cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

satan.S (15961B)


      1|
      2|	satan.sa 3.3 12/19/90
      3|
      4|	The entry point satan computes the arctangent of an
      5|	input value. satand does the same except the input value is a
      6|	denormalized number.
      7|
      8|	Input: Double-extended value in memory location pointed to by address
      9|		register a0.
     10|
     11|	Output:	Arctan(X) returned in floating-point register Fp0.
     12|
     13|	Accuracy and Monotonicity: The returned result is within 2 ulps in
     14|		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
     15|		result is subsequently rounded to double precision. The
     16|		result is provably monotonic in double precision.
     17|
     18|	Speed: The program satan takes approximately 160 cycles for input
     19|		argument X such that 1/16 < |X| < 16. For the other arguments,
     20|		the program will run no worse than 10% slower.
     21|
     22|	Algorithm:
     23|	Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5.
     24|
     25|	Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3.
     26|		Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 significant bits
     27|		of X with a bit-1 attached at the 6-th bit position. Define u
     28|		to be u = (X-F) / (1 + X*F).
     29|
     30|	Step 3. Approximate arctan(u) by a polynomial poly.
     31|
     32|	Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values
     33|		calculated beforehand. Exit.
     34|
     35|	Step 5. If |X| >= 16, go to Step 7.
     36|
     37|	Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.
     38|
     39|	Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
     40|		Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit.
     41|
     42
     43|		Copyright (C) Motorola, Inc. 1990
     44|			All Rights Reserved
     45|
     46|       For details on the license for this file, please see the
     47|       file, README, in this same directory.
     48
     49|satan	idnt	2,1 | Motorola 040 Floating Point Software Package
     50
     51	|section	8
     52
     53#include "fpsp.h"
     54
     55BOUNDS1:	.long 0x3FFB8000,0x4002FFFF
     56
     57ONE:	.long 0x3F800000
     58
     59	.long 0x00000000
     60
     61ATANA3:	.long 0xBFF6687E,0x314987D8
     62ATANA2:	.long 0x4002AC69,0x34A26DB3
     63
     64ATANA1:	.long 0xBFC2476F,0x4E1DA28E
     65ATANB6:	.long 0x3FB34444,0x7F876989
     66
     67ATANB5:	.long 0xBFB744EE,0x7FAF45DB
     68ATANB4:	.long 0x3FBC71C6,0x46940220
     69
     70ATANB3:	.long 0xBFC24924,0x921872F9
     71ATANB2:	.long 0x3FC99999,0x99998FA9
     72
     73ATANB1:	.long 0xBFD55555,0x55555555
     74ATANC5:	.long 0xBFB70BF3,0x98539E6A
     75
     76ATANC4:	.long 0x3FBC7187,0x962D1D7D
     77ATANC3:	.long 0xBFC24924,0x827107B8
     78
     79ATANC2:	.long 0x3FC99999,0x9996263E
     80ATANC1:	.long 0xBFD55555,0x55555536
     81
     82PPIBY2:	.long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
     83NPIBY2:	.long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000
     84PTINY:	.long 0x00010000,0x80000000,0x00000000,0x00000000
     85NTINY:	.long 0x80010000,0x80000000,0x00000000,0x00000000
     86
     87ATANTBL:
     88	.long	0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000
     89	.long	0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000
     90	.long	0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000
     91	.long	0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000
     92	.long	0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000
     93	.long	0x3FFB0000,0xAB98E943,0x62765619,0x00000000
     94	.long	0x3FFB0000,0xB389E502,0xF9C59862,0x00000000
     95	.long	0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000
     96	.long	0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000
     97	.long	0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000
     98	.long	0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000
     99	.long	0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000
    100	.long	0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000
    101	.long	0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000
    102	.long	0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000
    103	.long	0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000
    104	.long	0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000
    105	.long	0x3FFC0000,0x8B232A08,0x304282D8,0x00000000
    106	.long	0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000
    107	.long	0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000
    108	.long	0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000
    109	.long	0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000
    110	.long	0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000
    111	.long	0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000
    112	.long	0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000
    113	.long	0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000
    114	.long	0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000
    115	.long	0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000
    116	.long	0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000
    117	.long	0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000
    118	.long	0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000
    119	.long	0x3FFC0000,0xF7170A28,0xECC06666,0x00000000
    120	.long	0x3FFD0000,0x812FD288,0x332DAD32,0x00000000
    121	.long	0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000
    122	.long	0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000
    123	.long	0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000
    124	.long	0x3FFD0000,0x9EB68949,0x3889A227,0x00000000
    125	.long	0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000
    126	.long	0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000
    127	.long	0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000
    128	.long	0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000
    129	.long	0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000
    130	.long	0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000
    131	.long	0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000
    132	.long	0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000
    133	.long	0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000
    134	.long	0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000
    135	.long	0x3FFD0000,0xEA2D764F,0x64315989,0x00000000
    136	.long	0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000
    137	.long	0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000
    138	.long	0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000
    139	.long	0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000
    140	.long	0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000
    141	.long	0x3FFE0000,0x97731420,0x365E538C,0x00000000
    142	.long	0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000
    143	.long	0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000
    144	.long	0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000
    145	.long	0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000
    146	.long	0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000
    147	.long	0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000
    148	.long	0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000
    149	.long	0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000
    150	.long	0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000
    151	.long	0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000
    152	.long	0x3FFE0000,0xCD000549,0xADEC7159,0x00000000
    153	.long	0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000
    154	.long	0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000
    155	.long	0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000
    156	.long	0x3FFE0000,0xE8771129,0xC4353259,0x00000000
    157	.long	0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000
    158	.long	0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000
    159	.long	0x3FFE0000,0xF919039D,0x758B8D41,0x00000000
    160	.long	0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000
    161	.long	0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000
    162	.long	0x3FFF0000,0x83889E35,0x49D108E1,0x00000000
    163	.long	0x3FFF0000,0x859CFA76,0x511D724B,0x00000000
    164	.long	0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000
    165	.long	0x3FFF0000,0x89732FD1,0x9557641B,0x00000000
    166	.long	0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000
    167	.long	0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000
    168	.long	0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000
    169	.long	0x3FFF0000,0x922DA7D7,0x91888487,0x00000000
    170	.long	0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000
    171	.long	0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000
    172	.long	0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000
    173	.long	0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000
    174	.long	0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000
    175	.long	0x3FFF0000,0x9F100575,0x006CC571,0x00000000
    176	.long	0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000
    177	.long	0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000
    178	.long	0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000
    179	.long	0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000
    180	.long	0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000
    181	.long	0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000
    182	.long	0x3FFF0000,0xA83A5153,0x0956168F,0x00000000
    183	.long	0x3FFF0000,0xA93A2007,0x7539546E,0x00000000
    184	.long	0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000
    185	.long	0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000
    186	.long	0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000
    187	.long	0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000
    188	.long	0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000
    189	.long	0x3FFF0000,0xB1846515,0x0F71496A,0x00000000
    190	.long	0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000
    191	.long	0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000
    192	.long	0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000
    193	.long	0x3FFF0000,0xB525529D,0x562246BD,0x00000000
    194	.long	0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000
    195	.long	0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000
    196	.long	0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000
    197	.long	0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000
    198	.long	0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000
    199	.long	0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000
    200	.long	0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000
    201	.long	0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000
    202	.long	0x3FFF0000,0xBB471285,0x7637E17D,0x00000000
    203	.long	0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000
    204	.long	0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000
    205	.long	0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000
    206	.long	0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000
    207	.long	0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000
    208	.long	0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000
    209	.long	0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000
    210	.long	0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000
    211	.long	0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000
    212	.long	0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000
    213	.long	0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000
    214	.long	0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000
    215	.long	0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000
    216
    217	.set	X,FP_SCR1
    218	.set	XDCARE,X+2
    219	.set	XFRAC,X+4
    220	.set	XFRACLO,X+8
    221
    222	.set	ATANF,FP_SCR2
    223	.set	ATANFHI,ATANF+4
    224	.set	ATANFLO,ATANF+8
    225
    226
    227	| xref	t_frcinx
    228	|xref	t_extdnrm
    229
    230	.global	satand
    231satand:
    232|--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT
    233
    234	bra		t_extdnrm
    235
    236	.global	satan
    237satan:
    238|--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
    239
    240	fmovex		(%a0),%fp0	| ...LOAD INPUT
    241
    242	movel		(%a0),%d0
    243	movew		4(%a0),%d0
    244	fmovex		%fp0,X(%a6)
    245	andil		#0x7FFFFFFF,%d0
    246
    247	cmpil		#0x3FFB8000,%d0		| ...|X| >= 1/16?
    248	bges		ATANOK1
    249	bra		ATANSM
    250
    251ATANOK1:
    252	cmpil		#0x4002FFFF,%d0		| ...|X| < 16 ?
    253	bles		ATANMAIN
    254	bra		ATANBIG
    255
    256
    257|--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
    258|--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).
    259|--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN
    260|--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
    261|--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS
    262|--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR
    263|--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO
    264|--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE
    265|--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL
    266|--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE
    267|--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION
    268|--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION
    269|--WILL INVOLVE A VERY LONG POLYNOMIAL.
    270
    271|--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
    272|--WE CHOSE F TO BE +-2^K * 1.BBBB1
    273|--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE
    274|--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE
    275|--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS
    276|-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).
    277
    278ATANMAIN:
    279
    280	movew		#0x0000,XDCARE(%a6)	| ...CLEAN UP X JUST IN CASE
    281	andil		#0xF8000000,XFRAC(%a6)	| ...FIRST 5 BITS
    282	oril		#0x04000000,XFRAC(%a6)	| ...SET 6-TH BIT TO 1
    283	movel		#0x00000000,XFRACLO(%a6)	| ...LOCATION OF X IS NOW F
    284
    285	fmovex		%fp0,%fp1			| ...FP1 IS X
    286	fmulx		X(%a6),%fp1		| ...FP1 IS X*F, NOTE THAT X*F > 0
    287	fsubx		X(%a6),%fp0		| ...FP0 IS X-F
    288	fadds		#0x3F800000,%fp1		| ...FP1 IS 1 + X*F
    289	fdivx		%fp1,%fp0			| ...FP0 IS U = (X-F)/(1+X*F)
    290
    291|--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
    292|--CREATE ATAN(F) AND STORE IT IN ATANF, AND
    293|--SAVE REGISTERS FP2.
    294
    295	movel		%d2,-(%a7)	| ...SAVE d2 TEMPORARILY
    296	movel		%d0,%d2		| ...THE EXPO AND 16 BITS OF X
    297	andil		#0x00007800,%d0	| ...4 VARYING BITS OF F'S FRACTION
    298	andil		#0x7FFF0000,%d2	| ...EXPONENT OF F
    299	subil		#0x3FFB0000,%d2	| ...K+4
    300	asrl		#1,%d2
    301	addl		%d2,%d0		| ...THE 7 BITS IDENTIFYING F
    302	asrl		#7,%d0		| ...INDEX INTO TBL OF ATAN(|F|)
    303	lea		ATANTBL,%a1
    304	addal		%d0,%a1		| ...ADDRESS OF ATAN(|F|)
    305	movel		(%a1)+,ATANF(%a6)
    306	movel		(%a1)+,ATANFHI(%a6)
    307	movel		(%a1)+,ATANFLO(%a6)	| ...ATANF IS NOW ATAN(|F|)
    308	movel		X(%a6),%d0		| ...LOAD SIGN AND EXPO. AGAIN
    309	andil		#0x80000000,%d0	| ...SIGN(F)
    310	orl		%d0,ATANF(%a6)	| ...ATANF IS NOW SIGN(F)*ATAN(|F|)
    311	movel		(%a7)+,%d2	| ...RESTORE d2
    312
    313|--THAT'S ALL I HAVE TO DO FOR NOW,
    314|--BUT ALAS, THE DIVIDE IS STILL CRANKING!
    315
    316|--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
    317|--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U
    318|--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.
    319|--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))
    320|--WHAT WE HAVE HERE IS MERELY	A1 = A3, A2 = A1/A3, A3 = A2/A3.
    321|--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT
    322|--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED
    323
    324
    325	fmovex		%fp0,%fp1
    326	fmulx		%fp1,%fp1
    327	fmoved		ATANA3,%fp2
    328	faddx		%fp1,%fp2		| ...A3+V
    329	fmulx		%fp1,%fp2		| ...V*(A3+V)
    330	fmulx		%fp0,%fp1		| ...U*V
    331	faddd		ATANA2,%fp2	| ...A2+V*(A3+V)
    332	fmuld		ATANA1,%fp1	| ...A1*U*V
    333	fmulx		%fp2,%fp1		| ...A1*U*V*(A2+V*(A3+V))
    334
    335	faddx		%fp1,%fp0		| ...ATAN(U), FP1 RELEASED
    336	fmovel		%d1,%FPCR		|restore users exceptions
    337	faddx		ATANF(%a6),%fp0	| ...ATAN(X)
    338	bra		t_frcinx
    339
    340ATANBORS:
    341|--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.
    342|--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.
    343	cmpil		#0x3FFF8000,%d0
    344	bgt		ATANBIG	| ...I.E. |X| >= 16
    345
    346ATANSM:
    347|--|X| <= 1/16
    348|--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE
    349|--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))
    350|--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )
    351|--WHERE Y = X*X, AND Z = Y*Y.
    352
    353	cmpil		#0x3FD78000,%d0
    354	blt		ATANTINY
    355|--COMPUTE POLYNOMIAL
    356	fmulx		%fp0,%fp0	| ...FP0 IS Y = X*X
    357
    358
    359	movew		#0x0000,XDCARE(%a6)
    360
    361	fmovex		%fp0,%fp1
    362	fmulx		%fp1,%fp1		| ...FP1 IS Z = Y*Y
    363
    364	fmoved		ATANB6,%fp2
    365	fmoved		ATANB5,%fp3
    366
    367	fmulx		%fp1,%fp2		| ...Z*B6
    368	fmulx		%fp1,%fp3		| ...Z*B5
    369
    370	faddd		ATANB4,%fp2	| ...B4+Z*B6
    371	faddd		ATANB3,%fp3	| ...B3+Z*B5
    372
    373	fmulx		%fp1,%fp2		| ...Z*(B4+Z*B6)
    374	fmulx		%fp3,%fp1		| ...Z*(B3+Z*B5)
    375
    376	faddd		ATANB2,%fp2	| ...B2+Z*(B4+Z*B6)
    377	faddd		ATANB1,%fp1	| ...B1+Z*(B3+Z*B5)
    378
    379	fmulx		%fp0,%fp2		| ...Y*(B2+Z*(B4+Z*B6))
    380	fmulx		X(%a6),%fp0		| ...X*Y
    381
    382	faddx		%fp2,%fp1		| ...[B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]
    383
    384
    385	fmulx		%fp1,%fp0	| ...X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])
    386
    387	fmovel		%d1,%FPCR		|restore users exceptions
    388	faddx		X(%a6),%fp0
    389
    390	bra		t_frcinx
    391
    392ATANTINY:
    393|--|X| < 2^(-40), ATAN(X) = X
    394	movew		#0x0000,XDCARE(%a6)
    395
    396	fmovel		%d1,%FPCR		|restore users exceptions
    397	fmovex		X(%a6),%fp0	|last inst - possible exception set
    398
    399	bra		t_frcinx
    400
    401ATANBIG:
    402|--IF |X| > 2^(100), RETURN	SIGN(X)*(PI/2 - TINY). OTHERWISE,
    403|--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
    404	cmpil		#0x40638000,%d0
    405	bgt		ATANHUGE
    406
    407|--APPROXIMATE ATAN(-1/X) BY
    408|--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'
    409|--THIS CAN BE RE-WRITTEN AS
    410|--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.
    411
    412	fmoves		#0xBF800000,%fp1	| ...LOAD -1
    413	fdivx		%fp0,%fp1		| ...FP1 IS -1/X
    414
    415
    416|--DIVIDE IS STILL CRANKING
    417
    418	fmovex		%fp1,%fp0		| ...FP0 IS X'
    419	fmulx		%fp0,%fp0		| ...FP0 IS Y = X'*X'
    420	fmovex		%fp1,X(%a6)		| ...X IS REALLY X'
    421
    422	fmovex		%fp0,%fp1
    423	fmulx		%fp1,%fp1		| ...FP1 IS Z = Y*Y
    424
    425	fmoved		ATANC5,%fp3
    426	fmoved		ATANC4,%fp2
    427
    428	fmulx		%fp1,%fp3		| ...Z*C5
    429	fmulx		%fp1,%fp2		| ...Z*B4
    430
    431	faddd		ATANC3,%fp3	| ...C3+Z*C5
    432	faddd		ATANC2,%fp2	| ...C2+Z*C4
    433
    434	fmulx		%fp3,%fp1		| ...Z*(C3+Z*C5), FP3 RELEASED
    435	fmulx		%fp0,%fp2		| ...Y*(C2+Z*C4)
    436
    437	faddd		ATANC1,%fp1	| ...C1+Z*(C3+Z*C5)
    438	fmulx		X(%a6),%fp0		| ...X'*Y
    439
    440	faddx		%fp2,%fp1		| ...[Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]
    441
    442
    443	fmulx		%fp1,%fp0		| ...X'*Y*([B1+Z*(B3+Z*B5)]
    444|					...	+[Y*(B2+Z*(B4+Z*B6))])
    445	faddx		X(%a6),%fp0
    446
    447	fmovel		%d1,%FPCR		|restore users exceptions
    448
    449	btstb		#7,(%a0)
    450	beqs		pos_big
    451
    452neg_big:
    453	faddx		NPIBY2,%fp0
    454	bra		t_frcinx
    455
    456pos_big:
    457	faddx		PPIBY2,%fp0
    458	bra		t_frcinx
    459
    460ATANHUGE:
    461|--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY
    462	btstb		#7,(%a0)
    463	beqs		pos_huge
    464
    465neg_huge:
    466	fmovex		NPIBY2,%fp0
    467	fmovel		%d1,%fpcr
    468	fsubx		NTINY,%fp0
    469	bra		t_frcinx
    470
    471pos_huge:
    472	fmovex		PPIBY2,%fp0
    473	fmovel		%d1,%fpcr
    474	fsubx		PTINY,%fp0
    475	bra		t_frcinx
    476
    477	|end