cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

process.c (7394B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  linux/arch/m68k/kernel/process.c
      4 *
      5 *  Copyright (C) 1995  Hamish Macdonald
      6 *
      7 *  68060 fixes by Jesper Skov
      8 */
      9
     10/*
     11 * This file handles the architecture-dependent parts of process handling..
     12 */
     13
     14#include <linux/errno.h>
     15#include <linux/module.h>
     16#include <linux/sched.h>
     17#include <linux/sched/debug.h>
     18#include <linux/sched/task.h>
     19#include <linux/sched/task_stack.h>
     20#include <linux/kernel.h>
     21#include <linux/mm.h>
     22#include <linux/slab.h>
     23#include <linux/fs.h>
     24#include <linux/smp.h>
     25#include <linux/stddef.h>
     26#include <linux/unistd.h>
     27#include <linux/ptrace.h>
     28#include <linux/user.h>
     29#include <linux/reboot.h>
     30#include <linux/init_task.h>
     31#include <linux/mqueue.h>
     32#include <linux/rcupdate.h>
     33#include <linux/syscalls.h>
     34#include <linux/uaccess.h>
     35
     36#include <asm/traps.h>
     37#include <asm/machdep.h>
     38#include <asm/setup.h>
     39
     40
     41asmlinkage void ret_from_fork(void);
     42asmlinkage void ret_from_kernel_thread(void);
     43
     44void arch_cpu_idle(void)
     45{
     46#if defined(MACH_ATARI_ONLY)
     47	/* block out HSYNC on the atari (falcon) */
     48	__asm__("stop #0x2200" : : : "cc");
     49#else
     50	__asm__("stop #0x2000" : : : "cc");
     51#endif
     52}
     53
     54void machine_restart(char * __unused)
     55{
     56	if (mach_reset)
     57		mach_reset();
     58	for (;;);
     59}
     60
     61void machine_halt(void)
     62{
     63	if (mach_halt)
     64		mach_halt();
     65	for (;;);
     66}
     67
     68void machine_power_off(void)
     69{
     70	do_kernel_power_off();
     71	for (;;);
     72}
     73
     74void (*pm_power_off)(void);
     75EXPORT_SYMBOL(pm_power_off);
     76
     77void show_regs(struct pt_regs * regs)
     78{
     79	pr_info("Format %02x  Vector: %04x  PC: %08lx  Status: %04x    %s\n",
     80		regs->format, regs->vector, regs->pc, regs->sr,
     81		print_tainted());
     82	pr_info("ORIG_D0: %08lx  D0: %08lx  A2: %08lx  A1: %08lx\n",
     83		regs->orig_d0, regs->d0, regs->a2, regs->a1);
     84	pr_info("A0: %08lx  D5: %08lx  D4: %08lx\n", regs->a0, regs->d5,
     85		regs->d4);
     86	pr_info("D3: %08lx  D2: %08lx  D1: %08lx\n", regs->d3, regs->d2,
     87		regs->d1);
     88	if (!(regs->sr & PS_S))
     89		pr_info("USP: %08lx\n", rdusp());
     90}
     91
     92void flush_thread(void)
     93{
     94	current->thread.fc = USER_DATA;
     95#ifdef CONFIG_FPU
     96	if (!FPU_IS_EMU) {
     97		unsigned long zero = 0;
     98		asm volatile("frestore %0": :"m" (zero));
     99	}
    100#endif
    101}
    102
    103/*
    104 * Why not generic sys_clone, you ask?  m68k passes all arguments on stack.
    105 * And we need all registers saved, which means a bunch of stuff pushed
    106 * on top of pt_regs, which means that sys_clone() arguments would be
    107 * buried.  We could, of course, copy them, but it's too costly for no
    108 * good reason - generic clone() would have to copy them *again* for
    109 * kernel_clone() anyway.  So in this case it's actually better to pass pt_regs *
    110 * and extract arguments for kernel_clone() from there.  Eventually we might
    111 * go for calling kernel_clone() directly from the wrapper, but only after we
    112 * are finished with kernel_clone() prototype conversion.
    113 */
    114asmlinkage int m68k_clone(struct pt_regs *regs)
    115{
    116	/* regs will be equal to current_pt_regs() */
    117	struct kernel_clone_args args = {
    118		.flags		= regs->d1 & ~CSIGNAL,
    119		.pidfd		= (int __user *)regs->d3,
    120		.child_tid	= (int __user *)regs->d4,
    121		.parent_tid	= (int __user *)regs->d3,
    122		.exit_signal	= regs->d1 & CSIGNAL,
    123		.stack		= regs->d2,
    124		.tls		= regs->d5,
    125	};
    126
    127	return kernel_clone(&args);
    128}
    129
    130/*
    131 * Because extra registers are saved on the stack after the sys_clone3()
    132 * arguments, this C wrapper extracts them from pt_regs * and then calls the
    133 * generic sys_clone3() implementation.
    134 */
    135asmlinkage int m68k_clone3(struct pt_regs *regs)
    136{
    137	return sys_clone3((struct clone_args __user *)regs->d1, regs->d2);
    138}
    139
    140int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
    141{
    142	unsigned long clone_flags = args->flags;
    143	unsigned long usp = args->stack;
    144	unsigned long tls = args->tls;
    145	struct fork_frame {
    146		struct switch_stack sw;
    147		struct pt_regs regs;
    148	} *frame;
    149
    150	frame = (struct fork_frame *) (task_stack_page(p) + THREAD_SIZE) - 1;
    151
    152	p->thread.ksp = (unsigned long)frame;
    153	p->thread.esp0 = (unsigned long)&frame->regs;
    154
    155	/*
    156	 * Must save the current SFC/DFC value, NOT the value when
    157	 * the parent was last descheduled - RGH  10-08-96
    158	 */
    159	p->thread.fc = USER_DATA;
    160
    161	if (unlikely(args->fn)) {
    162		/* kernel thread */
    163		memset(frame, 0, sizeof(struct fork_frame));
    164		frame->regs.sr = PS_S;
    165		frame->sw.a3 = (unsigned long)args->fn;
    166		frame->sw.d7 = (unsigned long)args->fn_arg;
    167		frame->sw.retpc = (unsigned long)ret_from_kernel_thread;
    168		p->thread.usp = 0;
    169		return 0;
    170	}
    171	memcpy(frame, container_of(current_pt_regs(), struct fork_frame, regs),
    172		sizeof(struct fork_frame));
    173	frame->regs.d0 = 0;
    174	frame->sw.retpc = (unsigned long)ret_from_fork;
    175	p->thread.usp = usp ?: rdusp();
    176
    177	if (clone_flags & CLONE_SETTLS)
    178		task_thread_info(p)->tp_value = tls;
    179
    180#ifdef CONFIG_FPU
    181	if (!FPU_IS_EMU) {
    182		/* Copy the current fpu state */
    183		asm volatile ("fsave %0" : : "m" (p->thread.fpstate[0]) : "memory");
    184
    185		if (!CPU_IS_060 ? p->thread.fpstate[0] : p->thread.fpstate[2]) {
    186			if (CPU_IS_COLDFIRE) {
    187				asm volatile ("fmovemd %/fp0-%/fp7,%0\n\t"
    188					      "fmovel %/fpiar,%1\n\t"
    189					      "fmovel %/fpcr,%2\n\t"
    190					      "fmovel %/fpsr,%3"
    191					      :
    192					      : "m" (p->thread.fp[0]),
    193						"m" (p->thread.fpcntl[0]),
    194						"m" (p->thread.fpcntl[1]),
    195						"m" (p->thread.fpcntl[2])
    196					      : "memory");
    197			} else {
    198				asm volatile ("fmovemx %/fp0-%/fp7,%0\n\t"
    199					      "fmoveml %/fpiar/%/fpcr/%/fpsr,%1"
    200					      :
    201					      : "m" (p->thread.fp[0]),
    202						"m" (p->thread.fpcntl[0])
    203					      : "memory");
    204			}
    205		}
    206
    207		/* Restore the state in case the fpu was busy */
    208		asm volatile ("frestore %0" : : "m" (p->thread.fpstate[0]));
    209	}
    210#endif /* CONFIG_FPU */
    211
    212	return 0;
    213}
    214
    215/* Fill in the fpu structure for a core dump.  */
    216int dump_fpu (struct pt_regs *regs, struct user_m68kfp_struct *fpu)
    217{
    218	if (FPU_IS_EMU) {
    219		int i;
    220
    221		memcpy(fpu->fpcntl, current->thread.fpcntl, 12);
    222		memcpy(fpu->fpregs, current->thread.fp, 96);
    223		/* Convert internal fpu reg representation
    224		 * into long double format
    225		 */
    226		for (i = 0; i < 24; i += 3)
    227			fpu->fpregs[i] = ((fpu->fpregs[i] & 0xffff0000) << 15) |
    228			                 ((fpu->fpregs[i] & 0x0000ffff) << 16);
    229		return 1;
    230	}
    231
    232	if (IS_ENABLED(CONFIG_FPU)) {
    233		char fpustate[216];
    234
    235		/* First dump the fpu context to avoid protocol violation.  */
    236		asm volatile ("fsave %0" :: "m" (fpustate[0]) : "memory");
    237		if (!CPU_IS_060 ? !fpustate[0] : !fpustate[2])
    238			return 0;
    239
    240		if (CPU_IS_COLDFIRE) {
    241			asm volatile ("fmovel %/fpiar,%0\n\t"
    242				      "fmovel %/fpcr,%1\n\t"
    243				      "fmovel %/fpsr,%2\n\t"
    244				      "fmovemd %/fp0-%/fp7,%3"
    245				      :
    246				      : "m" (fpu->fpcntl[0]),
    247					"m" (fpu->fpcntl[1]),
    248					"m" (fpu->fpcntl[2]),
    249					"m" (fpu->fpregs[0])
    250				      : "memory");
    251		} else {
    252			asm volatile ("fmovem %/fpiar/%/fpcr/%/fpsr,%0"
    253				      :
    254				      : "m" (fpu->fpcntl[0])
    255				      : "memory");
    256			asm volatile ("fmovemx %/fp0-%/fp7,%0"
    257				      :
    258				      : "m" (fpu->fpregs[0])
    259				      : "memory");
    260		}
    261	}
    262
    263	return 1;
    264}
    265EXPORT_SYMBOL(dump_fpu);
    266
    267unsigned long __get_wchan(struct task_struct *p)
    268{
    269	unsigned long fp, pc;
    270	unsigned long stack_page;
    271	int count = 0;
    272
    273	stack_page = (unsigned long)task_stack_page(p);
    274	fp = ((struct switch_stack *)p->thread.ksp)->a6;
    275	do {
    276		if (fp < stack_page+sizeof(struct thread_info) ||
    277		    fp >= 8184+stack_page)
    278			return 0;
    279		pc = ((unsigned long *)fp)[1];
    280		if (!in_sched_functions(pc))
    281			return pc;
    282		fp = *(unsigned long *) fp;
    283	} while (count++ < 16);
    284	return 0;
    285}