pgtable.h (14617B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu> 4 * Copyright (C) 2008-2009 PetaLogix 5 * Copyright (C) 2006 Atmark Techno, Inc. 6 */ 7 8#ifndef _ASM_MICROBLAZE_PGTABLE_H 9#define _ASM_MICROBLAZE_PGTABLE_H 10 11#include <asm/setup.h> 12 13#ifndef __ASSEMBLY__ 14extern int mem_init_done; 15#endif 16 17#include <asm-generic/pgtable-nopmd.h> 18 19#ifdef __KERNEL__ 20#ifndef __ASSEMBLY__ 21 22#include <linux/sched.h> 23#include <linux/threads.h> 24#include <asm/processor.h> /* For TASK_SIZE */ 25#include <asm/mmu.h> 26#include <asm/page.h> 27 28extern unsigned long va_to_phys(unsigned long address); 29extern pte_t *va_to_pte(unsigned long address); 30 31/* 32 * The following only work if pte_present() is true. 33 * Undefined behaviour if not.. 34 */ 35 36/* Start and end of the vmalloc area. */ 37/* Make sure to map the vmalloc area above the pinned kernel memory area 38 of 32Mb. */ 39#define VMALLOC_START (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE) 40#define VMALLOC_END ioremap_bot 41 42#endif /* __ASSEMBLY__ */ 43 44/* 45 * Macro to mark a page protection value as "uncacheable". 46 */ 47 48#define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \ 49 _PAGE_WRITETHRU) 50 51#define pgprot_noncached(prot) \ 52 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 53 _PAGE_NO_CACHE | _PAGE_GUARDED)) 54 55#define pgprot_noncached_wc(prot) \ 56 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 57 _PAGE_NO_CACHE)) 58 59/* 60 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash 61 * table containing PTEs, together with a set of 16 segment registers, to 62 * define the virtual to physical address mapping. 63 * 64 * We use the hash table as an extended TLB, i.e. a cache of currently 65 * active mappings. We maintain a two-level page table tree, much 66 * like that used by the i386, for the sake of the Linux memory 67 * management code. Low-level assembler code in hashtable.S 68 * (procedure hash_page) is responsible for extracting ptes from the 69 * tree and putting them into the hash table when necessary, and 70 * updating the accessed and modified bits in the page table tree. 71 */ 72 73/* 74 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The 75 * instruction and data sides share a unified, 64-entry, semi-associative 76 * TLB which is maintained totally under software control. In addition, the 77 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative 78 * TLB which serves as a first level to the shared TLB. These two TLBs are 79 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions). 80 */ 81 82/* 83 * The normal case is that PTEs are 32-bits and we have a 1-page 84 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 85 * 86 */ 87 88/* PGDIR_SHIFT determines what a top-level page table entry can map */ 89#define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT) 90#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 91#define PGDIR_MASK (~(PGDIR_SIZE-1)) 92 93/* 94 * entries per page directory level: our page-table tree is two-level, so 95 * we don't really have any PMD directory. 96 */ 97#define PTRS_PER_PTE (1 << PTE_SHIFT) 98#define PTRS_PER_PMD 1 99#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) 100 101#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 102#define FIRST_USER_PGD_NR 0 103 104#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 105#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) 106 107#define pte_ERROR(e) \ 108 printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \ 109 __FILE__, __LINE__, pte_val(e)) 110#define pgd_ERROR(e) \ 111 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \ 112 __FILE__, __LINE__, pgd_val(e)) 113 114/* 115 * Bits in a linux-style PTE. These match the bits in the 116 * (hardware-defined) PTE as closely as possible. 117 */ 118 119/* There are several potential gotchas here. The hardware TLBLO 120 * field looks like this: 121 * 122 * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 123 * RPN..................... 0 0 EX WR ZSEL....... W I M G 124 * 125 * Where possible we make the Linux PTE bits match up with this 126 * 127 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can 128 * support down to 1k pages), this is done in the TLBMiss exception 129 * handler. 130 * - We use only zones 0 (for kernel pages) and 1 (for user pages) 131 * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB 132 * miss handler. Bit 27 is PAGE_USER, thus selecting the correct 133 * zone. 134 * - PRESENT *must* be in the bottom two bits because swap cache 135 * entries use the top 30 bits. Because 4xx doesn't support SMP 136 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 137 * is cleared in the TLB miss handler before the TLB entry is loaded. 138 * - All other bits of the PTE are loaded into TLBLO without 139 * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for 140 * software PTE bits. We actually use bits 21, 24, 25, and 141 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and 142 * PRESENT. 143 */ 144 145/* Definitions for MicroBlaze. */ 146#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ 147#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ 148#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ 149#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ 150#define _PAGE_USER 0x010 /* matches one of the zone permission bits */ 151#define _PAGE_RW 0x040 /* software: Writes permitted */ 152#define _PAGE_DIRTY 0x080 /* software: dirty page */ 153#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ 154#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ 155#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ 156#define _PMD_PRESENT PAGE_MASK 157 158/* 159 * Some bits are unused... 160 */ 161#ifndef _PAGE_HASHPTE 162#define _PAGE_HASHPTE 0 163#endif 164#ifndef _PTE_NONE_MASK 165#define _PTE_NONE_MASK 0 166#endif 167#ifndef _PAGE_SHARED 168#define _PAGE_SHARED 0 169#endif 170#ifndef _PAGE_EXEC 171#define _PAGE_EXEC 0 172#endif 173 174#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 175 176/* 177 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware 178 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need 179 * to have it in the Linux PTE, and in fact the bit could be reused for 180 * another purpose. -- paulus. 181 */ 182#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 183#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) 184 185#define _PAGE_KERNEL \ 186 (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC) 187 188#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) 189 190#define PAGE_NONE __pgprot(_PAGE_BASE) 191#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 192#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 193#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 194#define PAGE_SHARED_X \ 195 __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 196#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 197#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 198 199#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 200#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED) 201#define PAGE_KERNEL_CI __pgprot(_PAGE_IO) 202 203/* 204 * We consider execute permission the same as read. 205 * Also, write permissions imply read permissions. 206 */ 207#define __P000 PAGE_NONE 208#define __P001 PAGE_READONLY_X 209#define __P010 PAGE_COPY 210#define __P011 PAGE_COPY_X 211#define __P100 PAGE_READONLY 212#define __P101 PAGE_READONLY_X 213#define __P110 PAGE_COPY 214#define __P111 PAGE_COPY_X 215 216#define __S000 PAGE_NONE 217#define __S001 PAGE_READONLY_X 218#define __S010 PAGE_SHARED 219#define __S011 PAGE_SHARED_X 220#define __S100 PAGE_READONLY 221#define __S101 PAGE_READONLY_X 222#define __S110 PAGE_SHARED 223#define __S111 PAGE_SHARED_X 224 225#ifndef __ASSEMBLY__ 226/* 227 * ZERO_PAGE is a global shared page that is always zero: used 228 * for zero-mapped memory areas etc.. 229 */ 230extern unsigned long empty_zero_page[1024]; 231#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 232 233#endif /* __ASSEMBLY__ */ 234 235#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) 236#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) 237#define pte_clear(mm, addr, ptep) \ 238 do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) 239 240#define pmd_none(pmd) (!pmd_val(pmd)) 241#define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0) 242#define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0) 243#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) 244 245#define pte_page(x) (mem_map + (unsigned long) \ 246 ((pte_val(x) - memory_start) >> PAGE_SHIFT)) 247#define PFN_SHIFT_OFFSET (PAGE_SHIFT) 248 249#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) 250 251#define pfn_pte(pfn, prot) \ 252 __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot)) 253 254#ifndef __ASSEMBLY__ 255/* 256 * The following only work if pte_present() is true. 257 * Undefined behaviour if not.. 258 */ 259static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } 260static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 261static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 262static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 263static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 264 265static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } 266static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } 267 268static inline pte_t pte_rdprotect(pte_t pte) \ 269 { pte_val(pte) &= ~_PAGE_USER; return pte; } 270static inline pte_t pte_wrprotect(pte_t pte) \ 271 { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } 272static inline pte_t pte_exprotect(pte_t pte) \ 273 { pte_val(pte) &= ~_PAGE_EXEC; return pte; } 274static inline pte_t pte_mkclean(pte_t pte) \ 275 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 276static inline pte_t pte_mkold(pte_t pte) \ 277 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 278 279static inline pte_t pte_mkread(pte_t pte) \ 280 { pte_val(pte) |= _PAGE_USER; return pte; } 281static inline pte_t pte_mkexec(pte_t pte) \ 282 { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } 283static inline pte_t pte_mkwrite(pte_t pte) \ 284 { pte_val(pte) |= _PAGE_RW; return pte; } 285static inline pte_t pte_mkdirty(pte_t pte) \ 286 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 287static inline pte_t pte_mkyoung(pte_t pte) \ 288 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 289 290/* 291 * Conversion functions: convert a page and protection to a page entry, 292 * and a page entry and page directory to the page they refer to. 293 */ 294 295static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot) 296{ 297 pte_t pte; 298 pte_val(pte) = physpage | pgprot_val(pgprot); 299 return pte; 300} 301 302#define mk_pte(page, pgprot) \ 303({ \ 304 pte_t pte; \ 305 pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \ 306 pgprot_val(pgprot); \ 307 pte; \ 308}) 309 310static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 311{ 312 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 313 return pte; 314} 315 316/* 317 * Atomic PTE updates. 318 * 319 * pte_update clears and sets bit atomically, and returns 320 * the old pte value. 321 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant 322 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits. 323 */ 324static inline unsigned long pte_update(pte_t *p, unsigned long clr, 325 unsigned long set) 326{ 327 unsigned long flags, old, tmp; 328 329 raw_local_irq_save(flags); 330 331 __asm__ __volatile__( "lw %0, %2, r0 \n" 332 "andn %1, %0, %3 \n" 333 "or %1, %1, %4 \n" 334 "sw %1, %2, r0 \n" 335 : "=&r" (old), "=&r" (tmp) 336 : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set) 337 : "cc"); 338 339 raw_local_irq_restore(flags); 340 341 return old; 342} 343 344/* 345 * set_pte stores a linux PTE into the linux page table. 346 */ 347static inline void set_pte(struct mm_struct *mm, unsigned long addr, 348 pte_t *ptep, pte_t pte) 349{ 350 *ptep = pte; 351} 352 353static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 354 pte_t *ptep, pte_t pte) 355{ 356 *ptep = pte; 357} 358 359#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 360static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 361 unsigned long address, pte_t *ptep) 362{ 363 return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0; 364} 365 366static inline int ptep_test_and_clear_dirty(struct mm_struct *mm, 367 unsigned long addr, pte_t *ptep) 368{ 369 return (pte_update(ptep, \ 370 (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; 371} 372 373#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 374static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 375 unsigned long addr, pte_t *ptep) 376{ 377 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 378} 379 380/*static inline void ptep_set_wrprotect(struct mm_struct *mm, 381 unsigned long addr, pte_t *ptep) 382{ 383 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); 384}*/ 385 386static inline void ptep_mkdirty(struct mm_struct *mm, 387 unsigned long addr, pte_t *ptep) 388{ 389 pte_update(ptep, 0, _PAGE_DIRTY); 390} 391 392/*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/ 393 394/* Convert pmd entry to page */ 395/* our pmd entry is an effective address of pte table*/ 396/* returns effective address of the pmd entry*/ 397static inline unsigned long pmd_page_vaddr(pmd_t pmd) 398{ 399 return ((unsigned long) (pmd_val(pmd) & PAGE_MASK)); 400} 401 402/* returns pfn of the pmd entry*/ 403#define pmd_pfn(pmd) (__pa(pmd_val(pmd)) >> PAGE_SHIFT) 404 405/* returns struct *page of the pmd entry*/ 406#define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT)) 407 408/* Find an entry in the third-level page table.. */ 409 410extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 411 412/* 413 * Encode and decode a swap entry. 414 * Note that the bits we use in a PTE for representing a swap entry 415 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit 416 * (if used). -- paulus 417 */ 418#define __swp_type(entry) ((entry).val & 0x3f) 419#define __swp_offset(entry) ((entry).val >> 6) 420#define __swp_entry(type, offset) \ 421 ((swp_entry_t) { (type) | ((offset) << 6) }) 422#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 }) 423#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 }) 424 425extern unsigned long iopa(unsigned long addr); 426 427/* Values for nocacheflag and cmode */ 428/* These are not used by the APUS kernel_map, but prevents 429 * compilation errors. 430 */ 431#define IOMAP_FULL_CACHING 0 432#define IOMAP_NOCACHE_SER 1 433#define IOMAP_NOCACHE_NONSER 2 434#define IOMAP_NO_COPYBACK 3 435 436/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 437#define kern_addr_valid(addr) (1) 438 439void do_page_fault(struct pt_regs *regs, unsigned long address, 440 unsigned long error_code); 441 442void mapin_ram(void); 443int map_page(unsigned long va, phys_addr_t pa, int flags); 444 445extern int mem_init_done; 446 447asmlinkage void __init mmu_init(void); 448 449#endif /* __ASSEMBLY__ */ 450#endif /* __KERNEL__ */ 451 452#ifndef __ASSEMBLY__ 453extern unsigned long ioremap_bot, ioremap_base; 454 455void setup_memory(void); 456#endif /* __ASSEMBLY__ */ 457 458#endif /* _ASM_MICROBLAZE_PGTABLE_H */