  normalized/denormalized input.  If the input
    171|     is a denormalized number, set the BINDEC_FLG memory word
    172|     to signal denorm.  If the input is unnormalized, normalize
    173|     the input and test for denormalized result.
    174|
    175	fmovel	#rm_mode,%FPCR	|set RM and ext
    176	movel	(%a0),L_SCR2(%a6)	|save exponent for sign check
    177	movel	%d0,%d7		|move k-factor to d7
    178	clrb	BINDEC_FLG(%a6)	|clr norm/denorm flag
    179	movew	STAG(%a6),%d0	|get stag
    180	andiw	#0xe000,%d0	|isolate stag bits
    181	beq	A2_str		|if zero, input is norm
    182|
    183| Normalize the denorm
    184|
    185un_de_norm:
    186	movew	(%a0),%d0
    187	andiw	#0x7fff,%d0	|strip sign of normalized exp
    188	movel	4(%a0),%d1
    189	movel	8(%a0),%d2
    190norm_loop:
    191	subw	#1,%d0
    192	lsll	#1,%d2
    193	roxll	#1,%d1
    194	tstl	%d1
    195	bges	norm_loop
    196|
    197| Test if the normalized input is denormalized
    198|
    199	tstw	%d0
    200	bgts	pos_exp		|if greater than zero, it is a norm
    201	st	BINDEC_FLG(%a6)	|set flag for denorm
    202pos_exp:
    203	andiw	#0x7fff,%d0	|strip sign of normalized exp
    204	movew	%d0,(%a0)
    205	movel	%d1,4(%a0)
    206	movel	%d2,8(%a0)
    207
    208| A2. Set X = abs(input).
    209|
    210A2_str:
    211	movel	(%a0),FP_SCR2(%a6) | move input to work space
    212	movel	4(%a0),FP_SCR2+4(%a6) | move input to work space
    213	movel	8(%a0),FP_SCR2+8(%a6) | move input to work space
    214	andil	#0x7fffffff,FP_SCR2(%a6) |create abs(X)
    215
    216| A3. Compute ILOG.
    217|     ILOG is the log base 10 of the input value.  It is approx-
    218|     imated by adding e + 0.f when the original value is viewed
    219|     as 2^^e * 1.f in extended precision.  This value is stored
    220|     in d6.
    221|
    222| Register usage:
    223|	Input/Output
    224|	d0: k-factor/exponent
    225|	d2: x/x
    226|	d3: x/x
    227|	d4: x/x
    228|	d5: x/x
    229|	d6: x/ILOG
    230|	d7: k-factor/Unchanged
    231|	a0: ptr for original operand/final result
    232|	a1: x/x
    233|	a2: x/x
    234|	fp0: x/float(ILOG)
    235|	fp1: x/x
    236|	fp2: x/x
    237|	F_SCR1:x/x
    238|	F_SCR2:Abs(X)/Abs(X) with $3fff exponent
    239|	L_SCR1:x/x
    240|	L_SCR2:first word of X packed/Unchanged
    241
    242	tstb	BINDEC_FLG(%a6)	|check for denorm
    243	beqs	A3_cont		|if clr, continue with norm
    244	movel	#-4933,%d6	|force ILOG = -4933
    245	bras	A4_str
    246A3_cont:
    247	movew	FP_SCR2(%a6),%d0	|move exp to d0
    248	movew	#0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff
    249	fmovex	FP_SCR2(%a6),%fp0	|now fp0 has 1.f
    250	subw	#0x3fff,%d0	|strip off bias
    251	faddw	%d0,%fp0		|add in exp
    252	fsubs	FONE,%fp0	|subtract off 1.0
    253	fbge	pos_res		|if pos, branch
    254	fmulx	LOG2UP1,%fp0	|if neg, mul by LOG2UP1
    255	fmovel	%fp0,%d6		|put ILOG in d6 as a lword
    256	bras	A4_str		|go move out ILOG
    257pos_res:
    258	fmulx	LOG2,%fp0	|if pos, mul by LOG2
    259	fmovel	%fp0,%d6		|put ILOG in d6 as a lword
    260
    261
    262| A4. Clr INEX bit.
    263|     The operation in A3 above may have set INEX2.
    264
    265A4_str:
    266	fmovel	#0,%FPSR		|zero all of fpsr - nothing needed
    267
    268
    269| A5. Set ICTR = 0;
    270|     ICTR is a flag used in A13.  It must be set before the
    271|     loop entry A6. The lower word of d5 is used for ICTR.
    272
    273	clrw	%d5		|clear ICTR
    274
    275
    276| A6. Calculate LEN.
    277|     LEN is the number of digits to be displayed.  The k-factor
    278|     can dictate either the total number of digits, if it is
    279|     a positive number, or the number of digits after the
    280|     original decimal point which are to be included as
    281|     significant.  See the 68882 manual for examples.
    282|     If LEN is computed to be greater than 17, set OPERR in
    283|     USER_FPSR.  LEN is stored in d4.
    284|
    285| Register usage:
    286|	Input/Output
    287|	d0: exponent/Unchanged
    288|	d2: x/x/scratch
    289|	d3: x/x
    290|	d4: exc picture/LEN
    291|	d5: ICTR/Unchanged
    292|	d6: ILOG/Unchanged
    293|	d7: k-factor/Unchanged
    294|	a0: ptr for original operand/final result
    295|	a1: x/x
    296|	a2: x/x
    297|	fp0: float(ILOG)/Unchanged
    298|	fp1: x/x
    299|	fp2: x/x
    300|	F_SCR1:x/x
    301|	F_SCR2:Abs(X) with $3fff exponent/Unchanged
    302|	L_SCR1:x/x
    303|	L_SCR2:first word of X packed/Unchanged
    304
    305A6_str:
    306	tstl	%d7		|branch on sign of k
    307	bles	k_neg		|if k <= 0, LEN = ILOG + 1 - k
    308	movel	%d7,%d4		|if k > 0, LEN = k
    309	bras	len_ck		|skip to LEN check
    310k_neg:
    311	movel	%d6,%d4		|first load ILOG to d4
    312	subl	%d7,%d4		|subtract off k
    313	addql	#1,%d4		|add in the 1
    314len_ck:
    315	tstl	%d4		|LEN check: branch on sign of LEN
    316	bles	LEN_ng		|if neg, set LEN = 1
    317	cmpl	#17,%d4		|test if LEN > 17
    318	bles	A7_str		|if not, forget it
    319	movel	#17,%d4		|set max LEN = 17
    320	tstl	%d7		|if negative, never set OPERR
    321	bles	A7_str		|if positive, continue
    322	orl	#opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
    323	bras	A7_str		|finished here
    324LEN_ng:
    325	moveql	#1,%d4		|min LEN is 1
    326
    327
    328| A7. Calculate SCALE.
    329|     SCALE is equal to 10^ISCALE, where ISCALE is the number
    330|     of decimal places needed to insure LEN integer digits
    331|     in the output before conversion to bcd. LAMBDA is the sign
    332|     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using
    333|     the rounding mode as given in the following table (see
    334|     Coonen, p. 7.23 as ref.; however, the SCALE variable is
    335|     of opposite sign in bindec.sa from Coonen).
    336|
    337|	Initial					USE
    338|	FPCR[6:5]	LAMBDA	SIGN(X)		FPCR[6:5]
    339|	----------------------------------------------
    340|	 RN	00	   0	   0		00/0	RN
    341|	 RN	00	   0	   1		00/0	RN
    342|	 RN	00	   1	   0		00/0	RN
    343|	 RN	00	   1	   1		00/0	RN
    344|	 RZ	01	   0	   0		11/3	RP
    345|	 RZ	01	   0	   1		11/3	RP
    346|	 RZ	01	   1	   0		10/2	RM
    347|	 RZ	01	   1	   1		10/2	RM
    348|	 RM	10	   0	   0		11/3	RP
    349|	 RM	10	   0	   1		10/2	RM
    350|	 RM	10	   1	   0		10/2	RM
    351|	 RM	10	   1	   1		11/3	RP
    352|	 RP	11	   0	   0		10/2	RM
    353|	 RP	11	   0	   1		11/3	RP
    354|	 RP	11	   1	   0		11/3	RP
    355|	 RP	11	   1	   1		10/2	RM
    356|
    357| Register usage:
    358|	Input/Output
    359|	d0: exponent/scratch - final is 0
    360|	d2: x/0 or 24 for A9
    361|	d3: x/scratch - offset ptr into PTENRM array
    362|	d4: LEN/Unchanged
    363|	d5: 0/ICTR:LAMBDA
    364|	d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
    365|	d7: k-factor/Unchanged
    366|	a0: ptr for original operand/final result
    367|	a1: x/ptr to PTENRM array
    368|	a2: x/x
    369|	fp0: float(ILOG)/Unchanged
    370|	fp1: x/10^ISCALE
    371|	fp2: x/x
    372|	F_SCR1:x/x
    373|	F_SCR2:Abs(X) with $3fff exponent/Unchanged
    374|	L_SCR1:x/x
    375|	L_SCR2:first word of X packed/Unchanged
    376
    377A7_str:
    378	tstl	%d7		|test sign of k
    379	bgts	k_pos		|if pos and > 0, skip this
    380	cmpl	%d6,%d7		|test k - ILOG
    381	blts	k_pos		|if ILOG >= k, skip this
    382	movel	%d7,%d6		|if ((k<0) & (ILOG < k)) ILOG = k
    383k_pos:
    384	movel	%d6,%d0		|calc ILOG + 1 - LEN in d0
    385	addql	#1,%d0		|add the 1
    386	subl	%d4,%d0		|sub off LEN
    387	swap	%d5		|use upper word of d5 for LAMBDA
    388	clrw	%d5		|set it zero initially
    389	clrw	%d2		|set up d2 for very small case
    390	tstl	%d0		|test sign of ISCALE
    391	bges	iscale		|if pos, skip next inst
    392	addqw	#1,%d5		|if neg, set LAMBDA true
    393	cmpl	#0xffffecd4,%d0	|test iscale <= -4908
    394	bgts	no_inf		|if false, skip rest
    395	addil	#24,%d0		|add in 24 to iscale
    396	movel	#24,%d2		|put 24 in d2 for A9
    397no_inf:
    398	negl	%d0		|and take abs of ISCALE
    399iscale:
    400	fmoves	FONE,%fp1	|init fp1 to 1
    401	bfextu	USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits
    402	lslw	#1,%d1		|put them in bits 2:1
    403	addw	%d5,%d1		|add in LAMBDA
    404	lslw	#1,%d1		|put them in bits 3:1
    405	tstl	L_SCR2(%a6)	|test sign of original x
    406	bges	x_pos		|if pos, don't set bit 0
    407	addql	#1,%d1		|if neg, set bit 0
    408x_pos:
    409	leal	RBDTBL,%a2	|load rbdtbl base
    410	moveb	(%a2,%d1),%d3	|load d3 with new rmode
    411	lsll	#4,%d3		|put bits in proper position
    412	fmovel	%d3,%fpcr		|load bits into fpu
    413	lsrl	#4,%d3		|put bits in proper position
    414	tstb	%d3		|decode new rmode for pten table
    415	bnes	not_rn		|if zero, it is RN
    416	leal	PTENRN,%a1	|load a1 with RN table base
    417	bras	rmode		|exit decode
    418not_rn:
    419	lsrb	#1,%d3		|get lsb in carry
    420	bccs	not_rp		|if carry clear, it is RM
    421	leal	PTENRP,%a1	|load a1 with RP table base
    422	bras	rmode		|exit decode
    423not_rp:
    424	leal	PTENRM,%a1	|load a1 with RM table base
    425rmode:
    426	clrl	%d3		|clr table index
    427e_loop:
    428	lsrl	#1,%d0		|shift next bit into carry
    429	bccs	e_next		|if zero, skip the mul
    430	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
    431e_next:
    432	addl	#12,%d3		|inc d3 to next pwrten table entry
    433	tstl	%d0		|test if ISCALE is zero
    434	bnes	e_loop		|if not, loop
    435
    436
    437| A8. Clr INEX; Force RZ.
    438|     The operation in A3 above may have set INEX2.
    439|     RZ mode is forced for the scaling operation to insure
    440|     only one rounding error.  The grs bits are collected in
    441|     the INEX flag for use in A10.
    442|
    443| Register usage:
    444|	Input/Output
    445
    446	fmovel	#0,%FPSR		|clr INEX
    447	fmovel	#rz_mode,%FPCR	|set RZ rounding mode
    448
    449
    450| A9. Scale X -> Y.
    451|     The mantissa is scaled to the desired number of significant
    452|     digits.  The excess digits are collected in INEX2. If mul,
    453|     Check d2 for excess 10 exponential value.  If not zero,
    454|     the iscale value would have caused the pwrten calculation
    455|     to overflow.  Only a negative iscale can cause this, so
    456|     multiply by 10^(d2), which is now only allowed to be 24,
    457|     with a multiply by 10^8 and 10^16, which is exact since
    458|     10^24 is exact.  If the input was denormalized, we must
    459|     create a busy stack frame with the mul command and the
    460|     two operands, and allow the fpu to complete the multiply.
    461|
    462| Register usage:
    463|	Input/Output
    464|	d0: FPCR with RZ mode/Unchanged
    465|	d2: 0 or 24/unchanged
    466|	d3: x/x
    467|	d4: LEN/Unchanged
    468|	d5: ICTR:LAMBDA
    469|	d6: ILOG/Unchanged
    470|	d7: k-factor/Unchanged
    471|	a0: ptr for original operand/final result
    472|	a1: ptr to PTENRM array/Unchanged
    473|	a2: x/x
    474|	fp0: float(ILOG)/X adjusted for SCALE (Y)
    475|	fp1: 10^ISCALE/Unchanged
    476|	fp2: x/x
    477|	F_SCR1:x/x
    478|	F_SCR2:Abs(X) with $3fff exponent/Unchanged
    479|	L_SCR1:x/x
    480|	L_SCR2:first word of X packed/Unchanged
    481
    482A9_str:
    483	fmovex	(%a0),%fp0	|load X from memory
    484	fabsx	%fp0		|use abs(X)
    485	tstw	%d5		|LAMBDA is in lower word of d5
    486	bne	sc_mul		|if neg (LAMBDA = 1), scale by mul
    487	fdivx	%fp1,%fp0		|calculate X / SCALE -> Y to fp0
    488	bras	A10_st		|branch to A10
    489
    490sc_mul:
    491	tstb	BINDEC_FLG(%a6)	|check for denorm
    492	beqs	A9_norm		|if norm, continue with mul
    493	fmovemx %fp1-%fp1,-(%a7)	|load ETEMP with 10^ISCALE
    494	movel	8(%a0),-(%a7)	|load FPTEMP with input arg
    495	movel	4(%a0),-(%a7)
    496	movel	(%a0),-(%a7)
    497	movel	#18,%d3		|load count for busy stack
    498A9_loop:
    499	clrl	-(%a7)		|clear lword on stack
    500	dbf	%d3,A9_loop
    501	moveb	VER_TMP(%a6),(%a7) |write current version number
    502	moveb	#BUSY_SIZE-4,1(%a7) |write current busy size
    503	moveb	#0x10,0x44(%a7)	|set fcefpte[15] bit
    504	movew	#0x0023,0x40(%a7)	|load cmdreg1b with mul command
    505	moveb	#0xfe,0x8(%a7)	|load all 1s to cu savepc
    506	frestore (%a7)+		|restore frame to fpu for completion
    507	fmulx	36(%a1),%fp0	|multiply fp0 by 10^8
    508	fmulx	48(%a1),%fp0	|multiply fp0 by 10^16
    509	bras	A10_st
    510A9_norm:
    511	tstw	%d2		|test for small exp case
    512	beqs	A9_con		|if zero, continue as normal
    513	fmulx	36(%a1),%fp0	|multiply fp0 by 10^8
    514	fmulx	48(%a1),%fp0	|multiply fp0 by 10^16
    515A9_con:
    516	fmulx	%fp1,%fp0		|calculate X * SCALE -> Y to fp0
    517
    518
    519| A10. Or in INEX.
    520|      If INEX is set, round error occurred.  This is compensated
    521|      for by 'or-ing' in the INEX2 flag to the lsb of Y.
    522|
    523| Register usage:
    524|	Input/Output
    525|	d0: FPCR with RZ mode/FPSR with INEX2 isolated
    526|	d2: x/x
    527|	d3: x/x
    528|	d4: LEN/Unchanged
    529|	d5: ICTR:LAMBDA
    530|	d6: ILOG/Unchanged
    531|	d7: k-factor/Unchanged
    532|	a0: ptr for original operand/final result
    533|	a1: ptr to PTENxx array/Unchanged
    534|	a2: x/ptr to FP_SCR2(a6)
    535|	fp0: Y/Y with lsb adjusted
    536|	fp1: 10^ISCALE/Unchanged
    537|	fp2: x/x
    538
    539A10_st:
    540	fmovel	%FPSR,%d0		|get FPSR
    541	fmovex	%fp0,FP_SCR2(%a6)	|move Y to memory
    542	leal	FP_SCR2(%a6),%a2	|load a2 with ptr to FP_SCR2
    543	btstl	#9,%d0		|check if INEX2 set
    544	beqs	A11_st		|if clear, skip rest
    545	oril	#1,8(%a2)	|or in 1 to lsb of mantissa
    546	fmovex	FP_SCR2(%a6),%fp0	|write adjusted Y back to fpu
    547
    548
    549| A11. Restore original FPCR; set size ext.
    550|      Perform FINT operation in the user's rounding mode.  Keep
    551|      the size to extended.  The sintdo entry point in the sint
    552|      routine expects the FPCR value to be in USER_FPCR for
    553|      mode and precision.  The original FPCR is saved in L_SCR1.
    554
    555A11_st:
    556	movel	USER_FPCR(%a6),L_SCR1(%a6) |save it for later
    557	andil	#0x00000030,USER_FPCR(%a6) |set size to ext,
    558|					;block exceptions
    559
    560
    561| A12. Calculate YINT = FINT(Y) according to user's rounding mode.
    562|      The FPSP routine sintd0 is used.  The output is in fp0.
    563|
    564| Register usage:
    565|	Input/Output
    566|	d0: FPSR with AINEX cleared/FPCR with size set to ext
    567|	d2: x/x/scratch
    568|	d3: x/x
    569|	d4: LEN/Unchanged
    570|	d5: ICTR:LAMBDA/Unchanged
    571|	d6: ILOG/Unchanged
    572|	d7: k-factor/Unchanged
    573|	a0: ptr for original operand/src ptr for sintdo
    574|	a1: ptr to PTENxx array/Unchanged
    575|	a2: ptr to FP_SCR2(a6)/Unchanged
    576|	a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
    577|	fp0: Y/YINT
    578|	fp1: 10^ISCALE/Unchanged
    579|	fp2: x/x
    580|	F_SCR1:x/x
    581|	F_SCR2:Y adjusted for inex/Y with original exponent
    582|	L_SCR1:x/original USER_FPCR
    583|	L_SCR2:first word of X packed/Unchanged
    584
    585A12_st:
    586	moveml	%d0-%d1/%a0-%a1,-(%a7)	|save regs used by sintd0
    587	movel	L_SCR1(%a6),-(%a7)
    588	movel	L_SCR2(%a6),-(%a7)
    589	leal	FP_SCR2(%a6),%a0		|a0 is ptr to F_SCR2(a6)
    590	fmovex	%fp0,(%a0)		|move Y to memory at FP_SCR2(a6)
    591	tstl	L_SCR2(%a6)		|test sign of original operand
    592	bges	do_fint			|if pos, use Y
    593	orl	#0x80000000,(%a0)		|if neg, use -Y
    594do_fint:
    595	movel	USER_FPSR(%a6),-(%a7)
    596	bsr	sintdo			|sint routine returns int in fp0
    597	moveb	(%a7),USER_FPSR(%a6)
    598	addl	#4,%a7
    599	movel	(%a7)+,L_SCR2(%a6)
    600	movel	(%a7)+,L_SCR1(%a6)
    601	moveml	(%a7)+,%d0-%d1/%a0-%a1	|restore regs used by sint
    602	movel	L_SCR2(%a6),FP_SCR2(%a6)	|restore original exponent
    603	movel	L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR
    604
    605
    606| A13. Check for LEN digits.
    607|      If the int operation results in more than LEN digits,
    608|      or less than LEN -1 digits, adjust ILOG and repeat from
    609|      A6.  This test occurs only on the first pass.  If the
    610|      result is exactly 10^LEN, decrement ILOG and divide
    611|      the mantissa by 10.  The calculation of 10^LEN cannot
    612|      be inexact, since all powers of ten up to 10^27 are exact
    613|      in extended precision, so the use of a previous power-of-ten
    614|      table will introduce no error.
    615|
    616|
    617| Register usage:
    618|	Input/Output
    619|	d0: FPCR with size set to ext/scratch final = 0
    620|	d2: x/x
    621|	d3: x/scratch final = x
    622|	d4: LEN/LEN adjusted
    623|	d5: ICTR:LAMBDA/LAMBDA:ICTR
    624|	d6: ILOG/ILOG adjusted
    625|	d7: k-factor/Unchanged
    626|	a0: pointer into memory for packed bcd string formation
    627|	a1: ptr to PTENxx array/Unchanged
    628|	a2: ptr to FP_SCR2(a6)/Unchanged
    629|	fp0: int portion of Y/abs(YINT) adjusted
    630|	fp1: 10^ISCALE/Unchanged
    631|	fp2: x/10^LEN
    632|	F_SCR1:x/x
    633|	F_SCR2:Y with original exponent/Unchanged
    634|	L_SCR1:original USER_FPCR/Unchanged
    635|	L_SCR2:first word of X packed/Unchanged
    636
    637A13_st:
    638	swap	%d5		|put ICTR in lower word of d5
    639	tstw	%d5		|check if ICTR = 0
    640	bne	not_zr		|if non-zero, go to second test
    641|
    642| Compute 10^(LEN-1)
    643|
    644	fmoves	FONE,%fp2	|init fp2 to 1.0
    645	movel	%d4,%d0		|put LEN in d0
    646	subql	#1,%d0		|d0 = LEN -1
    647	clrl	%d3		|clr table index
    648l_loop:
    649	lsrl	#1,%d0		|shift next bit into carry
    650	bccs	l_next		|if zero, skip the mul
    651	fmulx	(%a1,%d3),%fp2	|mul by 10**(d3_bit_no)
    652l_next:
    653	addl	#12,%d3		|inc d3 to next pwrten table entry
    654	tstl	%d0		|test if LEN is zero
    655	bnes	l_loop		|if not, loop
    656|
    657| 10^LEN-1 is computed for this test and A14.  If the input was
    658| denormalized, check only the case in which YINT > 10^LEN.
    659|
    660	tstb	BINDEC_FLG(%a6)	|check if input was norm
    661	beqs	A13_con		|if norm, continue with checking
    662	fabsx	%fp0		|take abs of YINT
    663	bra	test_2
    664|
    665| Compare abs(YINT) to 10^(LEN-1) and 10^LEN
    666|
    667A13_con:
    668	fabsx	%fp0		|take abs of YINT
    669	fcmpx	%fp2,%fp0		|compare abs(YINT) with 10^(LEN-1)
    670	fbge	test_2		|if greater, do next test
    671	subql	#1,%d6		|subtract 1 from ILOG
    672	movew	#1,%d5		|set ICTR
    673	fmovel	#rm_mode,%FPCR	|set rmode to RM
    674	fmuls	FTEN,%fp2	|compute 10^LEN
    675	bra	A6_str		|return to A6 and recompute YINT
    676test_2:
    677	fmuls	FTEN,%fp2	|compute 10^LEN
    678	fcmpx	%fp2,%fp0		|compare abs(YINT) with 10^LEN
    679	fblt	A14_st		|if less, all is ok, go to A14
    680	fbgt	fix_ex		|if greater, fix and redo
    681	fdivs	FTEN,%fp0	|if equal, divide by 10
    682	addql	#1,%d6		| and inc ILOG
    683	bras	A14_st		| and continue elsewhere
    684fix_ex:
    685	addql	#1,%d6		|increment ILOG by 1
    686	movew	#1,%d5		|set ICTR
    687	fmovel	#rm_mode,%FPCR	|set rmode to RM
    688	bra	A6_str		|return to A6 and recompute YINT
    689|
    690| Since ICTR <> 0, we have already been through one adjustment,
    691| and shouldn't have another; this is to check if abs(YINT) = 10^LEN
    692| 10^LEN is again computed using whatever table is in a1 since the
    693| value calculated cannot be inexact.
    694|
    695not_zr:
    696	fmoves	FONE,%fp2	|init fp2 to 1.0
    697	movel	%d4,%d0		|put LEN in d0
    698	clrl	%d3		|clr table index
    699z_loop:
    700	lsrl	#1,%d0		|shift next bit into carry
    701	bccs	z_next		|if zero, skip the mul
    702	fmulx	(%a1,%d3),%fp2	|mul by 10**(d3_bit_no)
    703z_next:
    704	addl	#12,%d3		|inc d3 to next pwrten table entry
    705	tstl	%d0		|test if LEN is zero
    706	bnes	z_loop		|if not, loop
    707	fabsx	%fp0		|get abs(YINT)
    708	fcmpx	%fp2,%fp0		|check if abs(YINT) = 10^LEN
    709	fbne	A14_st		|if not, skip this
    710	fdivs	FTEN,%fp0	|divide abs(YINT) by 10
    711	addql	#1,%d6		|and inc ILOG by 1
    712	addql	#1,%d4		| and inc LEN
    713	fmuls	FTEN,%fp2	| if LEN++, the get 10^^LEN
    714
    715
    716| A14. Convert the mantissa to bcd.
    717|      The binstr routine is used to convert the LEN digit
    718|      mantissa to bcd in memory.  The input to binstr is
    719|      to be a fraction; i.e. (mantissa)/10^LEN and adjusted
    720|      such that the decimal point is to the left of bit 63.
    721|      The bcd digits are stored in the correct position in
    722|      the final string area in memory.
    723|
    724|
    725| Register usage:
    726|	Input/Output
    727|	d0: x/LEN call to binstr - final is 0
    728|	d1: x/0
    729|	d2: x/ms 32-bits of mant of abs(YINT)
    730|	d3: x/ls 32-bits of mant of abs(YINT)
    731|	d4: LEN/Unchanged
    732|	d5: ICTR:LAMBDA/LAMBDA:ICTR
    733|	d6: ILOG
    734|	d7: k-factor/Unchanged
    735|	a0: pointer into memory for packed bcd string formation
    736|	    /ptr to first mantissa byte in result string
    737|	a1: ptr to PTENxx array/Unchanged
    738|	a2: ptr to FP_SCR2(a6)/Unchanged
    739|	fp0: int portion of Y/abs(YINT) adjusted
    740|	fp1: 10^ISCALE/Unchanged
    741|	fp2: 10^LEN/Unchanged
    742|	F_SCR1:x/Work area for final result
    743|	F_SCR2:Y with original exponent/Unchanged
    744|	L_SCR1:original USER_FPCR/Unchanged
    745|	L_SCR2:first word of X packed/Unchanged
    746
    747A14_st:
    748	fmovel	#rz_mode,%FPCR	|force rz for conversion
    749	fdivx	%fp2,%fp0		|divide abs(YINT) by 10^LEN
    750	leal	FP_SCR1(%a6),%a0
    751	fmovex	%fp0,(%a0)	|move abs(YINT)/10^LEN to memory
    752	movel	4(%a0),%d2	|move 2nd word of FP_RES to d2
    753	movel	8(%a0),%d3	|move 3rd word of FP_RES to d3
    754	clrl	4(%a0)		|zero word 2 of FP_RES
    755	clrl	8(%a0)		|zero word 3 of FP_RES
    756	movel	(%a0),%d0		|move exponent to d0
    757	swap	%d0		|put exponent in lower word
    758	beqs	no_sft		|if zero, don't shift
    759	subil	#0x3ffd,%d0	|sub bias less 2 to make fract
    760	tstl	%d0		|check if > 1
    761	bgts	no_sft		|if so, don't shift
    762	negl	%d0		|make exp positive
    763m_loop:
    764	lsrl	#1,%d2		|shift d2:d3 right, add 0s
    765	roxrl	#1,%d3		|the number of places
    766	dbf	%d0,m_loop	|given in d0
    767no_sft:
    768	tstl	%d2		|check for mantissa of zero
    769	bnes	no_zr		|if not, go on
    770	tstl	%d3		|continue zero check
    771	beqs	zer_m		|if zero, go directly to binstr
    772no_zr:
    773	clrl	%d1		|put zero in d1 for addx
    774	addil	#0x00000080,%d3	|inc at bit 7
    775	addxl	%d1,%d2		|continue inc
    776	andil	#0xffffff80,%d3	|strip off lsb not used by 882
    777zer_m:
    778	movel	%d4,%d0		|put LEN in d0 for binstr call
    779	addql	#3,%a0		|a0 points to M16 byte in result
    780	bsr	binstr		|call binstr to convert mant
    781
    782
    783| A15. Convert the exponent to bcd.
    784|      As in A14 above, the exp is converted to bcd and the
    785|      digits are stored in the final string.
    786|
    787|      Digits are stored in L_SCR1(a6) on return from BINDEC as:
    788|
    789|	 32               16 15                0
    790|	-----------------------------------------
    791|	|  0 | e3 | e2 | e1 | e4 |  X |  X |  X |
    792|	-----------------------------------------
    793|
    794| And are moved into their proper places in FP_SCR1.  If digit e4
    795| is non-zero, OPERR is signaled.  In all cases, all 4 digits are
    796| written as specified in the 881/882 manual for packed decimal.
    797|
    798| Register usage:
    799|	Input/Output
    800|	d0: x/LEN call to binstr - final is 0
    801|	d1: x/scratch (0);shift count for final exponent packing
    802|	d2: x/ms 32-bits of exp fraction/scratch
    803|	d3: x/ls 32-bits of exp fraction
    804|	d4: LEN/Unchanged
    805|	d5: ICTR:LAMBDA/LAMBDA:ICTR
    806|	d6: ILOG
    807|	d7: k-factor/Unchanged
    808|	a0: ptr to result string/ptr to L_SCR1(a6)
    809|	a1: ptr to PTENxx array/Unchanged
    810|	a2: ptr to FP_SCR2(a6)/Unchanged
    811|	fp0: abs(YINT) adjusted/float(ILOG)
    812|	fp1: 10^ISCALE/Unchanged
    813|	fp2: 10^LEN/Unchanged
    814|	F_SCR1:Work area for final result/BCD result
    815|	F_SCR2:Y with original exponent/ILOG/10^4
    816|	L_SCR1:original USER_FPCR/Exponent digits on return from binstr
    817|	L_SCR2:first word of X packed/Unchanged
    818
    819A15_st:
    820	tstb	BINDEC_FLG(%a6)	|check for denorm
    821	beqs	not_denorm
    822	ftstx	%fp0		|test for zero
    823	fbeq	den_zero	|if zero, use k-factor or 4933
    824	fmovel	%d6,%fp0		|float ILOG
    825	fabsx	%fp0		|get abs of ILOG
    826	bras	convrt
    827den_zero:
    828	tstl	%d7		|check sign of the k-factor
    829	blts	use_ilog	|if negative, use ILOG
    830	fmoves	F4933,%fp0	|force exponent to 4933
    831	bras	convrt		|do it
    832use_ilog:
    833	fmovel	%d6,%fp0		|float ILOG
    834	fabsx	%fp0		|get abs of ILOG
    835	bras	convrt
    836not_denorm:
    837	ftstx	%fp0		|test for zero
    838	fbne	not_zero	|if zero, force exponent
    839	fmoves	FONE,%fp0	|force exponent to 1
    840	bras	convrt		|do it
    841not_zero:
    842	fmovel	%d6,%fp0		|float ILOG
    843	fabsx	%fp0		|get abs of ILOG
    844convrt:
    845	fdivx	24(%a1),%fp0	|compute ILOG/10^4
    846	fmovex	%fp0,FP_SCR2(%a6)	|store fp0 in memory
    847	movel	4(%a2),%d2	|move word 2 to d2
    848	movel	8(%a2),%d3	|move word 3 to d3
    849	movew	(%a2),%d0		|move exp to d0
    850	beqs	x_loop_fin	|if zero, skip the shift
    851	subiw	#0x3ffd,%d0	|subtract off bias
    852	negw	%d0		|make exp positive
    853x_loop:
    854	lsrl	#1,%d2		|shift d2:d3 right
    855	roxrl	#1,%d3		|the number of places
    856	dbf	%d0,x_loop	|given in d0
    857x_loop_fin:
    858	clrl	%d1		|put zero in d1 for addx
    859	addil	#0x00000080,%d3	|inc at bit 6
    860	addxl	%d1,%d2		|continue inc
    861	andil	#0xffffff80,%d3	|strip off lsb not used by 882
    862	movel	#4,%d0		|put 4 in d0 for binstr call
    863	leal	L_SCR1(%a6),%a0	|a0 is ptr to L_SCR1 for exp digits
    864	bsr	binstr		|call binstr to convert exp
    865	movel	L_SCR1(%a6),%d0	|load L_SCR1 lword to d0
    866	movel	#12,%d1		|use d1 for shift count
    867	lsrl	%d1,%d0		|shift d0 right by 12
    868	bfins	%d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1
    869	lsrl	%d1,%d0		|shift d0 right by 12
    870	bfins	%d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1
    871	tstb	%d0		|check if e4 is zero
    872	beqs	A16_st		|if zero, skip rest
    873	orl	#opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
    874
    875
    876| A16. Write sign bits to final string.
    877|	   Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
    878|
    879| Register usage:
    880|	Input/Output
    881|	d0: x/scratch - final is x
    882|	d2: x/x
    883|	d3: x/x
    884|	d4: LEN/Unchanged
    885|	d5: ICTR:LAMBDA/LAMBDA:ICTR
    886|	d6: ILOG/ILOG adjusted
    887|	d7: k-factor/Unchanged
    888|	a0: ptr to L_SCR1(a6)/Unchanged
    889|	a1: ptr to PTENxx array/Unchanged
    890|	a2: ptr to FP_SCR2(a6)/Unchanged
    891|	fp0: float(ILOG)/Unchanged
    892|	fp1: 10^ISCALE/Unchanged
    893|	fp2: 10^LEN/Unchanged
    894|	F_SCR1:BCD result with correct signs
    895|	F_SCR2:ILOG/10^4
    896|	L_SCR1:Exponent digits on return from binstr
    897|	L_SCR2:first word of X packed/Unchanged
    898
    899A16_st:
    900	clrl	%d0		|clr d0 for collection of signs
    901	andib	#0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1
    902	tstl	L_SCR2(%a6)	|check sign of original mantissa
    903	bges	mant_p		|if pos, don't set SM
    904	moveql	#2,%d0		|move 2 in to d0 for SM
    905mant_p:
    906	tstl	%d6		|check sign of ILOG
    907	bges	wr_sgn		|if pos, don't set SE
    908	addql	#1,%d0		|set bit 0 in d0 for SE
    909wr_sgn:
    910	bfins	%d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1
    911
    912| Clean up and restore all registers used.
    913
    914	fmovel	#0,%FPSR		|clear possible inex2/ainex bits
    915	fmovemx (%a7)+,%fp0-%fp2
    916	moveml	(%a7)+,%d2-%d7/%a2
    917	rts
    918
    919	|end