cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

multi_arith.h (8887B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/* multi_arith.h: multi-precision integer arithmetic functions, needed
      3   to do extended-precision floating point.
      4
      5   (c) 1998 David Huggins-Daines.
      6
      7   Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
      8   David Mosberger-Tang.
      9
     10 */
     11
     12/* Note:
     13
     14   These are not general multi-precision math routines.  Rather, they
     15   implement the subset of integer arithmetic that we need in order to
     16   multiply, divide, and normalize 128-bit unsigned mantissae.  */
     17
     18#ifndef MULTI_ARITH_H
     19#define MULTI_ARITH_H
     20
     21static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt)
     22{
     23	reg->exp += cnt;
     24
     25	switch (cnt) {
     26	case 0 ... 8:
     27		reg->lowmant = reg->mant.m32[1] << (8 - cnt);
     28		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
     29				   (reg->mant.m32[0] << (32 - cnt));
     30		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
     31		break;
     32	case 9 ... 32:
     33		reg->lowmant = reg->mant.m32[1] >> (cnt - 8);
     34		if (reg->mant.m32[1] << (40 - cnt))
     35			reg->lowmant |= 1;
     36		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
     37				   (reg->mant.m32[0] << (32 - cnt));
     38		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
     39		break;
     40	case 33 ... 39:
     41		asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant)
     42			: "m" (reg->mant.m32[0]), "d" (64 - cnt));
     43		if (reg->mant.m32[1] << (40 - cnt))
     44			reg->lowmant |= 1;
     45		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
     46		reg->mant.m32[0] = 0;
     47		break;
     48	case 40 ... 71:
     49		reg->lowmant = reg->mant.m32[0] >> (cnt - 40);
     50		if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1])
     51			reg->lowmant |= 1;
     52		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
     53		reg->mant.m32[0] = 0;
     54		break;
     55	default:
     56		reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1];
     57		reg->mant.m32[0] = 0;
     58		reg->mant.m32[1] = 0;
     59		break;
     60	}
     61}
     62
     63static inline int fp_overnormalize(struct fp_ext *reg)
     64{
     65	int shift;
     66
     67	if (reg->mant.m32[0]) {
     68		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0]));
     69		reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift));
     70		reg->mant.m32[1] = (reg->mant.m32[1] << shift);
     71	} else {
     72		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1]));
     73		reg->mant.m32[0] = (reg->mant.m32[1] << shift);
     74		reg->mant.m32[1] = 0;
     75		shift += 32;
     76	}
     77
     78	return shift;
     79}
     80
     81static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src)
     82{
     83	int carry;
     84
     85	/* we assume here, gcc only insert move and a clr instr */
     86	asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant)
     87		: "g,d" (src->lowmant), "0,0" (dest->lowmant));
     88	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1])
     89		: "d" (src->mant.m32[1]), "0" (dest->mant.m32[1]));
     90	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0])
     91		: "d" (src->mant.m32[0]), "0" (dest->mant.m32[0]));
     92	asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0));
     93
     94	return carry;
     95}
     96
     97static inline int fp_addcarry(struct fp_ext *reg)
     98{
     99	if (++reg->exp == 0x7fff) {
    100		if (reg->mant.m64)
    101			fp_set_sr(FPSR_EXC_INEX2);
    102		reg->mant.m64 = 0;
    103		fp_set_sr(FPSR_EXC_OVFL);
    104		return 0;
    105	}
    106	reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0);
    107	reg->mant.m32[1] = (reg->mant.m32[1] >> 1) |
    108			   (reg->mant.m32[0] << 31);
    109	reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000;
    110
    111	return 1;
    112}
    113
    114static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1,
    115			      struct fp_ext *src2)
    116{
    117	/* we assume here, gcc only insert move and a clr instr */
    118	asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant)
    119		: "g,d" (src2->lowmant), "0,0" (src1->lowmant));
    120	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1])
    121		: "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1]));
    122	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0])
    123		: "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0]));
    124}
    125
    126#define fp_mul64(desth, destl, src1, src2) ({				\
    127	asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth)		\
    128		: "dm" (src1), "0" (src2));				\
    129})
    130#define fp_div64(quot, rem, srch, srcl, div)				\
    131	asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem)		\
    132		: "dm" (div), "1" (srch), "0" (srcl))
    133#define fp_add64(dest1, dest2, src1, src2) ({				\
    134	asm ("add.l %1,%0" : "=d,dm" (dest2)				\
    135		: "dm,d" (src2), "0,0" (dest2));			\
    136	asm ("addx.l %1,%0" : "=d" (dest1)				\
    137		: "d" (src1), "0" (dest1));				\
    138})
    139#define fp_addx96(dest, src) ({						\
    140	/* we assume here, gcc only insert move and a clr instr */	\
    141	asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2])		\
    142		: "g,d" (temp.m32[1]), "0,0" (dest->m32[2]));		\
    143	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1])		\
    144		: "d" (temp.m32[0]), "0" (dest->m32[1]));		\
    145	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0])		\
    146		: "d" (0), "0" (dest->m32[0]));				\
    147})
    148#define fp_sub64(dest, src) ({						\
    149	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1])			\
    150		: "dm,d" (src.m32[1]), "0,0" (dest.m32[1]));		\
    151	asm ("subx.l %1,%0" : "=d" (dest.m32[0])			\
    152		: "d" (src.m32[0]), "0" (dest.m32[0]));			\
    153})
    154#define fp_sub96c(dest, srch, srcm, srcl) ({				\
    155	char carry;							\
    156	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2])			\
    157		: "dm,d" (srcl), "0,0" (dest.m32[2]));			\
    158	asm ("subx.l %1,%0" : "=d" (dest.m32[1])			\
    159		: "d" (srcm), "0" (dest.m32[1]));			\
    160	asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0])	\
    161		: "d" (srch), "1" (dest.m32[0]));			\
    162	carry;								\
    163})
    164
    165static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1,
    166				   struct fp_ext *src2)
    167{
    168	union fp_mant64 temp;
    169
    170	fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]);
    171	fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]);
    172
    173	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]);
    174	fp_addx96(dest, temp);
    175
    176	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]);
    177	fp_addx96(dest, temp);
    178}
    179
    180static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src,
    181				 struct fp_ext *div)
    182{
    183	union fp_mant128 tmp;
    184	union fp_mant64 tmp64;
    185	unsigned long *mantp = dest->m32;
    186	unsigned long fix, rem, first, dummy;
    187	int i;
    188
    189	/* the algorithm below requires dest to be smaller than div,
    190	   but both have the high bit set */
    191	if (src->mant.m64 >= div->mant.m64) {
    192		fp_sub64(src->mant, div->mant);
    193		*mantp = 1;
    194	} else
    195		*mantp = 0;
    196	mantp++;
    197
    198	/* basic idea behind this algorithm: we can't divide two 64bit numbers
    199	   (AB/CD) directly, but we can calculate AB/C0, but this means this
    200	   quotient is off by C0/CD, so we have to multiply the first result
    201	   to fix the result, after that we have nearly the correct result
    202	   and only a few corrections are needed. */
    203
    204	/* C0/CD can be precalculated, but it's an 64bit division again, but
    205	   we can make it a bit easier, by dividing first through C so we get
    206	   10/1D and now only a single shift and the value fits into 32bit. */
    207	fix = 0x80000000;
    208	dummy = div->mant.m32[1] / div->mant.m32[0] + 1;
    209	dummy = (dummy >> 1) | fix;
    210	fp_div64(fix, dummy, fix, 0, dummy);
    211	fix--;
    212
    213	for (i = 0; i < 3; i++, mantp++) {
    214		if (src->mant.m32[0] == div->mant.m32[0]) {
    215			fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]);
    216
    217			fp_mul64(*mantp, dummy, first, fix);
    218			*mantp += fix;
    219		} else {
    220			fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]);
    221
    222			fp_mul64(*mantp, dummy, first, fix);
    223		}
    224
    225		fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp);
    226		fp_add64(tmp.m32[0], tmp.m32[1], 0, rem);
    227		tmp.m32[2] = 0;
    228
    229		fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]);
    230		fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]);
    231
    232		src->mant.m32[0] = tmp.m32[1];
    233		src->mant.m32[1] = tmp.m32[2];
    234
    235		while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) {
    236			src->mant.m32[0] = tmp.m32[1];
    237			src->mant.m32[1] = tmp.m32[2];
    238			*mantp += 1;
    239		}
    240	}
    241}
    242
    243static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src,
    244				 int shift)
    245{
    246	unsigned long tmp;
    247
    248	switch (shift) {
    249	case 0:
    250		dest->mant.m64 = src->m64[0];
    251		dest->lowmant = src->m32[2] >> 24;
    252		if (src->m32[3] || (src->m32[2] << 8))
    253			dest->lowmant |= 1;
    254		break;
    255	case 1:
    256		asm volatile ("lsl.l #1,%0"
    257			: "=d" (tmp) : "0" (src->m32[2]));
    258		asm volatile ("roxl.l #1,%0"
    259			: "=d" (dest->mant.m32[1]) : "0" (src->m32[1]));
    260		asm volatile ("roxl.l #1,%0"
    261			: "=d" (dest->mant.m32[0]) : "0" (src->m32[0]));
    262		dest->lowmant = tmp >> 24;
    263		if (src->m32[3] || (tmp << 8))
    264			dest->lowmant |= 1;
    265		break;
    266	case 31:
    267		asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
    268			: "=d" (dest->mant.m32[0])
    269			: "d" (src->m32[0]), "0" (src->m32[1]));
    270		asm volatile ("roxr.l #1,%0"
    271			: "=d" (dest->mant.m32[1]) : "0" (src->m32[2]));
    272		asm volatile ("roxr.l #1,%0"
    273			: "=d" (tmp) : "0" (src->m32[3]));
    274		dest->lowmant = tmp >> 24;
    275		if (src->m32[3] << 7)
    276			dest->lowmant |= 1;
    277		break;
    278	case 32:
    279		dest->mant.m32[0] = src->m32[1];
    280		dest->mant.m32[1] = src->m32[2];
    281		dest->lowmant = src->m32[3] >> 24;
    282		if (src->m32[3] << 8)
    283			dest->lowmant |= 1;
    284		break;
    285	}
    286}
    287
    288#endif	/* MULTI_ARITH_H */