cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pgtable.h (14617B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
      4 * Copyright (C) 2008-2009 PetaLogix
      5 * Copyright (C) 2006 Atmark Techno, Inc.
      6 */
      7
      8#ifndef _ASM_MICROBLAZE_PGTABLE_H
      9#define _ASM_MICROBLAZE_PGTABLE_H
     10
     11#include <asm/setup.h>
     12
     13#ifndef __ASSEMBLY__
     14extern int mem_init_done;
     15#endif
     16
     17#include <asm-generic/pgtable-nopmd.h>
     18
     19#ifdef __KERNEL__
     20#ifndef __ASSEMBLY__
     21
     22#include <linux/sched.h>
     23#include <linux/threads.h>
     24#include <asm/processor.h>		/* For TASK_SIZE */
     25#include <asm/mmu.h>
     26#include <asm/page.h>
     27
     28extern unsigned long va_to_phys(unsigned long address);
     29extern pte_t *va_to_pte(unsigned long address);
     30
     31/*
     32 * The following only work if pte_present() is true.
     33 * Undefined behaviour if not..
     34 */
     35
     36/* Start and end of the vmalloc area. */
     37/* Make sure to map the vmalloc area above the pinned kernel memory area
     38   of 32Mb.  */
     39#define VMALLOC_START	(CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE)
     40#define VMALLOC_END	ioremap_bot
     41
     42#endif /* __ASSEMBLY__ */
     43
     44/*
     45 * Macro to mark a page protection value as "uncacheable".
     46 */
     47
     48#define _PAGE_CACHE_CTL	(_PAGE_GUARDED | _PAGE_NO_CACHE | \
     49							_PAGE_WRITETHRU)
     50
     51#define pgprot_noncached(prot) \
     52			(__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
     53					_PAGE_NO_CACHE | _PAGE_GUARDED))
     54
     55#define pgprot_noncached_wc(prot) \
     56			 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
     57							_PAGE_NO_CACHE))
     58
     59/*
     60 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
     61 * table containing PTEs, together with a set of 16 segment registers, to
     62 * define the virtual to physical address mapping.
     63 *
     64 * We use the hash table as an extended TLB, i.e. a cache of currently
     65 * active mappings.  We maintain a two-level page table tree, much
     66 * like that used by the i386, for the sake of the Linux memory
     67 * management code.  Low-level assembler code in hashtable.S
     68 * (procedure hash_page) is responsible for extracting ptes from the
     69 * tree and putting them into the hash table when necessary, and
     70 * updating the accessed and modified bits in the page table tree.
     71 */
     72
     73/*
     74 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
     75 * instruction and data sides share a unified, 64-entry, semi-associative
     76 * TLB which is maintained totally under software control. In addition, the
     77 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
     78 * TLB which serves as a first level to the shared TLB. These two TLBs are
     79 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
     80 */
     81
     82/*
     83 * The normal case is that PTEs are 32-bits and we have a 1-page
     84 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
     85 *
     86 */
     87
     88/* PGDIR_SHIFT determines what a top-level page table entry can map */
     89#define PGDIR_SHIFT	(PAGE_SHIFT + PTE_SHIFT)
     90#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
     91#define PGDIR_MASK	(~(PGDIR_SIZE-1))
     92
     93/*
     94 * entries per page directory level: our page-table tree is two-level, so
     95 * we don't really have any PMD directory.
     96 */
     97#define PTRS_PER_PTE	(1 << PTE_SHIFT)
     98#define PTRS_PER_PMD	1
     99#define PTRS_PER_PGD	(1 << (32 - PGDIR_SHIFT))
    100
    101#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
    102#define FIRST_USER_PGD_NR	0
    103
    104#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
    105#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
    106
    107#define pte_ERROR(e) \
    108	printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
    109		__FILE__, __LINE__, pte_val(e))
    110#define pgd_ERROR(e) \
    111	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
    112		__FILE__, __LINE__, pgd_val(e))
    113
    114/*
    115 * Bits in a linux-style PTE.  These match the bits in the
    116 * (hardware-defined) PTE as closely as possible.
    117 */
    118
    119/* There are several potential gotchas here.  The hardware TLBLO
    120 * field looks like this:
    121 *
    122 * 0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
    123 * RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
    124 *
    125 * Where possible we make the Linux PTE bits match up with this
    126 *
    127 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
    128 * support down to 1k pages), this is done in the TLBMiss exception
    129 * handler.
    130 * - We use only zones 0 (for kernel pages) and 1 (for user pages)
    131 * of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
    132 * miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
    133 * zone.
    134 * - PRESENT *must* be in the bottom two bits because swap cache
    135 * entries use the top 30 bits.  Because 4xx doesn't support SMP
    136 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30
    137 * is cleared in the TLB miss handler before the TLB entry is loaded.
    138 * - All other bits of the PTE are loaded into TLBLO without
    139 *  * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
    140 * software PTE bits.  We actually use bits 21, 24, 25, and
    141 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
    142 * PRESENT.
    143 */
    144
    145/* Definitions for MicroBlaze. */
    146#define	_PAGE_GUARDED	0x001	/* G: page is guarded from prefetch */
    147#define _PAGE_PRESENT	0x002	/* software: PTE contains a translation */
    148#define	_PAGE_NO_CACHE	0x004	/* I: caching is inhibited */
    149#define	_PAGE_WRITETHRU	0x008	/* W: caching is write-through */
    150#define	_PAGE_USER	0x010	/* matches one of the zone permission bits */
    151#define	_PAGE_RW	0x040	/* software: Writes permitted */
    152#define	_PAGE_DIRTY	0x080	/* software: dirty page */
    153#define _PAGE_HWWRITE	0x100	/* hardware: Dirty & RW, set in exception */
    154#define _PAGE_HWEXEC	0x200	/* hardware: EX permission */
    155#define _PAGE_ACCESSED	0x400	/* software: R: page referenced */
    156#define _PMD_PRESENT	PAGE_MASK
    157
    158/*
    159 * Some bits are unused...
    160 */
    161#ifndef _PAGE_HASHPTE
    162#define _PAGE_HASHPTE	0
    163#endif
    164#ifndef _PTE_NONE_MASK
    165#define _PTE_NONE_MASK	0
    166#endif
    167#ifndef _PAGE_SHARED
    168#define _PAGE_SHARED	0
    169#endif
    170#ifndef _PAGE_EXEC
    171#define _PAGE_EXEC	0
    172#endif
    173
    174#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
    175
    176/*
    177 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
    178 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
    179 * to have it in the Linux PTE, and in fact the bit could be reused for
    180 * another purpose.  -- paulus.
    181 */
    182#define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED)
    183#define _PAGE_WRENABLE	(_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
    184
    185#define _PAGE_KERNEL \
    186	(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
    187
    188#define _PAGE_IO	(_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
    189
    190#define PAGE_NONE	__pgprot(_PAGE_BASE)
    191#define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
    192#define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
    193#define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
    194#define PAGE_SHARED_X \
    195		__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
    196#define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
    197#define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
    198
    199#define PAGE_KERNEL	__pgprot(_PAGE_KERNEL)
    200#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_SHARED)
    201#define PAGE_KERNEL_CI	__pgprot(_PAGE_IO)
    202
    203/*
    204 * We consider execute permission the same as read.
    205 * Also, write permissions imply read permissions.
    206 */
    207#define __P000	PAGE_NONE
    208#define __P001	PAGE_READONLY_X
    209#define __P010	PAGE_COPY
    210#define __P011	PAGE_COPY_X
    211#define __P100	PAGE_READONLY
    212#define __P101	PAGE_READONLY_X
    213#define __P110	PAGE_COPY
    214#define __P111	PAGE_COPY_X
    215
    216#define __S000	PAGE_NONE
    217#define __S001	PAGE_READONLY_X
    218#define __S010	PAGE_SHARED
    219#define __S011	PAGE_SHARED_X
    220#define __S100	PAGE_READONLY
    221#define __S101	PAGE_READONLY_X
    222#define __S110	PAGE_SHARED
    223#define __S111	PAGE_SHARED_X
    224
    225#ifndef __ASSEMBLY__
    226/*
    227 * ZERO_PAGE is a global shared page that is always zero: used
    228 * for zero-mapped memory areas etc..
    229 */
    230extern unsigned long empty_zero_page[1024];
    231#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
    232
    233#endif /* __ASSEMBLY__ */
    234
    235#define pte_none(pte)		((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
    236#define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)
    237#define pte_clear(mm, addr, ptep) \
    238	do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
    239
    240#define pmd_none(pmd)		(!pmd_val(pmd))
    241#define	pmd_bad(pmd)		((pmd_val(pmd) & _PMD_PRESENT) == 0)
    242#define	pmd_present(pmd)	((pmd_val(pmd) & _PMD_PRESENT) != 0)
    243#define	pmd_clear(pmdp)		do { pmd_val(*(pmdp)) = 0; } while (0)
    244
    245#define pte_page(x)		(mem_map + (unsigned long) \
    246				((pte_val(x) - memory_start) >> PAGE_SHIFT))
    247#define PFN_SHIFT_OFFSET	(PAGE_SHIFT)
    248
    249#define pte_pfn(x)		(pte_val(x) >> PFN_SHIFT_OFFSET)
    250
    251#define pfn_pte(pfn, prot) \
    252	__pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
    253
    254#ifndef __ASSEMBLY__
    255/*
    256 * The following only work if pte_present() is true.
    257 * Undefined behaviour if not..
    258 */
    259static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_USER; }
    260static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
    261static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
    262static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
    263static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
    264
    265static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
    266static inline void pte_cache(pte_t pte)   { pte_val(pte) &= ~_PAGE_NO_CACHE; }
    267
    268static inline pte_t pte_rdprotect(pte_t pte) \
    269		{ pte_val(pte) &= ~_PAGE_USER; return pte; }
    270static inline pte_t pte_wrprotect(pte_t pte) \
    271	{ pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
    272static inline pte_t pte_exprotect(pte_t pte) \
    273	{ pte_val(pte) &= ~_PAGE_EXEC; return pte; }
    274static inline pte_t pte_mkclean(pte_t pte) \
    275	{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
    276static inline pte_t pte_mkold(pte_t pte) \
    277	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
    278
    279static inline pte_t pte_mkread(pte_t pte) \
    280	{ pte_val(pte) |= _PAGE_USER; return pte; }
    281static inline pte_t pte_mkexec(pte_t pte) \
    282	{ pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
    283static inline pte_t pte_mkwrite(pte_t pte) \
    284	{ pte_val(pte) |= _PAGE_RW; return pte; }
    285static inline pte_t pte_mkdirty(pte_t pte) \
    286	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
    287static inline pte_t pte_mkyoung(pte_t pte) \
    288	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
    289
    290/*
    291 * Conversion functions: convert a page and protection to a page entry,
    292 * and a page entry and page directory to the page they refer to.
    293 */
    294
    295static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
    296{
    297	pte_t pte;
    298	pte_val(pte) = physpage | pgprot_val(pgprot);
    299	return pte;
    300}
    301
    302#define mk_pte(page, pgprot) \
    303({									   \
    304	pte_t pte;							   \
    305	pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) |  \
    306			pgprot_val(pgprot);				   \
    307	pte;								   \
    308})
    309
    310static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
    311{
    312	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
    313	return pte;
    314}
    315
    316/*
    317 * Atomic PTE updates.
    318 *
    319 * pte_update clears and sets bit atomically, and returns
    320 * the old pte value.
    321 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
    322 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
    323 */
    324static inline unsigned long pte_update(pte_t *p, unsigned long clr,
    325				unsigned long set)
    326{
    327	unsigned long flags, old, tmp;
    328
    329	raw_local_irq_save(flags);
    330
    331	__asm__ __volatile__(	"lw	%0, %2, r0	\n"
    332				"andn	%1, %0, %3	\n"
    333				"or	%1, %1, %4	\n"
    334				"sw	%1, %2, r0	\n"
    335			: "=&r" (old), "=&r" (tmp)
    336			: "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set)
    337			: "cc");
    338
    339	raw_local_irq_restore(flags);
    340
    341	return old;
    342}
    343
    344/*
    345 * set_pte stores a linux PTE into the linux page table.
    346 */
    347static inline void set_pte(struct mm_struct *mm, unsigned long addr,
    348		pte_t *ptep, pte_t pte)
    349{
    350	*ptep = pte;
    351}
    352
    353static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
    354		pte_t *ptep, pte_t pte)
    355{
    356	*ptep = pte;
    357}
    358
    359#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
    360static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
    361		unsigned long address, pte_t *ptep)
    362{
    363	return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
    364}
    365
    366static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
    367		unsigned long addr, pte_t *ptep)
    368{
    369	return (pte_update(ptep, \
    370		(_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
    371}
    372
    373#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
    374static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
    375		unsigned long addr, pte_t *ptep)
    376{
    377	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
    378}
    379
    380/*static inline void ptep_set_wrprotect(struct mm_struct *mm,
    381		unsigned long addr, pte_t *ptep)
    382{
    383	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
    384}*/
    385
    386static inline void ptep_mkdirty(struct mm_struct *mm,
    387		unsigned long addr, pte_t *ptep)
    388{
    389	pte_update(ptep, 0, _PAGE_DIRTY);
    390}
    391
    392/*#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
    393
    394/* Convert pmd entry to page */
    395/* our pmd entry is an effective address of pte table*/
    396/* returns effective address of the pmd entry*/
    397static inline unsigned long pmd_page_vaddr(pmd_t pmd)
    398{
    399	return ((unsigned long) (pmd_val(pmd) & PAGE_MASK));
    400}
    401
    402/* returns pfn of the pmd entry*/
    403#define pmd_pfn(pmd)	(__pa(pmd_val(pmd)) >> PAGE_SHIFT)
    404
    405/* returns struct *page of the pmd entry*/
    406#define pmd_page(pmd)	(pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
    407
    408/* Find an entry in the third-level page table.. */
    409
    410extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
    411
    412/*
    413 * Encode and decode a swap entry.
    414 * Note that the bits we use in a PTE for representing a swap entry
    415 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
    416 * (if used).  -- paulus
    417 */
    418#define __swp_type(entry)		((entry).val & 0x3f)
    419#define __swp_offset(entry)	((entry).val >> 6)
    420#define __swp_entry(type, offset) \
    421		((swp_entry_t) { (type) | ((offset) << 6) })
    422#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) >> 2 })
    423#define __swp_entry_to_pte(x)	((pte_t) { (x).val << 2 })
    424
    425extern unsigned long iopa(unsigned long addr);
    426
    427/* Values for nocacheflag and cmode */
    428/* These are not used by the APUS kernel_map, but prevents
    429 * compilation errors.
    430 */
    431#define	IOMAP_FULL_CACHING	0
    432#define	IOMAP_NOCACHE_SER	1
    433#define	IOMAP_NOCACHE_NONSER	2
    434#define	IOMAP_NO_COPYBACK	3
    435
    436/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
    437#define kern_addr_valid(addr)	(1)
    438
    439void do_page_fault(struct pt_regs *regs, unsigned long address,
    440		   unsigned long error_code);
    441
    442void mapin_ram(void);
    443int map_page(unsigned long va, phys_addr_t pa, int flags);
    444
    445extern int mem_init_done;
    446
    447asmlinkage void __init mmu_init(void);
    448
    449#endif /* __ASSEMBLY__ */
    450#endif /* __KERNEL__ */
    451
    452#ifndef __ASSEMBLY__
    453extern unsigned long ioremap_bot, ioremap_base;
    454
    455void setup_memory(void);
    456#endif /* __ASSEMBLY__ */
    457
    458#endif /* _ASM_MICROBLAZE_PGTABLE_H */