cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hw_exception_handler.S (31493B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * Exception handling for Microblaze
      4 *
      5 * Rewriten interrupt handling
      6 *
      7 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
      8 * Copyright (C) 2008-2009 PetaLogix
      9 *
     10 * uClinux customisation (C) 2005 John Williams
     11 *
     12 * MMU code derived from arch/ppc/kernel/head_4xx.S:
     13 *	Copyright (C) 1995-1996 Gary Thomas <gdt@linuxppc.org>
     14 *		Initial PowerPC version.
     15 *	Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
     16 *		Rewritten for PReP
     17 *	Copyright (C) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
     18 *		Low-level exception handers, MMU support, and rewrite.
     19 *	Copyright (C) 1997 Dan Malek <dmalek@jlc.net>
     20 *		PowerPC 8xx modifications.
     21 *	Copyright (C) 1998-1999 TiVo, Inc.
     22 *		PowerPC 403GCX modifications.
     23 *	Copyright (C) 1999 Grant Erickson <grant@lcse.umn.edu>
     24 *		PowerPC 403GCX/405GP modifications.
     25 *	Copyright 2000 MontaVista Software Inc.
     26 *		PPC405 modifications
     27 *	PowerPC 403GCX/405GP modifications.
     28 *		Author: MontaVista Software, Inc.
     29 *		frank_rowand@mvista.com or source@mvista.com
     30 *		debbie_chu@mvista.com
     31 *
     32 * Original code
     33 * Copyright (C) 2004 Xilinx, Inc.
     34 */
     35
     36/*
     37 * Here are the handlers which don't require enabling translation
     38 * and calling other kernel code thus we can keep their design very simple
     39 * and do all processing in real mode. All what they need is a valid current
     40 * (that is an issue for the CONFIG_REGISTER_TASK_PTR case)
     41 * This handlers use r3,r4,r5,r6 and optionally r[current] to work therefore
     42 * these registers are saved/restored
     43 * The handlers which require translation are in entry.S --KAA
     44 *
     45 * Microblaze HW Exception Handler
     46 * - Non self-modifying exception handler for the following exception conditions
     47 *   - Unalignment
     48 *   - Instruction bus error
     49 *   - Data bus error
     50 *   - Illegal instruction opcode
     51 *   - Divide-by-zero
     52 *
     53 *   - Privileged instruction exception (MMU)
     54 *   - Data storage exception (MMU)
     55 *   - Instruction storage exception (MMU)
     56 *   - Data TLB miss exception (MMU)
     57 *   - Instruction TLB miss exception (MMU)
     58 *
     59 * Note we disable interrupts during exception handling, otherwise we will
     60 * possibly get multiple re-entrancy if interrupt handles themselves cause
     61 * exceptions. JW
     62 */
     63
     64#include <asm/exceptions.h>
     65#include <asm/unistd.h>
     66#include <asm/page.h>
     67
     68#include <asm/entry.h>
     69#include <asm/current.h>
     70#include <linux/linkage.h>
     71#include <linux/pgtable.h>
     72
     73#include <asm/mmu.h>
     74#include <asm/signal.h>
     75#include <asm/registers.h>
     76#include <asm/asm-offsets.h>
     77
     78#undef DEBUG
     79
     80/* Helpful Macros */
     81#define NUM_TO_REG(num)		r ## num
     82
     83	#define RESTORE_STATE			\
     84		lwi	r5, r1, 0;		\
     85		mts	rmsr, r5;		\
     86		nop;				\
     87		lwi	r3, r1, PT_R3;		\
     88		lwi	r4, r1, PT_R4;		\
     89		lwi	r5, r1, PT_R5;		\
     90		lwi	r6, r1, PT_R6;		\
     91		lwi	r11, r1, PT_R11;	\
     92		lwi	r31, r1, PT_R31;	\
     93		lwi	r1, r1, PT_R1;
     94
     95#define LWREG_NOP			\
     96	bri	ex_handler_unhandled;	\
     97	nop;
     98
     99#define SWREG_NOP			\
    100	bri	ex_handler_unhandled;	\
    101	nop;
    102
    103/* r3 is the source */
    104#define R3_TO_LWREG_V(regnum)				\
    105	swi	r3, r1, 4 * regnum;				\
    106	bri	ex_handler_done;
    107
    108/* r3 is the source */
    109#define R3_TO_LWREG(regnum)				\
    110	or	NUM_TO_REG (regnum), r0, r3;		\
    111	bri	ex_handler_done;
    112
    113/* r3 is the target */
    114#define SWREG_TO_R3_V(regnum)				\
    115	lwi	r3, r1, 4 * regnum;				\
    116	bri	ex_sw_tail;
    117
    118/* r3 is the target */
    119#define SWREG_TO_R3(regnum)				\
    120	or	r3, r0, NUM_TO_REG (regnum);		\
    121	bri	ex_sw_tail;
    122
    123	#define R3_TO_LWREG_VM_V(regnum)		\
    124		brid	ex_lw_end_vm;			\
    125		swi	r3, r7, 4 * regnum;
    126
    127	#define R3_TO_LWREG_VM(regnum)			\
    128		brid	ex_lw_end_vm;			\
    129		or	NUM_TO_REG (regnum), r0, r3;
    130
    131	#define SWREG_TO_R3_VM_V(regnum)		\
    132		brid	ex_sw_tail_vm;			\
    133		lwi	r3, r7, 4 * regnum;
    134
    135	#define SWREG_TO_R3_VM(regnum)			\
    136		brid	ex_sw_tail_vm;			\
    137		or	r3, r0, NUM_TO_REG (regnum);
    138
    139	/* Shift right instruction depending on available configuration */
    140	#if CONFIG_XILINX_MICROBLAZE0_USE_BARREL == 0
    141	/* Only the used shift constants defined here - add more if needed */
    142	#define BSRLI2(rD, rA)				\
    143		srl rD, rA;		/* << 1 */	\
    144		srl rD, rD;		/* << 2 */
    145	#define BSRLI4(rD, rA)		\
    146		BSRLI2(rD, rA);		\
    147		BSRLI2(rD, rD)
    148	#define BSRLI10(rD, rA)				\
    149		srl rD, rA;		/* << 1 */	\
    150		srl rD, rD;		/* << 2 */	\
    151		srl rD, rD;		/* << 3 */	\
    152		srl rD, rD;		/* << 4 */	\
    153		srl rD, rD;		/* << 5 */	\
    154		srl rD, rD;		/* << 6 */	\
    155		srl rD, rD;		/* << 7 */	\
    156		srl rD, rD;		/* << 8 */	\
    157		srl rD, rD;		/* << 9 */	\
    158		srl rD, rD		/* << 10 */
    159	#define BSRLI20(rD, rA)		\
    160		BSRLI10(rD, rA);	\
    161		BSRLI10(rD, rD)
    162
    163	.macro	bsrli, rD, rA, IMM
    164	.if (\IMM) == 2
    165		BSRLI2(\rD, \rA)
    166	.elseif (\IMM) == 10
    167		BSRLI10(\rD, \rA)
    168	.elseif (\IMM) == 12
    169		BSRLI2(\rD, \rA)
    170		BSRLI10(\rD, \rD)
    171	.elseif (\IMM) == 14
    172		BSRLI4(\rD, \rA)
    173		BSRLI10(\rD, \rD)
    174	.elseif (\IMM) == 20
    175		BSRLI20(\rD, \rA)
    176	.elseif (\IMM) == 24
    177		BSRLI4(\rD, \rA)
    178		BSRLI20(\rD, \rD)
    179	.elseif (\IMM) == 28
    180		BSRLI4(\rD, \rA)
    181		BSRLI4(\rD, \rD)
    182		BSRLI20(\rD, \rD)
    183	.else
    184	.error "BSRLI shift macros \IMM"
    185	.endif
    186	.endm
    187	#endif
    188
    189
    190.extern other_exception_handler /* Defined in exception.c */
    191
    192/*
    193 * hw_exception_handler - Handler for exceptions
    194 *
    195 * Exception handler notes:
    196 * - Handles all exceptions
    197 * - Does not handle unaligned exceptions during load into r17, r1, r0.
    198 * - Does not handle unaligned exceptions during store from r17 (cannot be
    199 *   done) and r1 (slows down common case)
    200 *
    201 *  Relevant register structures
    202 *
    203 *  EAR - |----|----|----|----|----|----|----|----|
    204 *      - <  ##   32 bit faulting address     ##  >
    205 *
    206 *  ESR - |----|----|----|----|----| - | - |-----|-----|
    207 *      -                            W   S   REG   EXC
    208 *
    209 *
    210 * STACK FRAME STRUCTURE (for CONFIG_MMU=n)
    211 * ----------------------------------------
    212 *
    213 *      +-------------+         + 0
    214 *      |     MSR     |
    215 *      +-------------+         + 4
    216 *      |     r1      |
    217 *      |      .      |
    218 *      |      .      |
    219 *      |      .      |
    220 *      |      .      |
    221 *      |     r18     |
    222 *      +-------------+         + 76
    223 *      |      .      |
    224 *      |      .      |
    225 *
    226 * MMU kernel uses the same 'pt_pool_space' pointed space
    227 * which is used for storing register values - noMMu style was, that values were
    228 * stored in stack but in case of failure you lost information about register.
    229 * Currently you can see register value in memory in specific place.
    230 * In compare to with previous solution the speed should be the same.
    231 *
    232 * MMU exception handler has different handling compare to no MMU kernel.
    233 * Exception handler use jump table for directing of what happen. For MMU kernel
    234 * is this approach better because MMU relate exception are handled by asm code
    235 * in this file. In compare to with MMU expect of unaligned exception
    236 * is everything handled by C code.
    237 */
    238
    239/*
    240 * every of these handlers is entered having R3/4/5/6/11/current saved on stack
    241 * and clobbered so care should be taken to restore them if someone is going to
    242 * return from exception
    243 */
    244
    245/* wrappers to restore state before coming to entry.S */
    246.section .data
    247.align 4
    248pt_pool_space:
    249	.space	PT_SIZE
    250
    251#ifdef DEBUG
    252/* Create space for exception counting. */
    253.section .data
    254.global exception_debug_table
    255.align 4
    256exception_debug_table:
    257	/* Look at exception vector table. There is 32 exceptions * word size */
    258	.space	(32 * 4)
    259#endif /* DEBUG */
    260
    261.section .rodata
    262.align 4
    263_MB_HW_ExceptionVectorTable:
    264/*  0 - Undefined */
    265	.long	TOPHYS(ex_handler_unhandled)
    266/*  1 - Unaligned data access exception */
    267	.long	TOPHYS(handle_unaligned_ex)
    268/*  2 - Illegal op-code exception */
    269	.long	TOPHYS(full_exception_trapw)
    270/*  3 - Instruction bus error exception */
    271	.long	TOPHYS(full_exception_trapw)
    272/*  4 - Data bus error exception */
    273	.long	TOPHYS(full_exception_trapw)
    274/*  5 - Divide by zero exception */
    275	.long	TOPHYS(full_exception_trapw)
    276/*  6 - Floating point unit exception */
    277	.long	TOPHYS(full_exception_trapw)
    278/*  7 - Privileged instruction exception */
    279	.long	TOPHYS(full_exception_trapw)
    280/*  8 - 15 - Undefined */
    281	.long	TOPHYS(ex_handler_unhandled)
    282	.long	TOPHYS(ex_handler_unhandled)
    283	.long	TOPHYS(ex_handler_unhandled)
    284	.long	TOPHYS(ex_handler_unhandled)
    285	.long	TOPHYS(ex_handler_unhandled)
    286	.long	TOPHYS(ex_handler_unhandled)
    287	.long	TOPHYS(ex_handler_unhandled)
    288	.long	TOPHYS(ex_handler_unhandled)
    289/* 16 - Data storage exception */
    290	.long	TOPHYS(handle_data_storage_exception)
    291/* 17 - Instruction storage exception */
    292	.long	TOPHYS(handle_instruction_storage_exception)
    293/* 18 - Data TLB miss exception */
    294	.long	TOPHYS(handle_data_tlb_miss_exception)
    295/* 19 - Instruction TLB miss exception */
    296	.long	TOPHYS(handle_instruction_tlb_miss_exception)
    297/* 20 - 31 - Undefined */
    298	.long	TOPHYS(ex_handler_unhandled)
    299	.long	TOPHYS(ex_handler_unhandled)
    300	.long	TOPHYS(ex_handler_unhandled)
    301	.long	TOPHYS(ex_handler_unhandled)
    302	.long	TOPHYS(ex_handler_unhandled)
    303	.long	TOPHYS(ex_handler_unhandled)
    304	.long	TOPHYS(ex_handler_unhandled)
    305	.long	TOPHYS(ex_handler_unhandled)
    306	.long	TOPHYS(ex_handler_unhandled)
    307	.long	TOPHYS(ex_handler_unhandled)
    308	.long	TOPHYS(ex_handler_unhandled)
    309	.long	TOPHYS(ex_handler_unhandled)
    310
    311.global _hw_exception_handler
    312.section .text
    313.align 4
    314.ent _hw_exception_handler
    315_hw_exception_handler:
    316	swi	r1, r0, TOPHYS(pt_pool_space + PT_R1); /* GET_SP */
    317	/* Save date to kernel memory. Here is the problem
    318	 * when you came from user space */
    319	ori	r1, r0, TOPHYS(pt_pool_space);
    320	swi	r3, r1, PT_R3
    321	swi	r4, r1, PT_R4
    322	swi	r5, r1, PT_R5
    323	swi	r6, r1, PT_R6
    324
    325	swi	r11, r1, PT_R11
    326	swi	r31, r1, PT_R31
    327	lwi	r31, r0, TOPHYS(PER_CPU(CURRENT_SAVE)) /* get saved current */
    328
    329	mfs	r5, rmsr;
    330	nop
    331	swi	r5, r1, 0;
    332	mfs	r4, resr
    333	nop
    334	mfs	r3, rear;
    335	nop
    336
    337	andi	r5, r4, 0x1F;		/* Extract ESR[EXC] */
    338
    339	/* Calculate exception vector offset = r5 << 2 */
    340	addk	r6, r5, r5; /* << 1 */
    341	addk	r6, r6, r6; /* << 2 */
    342
    343#ifdef DEBUG
    344/* counting which exception happen */
    345	lwi	r5, r0, TOPHYS(exception_debug_table)
    346	addi	r5, r5, 1
    347	swi	r5, r0, TOPHYS(exception_debug_table)
    348	lwi	r5, r6, TOPHYS(exception_debug_table)
    349	addi	r5, r5, 1
    350	swi	r5, r6, TOPHYS(exception_debug_table)
    351#endif
    352/* end */
    353	/* Load the HW Exception vector */
    354	lwi	r6, r6, TOPHYS(_MB_HW_ExceptionVectorTable)
    355	bra	r6
    356
    357full_exception_trapw:
    358	RESTORE_STATE
    359	bri	full_exception_trap
    360
    361/* 0x01 - Unaligned data access exception
    362 * This occurs when a word access is not aligned on a word boundary,
    363 * or when a 16-bit access is not aligned on a 16-bit boundary.
    364 * This handler perform the access, and returns, except for MMU when
    365 * the unaligned address is last on a 4k page or the physical address is
    366 * not found in the page table, in which case unaligned_data_trap is called.
    367 */
    368handle_unaligned_ex:
    369	/* Working registers already saved: R3, R4, R5, R6
    370	 *  R4 = ESR
    371	 *  R3 = EAR
    372	 */
    373	andi	r6, r4, 0x1000			/* Check ESR[DS] */
    374	beqi	r6, _no_delayslot		/* Branch if ESR[DS] not set */
    375	mfs	r17, rbtr;	/* ESR[DS] set - return address in BTR */
    376	nop
    377_no_delayslot:
    378	/* jump to high level unaligned handler */
    379	RESTORE_STATE;
    380	bri	unaligned_data_trap
    381
    382	andi	r6, r4, 0x3E0; /* Mask and extract the register operand */
    383	srl	r6, r6; /* r6 >> 5 */
    384	srl	r6, r6;
    385	srl	r6, r6;
    386	srl	r6, r6;
    387	srl	r6, r6;
    388	/* Store the register operand in a temporary location */
    389	sbi	r6, r0, TOPHYS(ex_reg_op);
    390
    391	andi	r6, r4, 0x400; /* Extract ESR[S] */
    392	bnei	r6, ex_sw;
    393ex_lw:
    394	andi	r6, r4, 0x800; /* Extract ESR[W] */
    395	beqi	r6, ex_lhw;
    396	lbui	r5, r3, 0; /* Exception address in r3 */
    397	/* Load a word, byte-by-byte from destination address
    398		and save it in tmp space */
    399	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
    400	lbui	r5, r3, 1;
    401	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
    402	lbui	r5, r3, 2;
    403	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_2);
    404	lbui	r5, r3, 3;
    405	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_3);
    406	/* Get the destination register value into r4 */
    407	lwi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
    408	bri	ex_lw_tail;
    409ex_lhw:
    410	lbui	r5, r3, 0; /* Exception address in r3 */
    411	/* Load a half-word, byte-by-byte from destination
    412		address and save it in tmp space */
    413	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
    414	lbui	r5, r3, 1;
    415	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
    416	/* Get the destination register value into r4 */
    417	lhui	r4, r0, TOPHYS(ex_tmp_data_loc_0);
    418ex_lw_tail:
    419	/* Get the destination register number into r5 */
    420	lbui	r5, r0, TOPHYS(ex_reg_op);
    421	/* Form load_word jump table offset (lw_table + (8 * regnum)) */
    422	addik	r6, r0, TOPHYS(lw_table);
    423	addk	r5, r5, r5;
    424	addk	r5, r5, r5;
    425	addk	r5, r5, r5;
    426	addk	r5, r5, r6;
    427	bra	r5;
    428ex_lw_end: /* Exception handling of load word, ends */
    429ex_sw:
    430	/* Get the destination register number into r5 */
    431	lbui	r5, r0, TOPHYS(ex_reg_op);
    432	/* Form store_word jump table offset (sw_table + (8 * regnum)) */
    433	addik	r6, r0, TOPHYS(sw_table);
    434	add	r5, r5, r5;
    435	add	r5, r5, r5;
    436	add	r5, r5, r5;
    437	add	r5, r5, r6;
    438	bra	r5;
    439ex_sw_tail:
    440	mfs	r6, resr;
    441	nop
    442	andi	r6, r6, 0x800; /* Extract ESR[W] */
    443	beqi	r6, ex_shw;
    444	/* Get the word - delay slot */
    445	swi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
    446	/* Store the word, byte-by-byte into destination address */
    447	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_0);
    448	sbi	r4, r3, 0;
    449	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_1);
    450	sbi	r4, r3, 1;
    451	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_2);
    452	sbi	r4, r3, 2;
    453	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_3);
    454	sbi	r4, r3, 3;
    455	bri	ex_handler_done;
    456
    457ex_shw:
    458	/* Store the lower half-word, byte-by-byte into destination address */
    459	swi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
    460	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_2);
    461	sbi	r4, r3, 0;
    462	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_3);
    463	sbi	r4, r3, 1;
    464ex_sw_end: /* Exception handling of store word, ends. */
    465
    466ex_handler_done:
    467	RESTORE_STATE;
    468	rted	r17, 0
    469	nop
    470
    471	/* Exception vector entry code. This code runs with address translation
    472	 * turned off (i.e. using physical addresses). */
    473
    474	/* Exception vectors. */
    475
    476	/* 0x10 - Data Storage Exception
    477	 * This happens for just a few reasons. U0 set (but we don't do that),
    478	 * or zone protection fault (user violation, write to protected page).
    479	 * If this is just an update of modified status, we do that quickly
    480	 * and exit. Otherwise, we call heavyweight functions to do the work.
    481	 */
    482	handle_data_storage_exception:
    483		/* Working registers already saved: R3, R4, R5, R6
    484		 * R3 = ESR
    485		 */
    486		mfs	r11, rpid
    487		nop
    488		/* If we are faulting a kernel address, we have to use the
    489		 * kernel page tables.
    490		 */
    491		ori	r5, r0, CONFIG_KERNEL_START
    492		cmpu	r5, r3, r5
    493		bgti	r5, ex3
    494		/* First, check if it was a zone fault (which means a user
    495		 * tried to access a kernel or read-protected page - always
    496		 * a SEGV). All other faults here must be stores, so no
    497		 * need to check ESR_S as well. */
    498		andi	r4, r4, ESR_DIZ		/* ESR_Z - zone protection */
    499		bnei	r4, ex2
    500
    501		ori	r4, r0, swapper_pg_dir
    502		mts	rpid, r0		/* TLB will have 0 TID */
    503		nop
    504		bri	ex4
    505
    506		/* Get the PGD for the current thread. */
    507	ex3:
    508		/* First, check if it was a zone fault (which means a user
    509		 * tried to access a kernel or read-protected page - always
    510		 * a SEGV). All other faults here must be stores, so no
    511		 * need to check ESR_S as well. */
    512		andi	r4, r4, ESR_DIZ		/* ESR_Z */
    513		bnei	r4, ex2
    514		/* get current task address */
    515		addi	r4 ,CURRENT_TASK, TOPHYS(0);
    516		lwi	r4, r4, TASK_THREAD+PGDIR
    517	ex4:
    518		tophys(r4,r4)
    519		/* Create L1 (pgdir/pmd) address */
    520		bsrli	r5, r3, PGDIR_SHIFT - 2
    521		andi	r5, r5, PAGE_SIZE - 4
    522/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
    523		or	r4, r4, r5
    524		lwi	r4, r4, 0		/* Get L1 entry */
    525		andi	r5, r4, PAGE_MASK /* Extract L2 (pte) base address */
    526		beqi	r5, ex2			/* Bail if no table */
    527
    528		tophys(r5,r5)
    529		bsrli	r6, r3, PTE_SHIFT /* Compute PTE address */
    530		andi	r6, r6, PAGE_SIZE - 4
    531		or	r5, r5, r6
    532		lwi	r4, r5, 0		/* Get Linux PTE */
    533
    534		andi	r6, r4, _PAGE_RW	/* Is it writeable? */
    535		beqi	r6, ex2			/* Bail if not */
    536
    537		/* Update 'changed' */
    538		ori	r4, r4, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE
    539		swi	r4, r5, 0		/* Update Linux page table */
    540
    541		/* Most of the Linux PTE is ready to load into the TLB LO.
    542		 * We set ZSEL, where only the LS-bit determines user access.
    543		 * We set execute, because we don't have the granularity to
    544		 * properly set this at the page level (Linux problem).
    545		 * If shared is set, we cause a zero PID->TID load.
    546		 * Many of these bits are software only. Bits we don't set
    547		 * here we (properly should) assume have the appropriate value.
    548		 */
    549/* Ignore memory coherent, just LSB on ZSEL is used + EX/WR */
    550		andi	r4, r4, PAGE_MASK | TLB_EX | TLB_WR | \
    551						TLB_ZSEL(1) | TLB_ATTR_MASK
    552		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
    553
    554		/* find the TLB index that caused the fault. It has to be here*/
    555		mts	rtlbsx, r3
    556		nop
    557		mfs	r5, rtlbx		/* DEBUG: TBD */
    558		nop
    559		mts	rtlblo, r4		/* Load TLB LO */
    560		nop
    561						/* Will sync shadow TLBs */
    562
    563		/* Done...restore registers and get out of here. */
    564		mts	rpid, r11
    565		nop
    566		bri 4
    567
    568		RESTORE_STATE;
    569		rted	r17, 0
    570		nop
    571	ex2:
    572		/* The bailout. Restore registers to pre-exception conditions
    573		 * and call the heavyweights to help us out. */
    574		mts	rpid, r11
    575		nop
    576		bri 4
    577		RESTORE_STATE;
    578		bri	page_fault_data_trap
    579
    580
    581	/* 0x11 - Instruction Storage Exception
    582	 * This is caused by a fetch from non-execute or guarded pages. */
    583	handle_instruction_storage_exception:
    584		/* Working registers already saved: R3, R4, R5, R6
    585		 * R3 = ESR
    586		 */
    587
    588		RESTORE_STATE;
    589		bri	page_fault_instr_trap
    590
    591	/* 0x12 - Data TLB Miss Exception
    592	 * As the name implies, translation is not in the MMU, so search the
    593	 * page tables and fix it. The only purpose of this function is to
    594	 * load TLB entries from the page table if they exist.
    595	 */
    596	handle_data_tlb_miss_exception:
    597		/* Working registers already saved: R3, R4, R5, R6
    598		 * R3 = EAR, R4 = ESR
    599		 */
    600		mfs	r11, rpid
    601		nop
    602
    603		/* If we are faulting a kernel address, we have to use the
    604		 * kernel page tables. */
    605		ori	r6, r0, CONFIG_KERNEL_START
    606		cmpu	r4, r3, r6
    607		bgti	r4, ex5
    608		ori	r4, r0, swapper_pg_dir
    609		mts	rpid, r0		/* TLB will have 0 TID */
    610		nop
    611		bri	ex6
    612
    613		/* Get the PGD for the current thread. */
    614	ex5:
    615		/* get current task address */
    616		addi	r4 ,CURRENT_TASK, TOPHYS(0);
    617		lwi	r4, r4, TASK_THREAD+PGDIR
    618	ex6:
    619		tophys(r4,r4)
    620		/* Create L1 (pgdir/pmd) address */
    621		bsrli	r5, r3, PGDIR_SHIFT - 2
    622		andi	r5, r5, PAGE_SIZE - 4
    623/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
    624		or	r4, r4, r5
    625		lwi	r4, r4, 0		/* Get L1 entry */
    626		andi	r5, r4, PAGE_MASK /* Extract L2 (pte) base address */
    627		beqi	r5, ex7			/* Bail if no table */
    628
    629		tophys(r5,r5)
    630		bsrli	r6, r3, PTE_SHIFT /* Compute PTE address */
    631		andi	r6, r6, PAGE_SIZE - 4
    632		or	r5, r5, r6
    633		lwi	r4, r5, 0		/* Get Linux PTE */
    634
    635		andi	r6, r4, _PAGE_PRESENT
    636		beqi	r6, ex7
    637
    638		ori	r4, r4, _PAGE_ACCESSED
    639		swi	r4, r5, 0
    640
    641		/* Most of the Linux PTE is ready to load into the TLB LO.
    642		 * We set ZSEL, where only the LS-bit determines user access.
    643		 * We set execute, because we don't have the granularity to
    644		 * properly set this at the page level (Linux problem).
    645		 * If shared is set, we cause a zero PID->TID load.
    646		 * Many of these bits are software only. Bits we don't set
    647		 * here we (properly should) assume have the appropriate value.
    648		 */
    649		brid	finish_tlb_load
    650		andi	r4, r4, PAGE_MASK | TLB_EX | TLB_WR | \
    651						TLB_ZSEL(1) | TLB_ATTR_MASK
    652	ex7:
    653		/* The bailout. Restore registers to pre-exception conditions
    654		 * and call the heavyweights to help us out.
    655		 */
    656		mts	rpid, r11
    657		nop
    658		bri	4
    659		RESTORE_STATE;
    660		bri	page_fault_data_trap
    661
    662	/* 0x13 - Instruction TLB Miss Exception
    663	 * Nearly the same as above, except we get our information from
    664	 * different registers and bailout to a different point.
    665	 */
    666	handle_instruction_tlb_miss_exception:
    667		/* Working registers already saved: R3, R4, R5, R6
    668		 *  R3 = ESR
    669		 */
    670		mfs	r11, rpid
    671		nop
    672
    673		/* If we are faulting a kernel address, we have to use the
    674		 * kernel page tables.
    675		 */
    676		ori	r4, r0, CONFIG_KERNEL_START
    677		cmpu	r4, r3, r4
    678		bgti	r4, ex8
    679		ori	r4, r0, swapper_pg_dir
    680		mts	rpid, r0		/* TLB will have 0 TID */
    681		nop
    682		bri	ex9
    683
    684		/* Get the PGD for the current thread. */
    685	ex8:
    686		/* get current task address */
    687		addi	r4 ,CURRENT_TASK, TOPHYS(0);
    688		lwi	r4, r4, TASK_THREAD+PGDIR
    689	ex9:
    690		tophys(r4,r4)
    691		/* Create L1 (pgdir/pmd) address */
    692		bsrli	r5, r3, PGDIR_SHIFT - 2
    693		andi	r5, r5, PAGE_SIZE - 4
    694/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
    695		or	r4, r4, r5
    696		lwi	r4, r4, 0		/* Get L1 entry */
    697		andi	r5, r4, PAGE_MASK /* Extract L2 (pte) base address */
    698		beqi	r5, ex10		/* Bail if no table */
    699
    700		tophys(r5,r5)
    701		bsrli	r6, r3, PTE_SHIFT /* Compute PTE address */
    702		andi	r6, r6, PAGE_SIZE - 4
    703		or	r5, r5, r6
    704		lwi	r4, r5, 0		/* Get Linux PTE */
    705
    706		andi	r6, r4, _PAGE_PRESENT
    707		beqi	r6, ex10
    708
    709		ori	r4, r4, _PAGE_ACCESSED
    710		swi	r4, r5, 0
    711
    712		/* Most of the Linux PTE is ready to load into the TLB LO.
    713		 * We set ZSEL, where only the LS-bit determines user access.
    714		 * We set execute, because we don't have the granularity to
    715		 * properly set this at the page level (Linux problem).
    716		 * If shared is set, we cause a zero PID->TID load.
    717		 * Many of these bits are software only. Bits we don't set
    718		 * here we (properly should) assume have the appropriate value.
    719		 */
    720		brid	finish_tlb_load
    721		andi	r4, r4, PAGE_MASK | TLB_EX | TLB_WR | \
    722						TLB_ZSEL(1) | TLB_ATTR_MASK
    723	ex10:
    724		/* The bailout. Restore registers to pre-exception conditions
    725		 * and call the heavyweights to help us out.
    726		 */
    727		mts	rpid, r11
    728		nop
    729		bri 4
    730		RESTORE_STATE;
    731		bri	page_fault_instr_trap
    732
    733/* Both the instruction and data TLB miss get to this point to load the TLB.
    734 *	r3 - EA of fault
    735 *	r4 - TLB LO (info from Linux PTE)
    736 *	r5, r6 - available to use
    737 *	PID - loaded with proper value when we get here
    738 *	Upon exit, we reload everything and RFI.
    739 * A common place to load the TLB.
    740 */
    741.section .data
    742.align 4
    743.global tlb_skip
    744	tlb_skip:
    745		.long	MICROBLAZE_TLB_SKIP
    746	tlb_index:
    747		/* MS: storing last used tlb index */
    748		.long	MICROBLAZE_TLB_SIZE/2
    749.previous
    750	finish_tlb_load:
    751		/* MS: load the last used TLB index. */
    752		lwi	r5, r0, TOPHYS(tlb_index)
    753		addik	r5, r5, 1 /* MS: inc tlb_index -> use next one */
    754
    755/* MS: FIXME this is potential fault, because this is mask not count */
    756		andi	r5, r5, MICROBLAZE_TLB_SIZE - 1
    757		ori	r6, r0, 1
    758		cmp	r31, r5, r6
    759		blti	r31, ex12
    760		lwi	r5, r0, TOPHYS(tlb_skip)
    761	ex12:
    762		/* MS: save back current TLB index */
    763		swi	r5, r0, TOPHYS(tlb_index)
    764
    765		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
    766		mts	rtlbx, r5		/* MS: save current TLB */
    767		nop
    768		mts	rtlblo,	r4		/* MS: save to TLB LO */
    769		nop
    770
    771		/* Create EPN. This is the faulting address plus a static
    772		 * set of bits. These are size, valid, E, U0, and ensure
    773		 * bits 20 and 21 are zero.
    774		 */
    775		andi	r3, r3, PAGE_MASK
    776		ori	r3, r3, TLB_VALID | TLB_PAGESZ(PAGESZ_4K)
    777		mts	rtlbhi,	r3		/* Load TLB HI */
    778		nop
    779
    780		/* Done...restore registers and get out of here. */
    781		mts	rpid, r11
    782		nop
    783		bri 4
    784		RESTORE_STATE;
    785		rted	r17, 0
    786		nop
    787
    788	/* extern void giveup_fpu(struct task_struct *prev)
    789	 *
    790	 * The MicroBlaze processor may have an FPU, so this should not just
    791	 * return: TBD.
    792	 */
    793	.globl giveup_fpu;
    794	.align 4;
    795	giveup_fpu:
    796		bralid	r15,0			/* TBD */
    797		nop
    798
    799	/* At present, this routine just hangs. - extern void abort(void) */
    800	.globl abort;
    801	.align 4;
    802	abort:
    803		br	r0
    804
    805	.globl set_context;
    806	.align 4;
    807	set_context:
    808		mts	rpid, r5	/* Shadow TLBs are automatically */
    809		nop
    810		bri	4		/* flushed by changing PID */
    811		rtsd	r15,8
    812		nop
    813
    814.end _hw_exception_handler
    815
    816/* Unaligned data access exception last on a 4k page for MMU.
    817 * When this is called, we are in virtual mode with exceptions enabled
    818 * and registers 1-13,15,17,18 saved.
    819 *
    820 * R3 = ESR
    821 * R4 = EAR
    822 * R7 = pointer to saved registers (struct pt_regs *regs)
    823 *
    824 * This handler perform the access, and returns via ret_from_exc.
    825 */
    826.global _unaligned_data_exception
    827.ent _unaligned_data_exception
    828_unaligned_data_exception:
    829	andi	r8, r3, 0x3E0;	/* Mask and extract the register operand */
    830	bsrli   r8, r8, 2;		/* r8 >> 2 = register operand * 8 */
    831	andi	r6, r3, 0x400;	/* Extract ESR[S] */
    832	bneid	r6, ex_sw_vm;
    833	andi	r6, r3, 0x800;	/* Extract ESR[W] - delay slot */
    834ex_lw_vm:
    835	beqid	r6, ex_lhw_vm;
    836load1:	lbui	r5, r4, 0;	/* Exception address in r4 - delay slot */
    837/* Load a word, byte-by-byte from destination address and save it in tmp space*/
    838	addik	r6, r0, ex_tmp_data_loc_0;
    839	sbi	r5, r6, 0;
    840load2:	lbui	r5, r4, 1;
    841	sbi	r5, r6, 1;
    842load3:	lbui	r5, r4, 2;
    843	sbi	r5, r6, 2;
    844load4:	lbui	r5, r4, 3;
    845	sbi	r5, r6, 3;
    846	brid	ex_lw_tail_vm;
    847/* Get the destination register value into r3 - delay slot */
    848	lwi	r3, r6, 0;
    849ex_lhw_vm:
    850	/* Load a half-word, byte-by-byte from destination address and
    851	 * save it in tmp space */
    852	addik	r6, r0, ex_tmp_data_loc_0;
    853	sbi	r5, r6, 0;
    854load5:	lbui	r5, r4, 1;
    855	sbi	r5, r6, 1;
    856	lhui	r3, r6, 0;	/* Get the destination register value into r3 */
    857ex_lw_tail_vm:
    858	/* Form load_word jump table offset (lw_table_vm + (8 * regnum)) */
    859	addik	r5, r8, lw_table_vm;
    860	bra	r5;
    861ex_lw_end_vm:			/* Exception handling of load word, ends */
    862	brai	ret_from_exc;
    863ex_sw_vm:
    864/* Form store_word jump table offset (sw_table_vm + (8 * regnum)) */
    865	addik	r5, r8, sw_table_vm;
    866	bra	r5;
    867ex_sw_tail_vm:
    868	addik	r5, r0, ex_tmp_data_loc_0;
    869	beqid	r6, ex_shw_vm;
    870	swi	r3, r5, 0;	/* Get the word - delay slot */
    871	/* Store the word, byte-by-byte into destination address */
    872	lbui	r3, r5, 0;
    873store1:	sbi	r3, r4, 0;
    874	lbui	r3, r5, 1;
    875store2:	sbi	r3, r4, 1;
    876	lbui	r3, r5, 2;
    877store3:	sbi	r3, r4, 2;
    878	lbui	r3, r5, 3;
    879	brid	ret_from_exc;
    880store4:	sbi	r3, r4, 3;	/* Delay slot */
    881ex_shw_vm:
    882	/* Store the lower half-word, byte-by-byte into destination address */
    883#ifdef __MICROBLAZEEL__
    884	lbui	r3, r5, 0;
    885store5:	sbi	r3, r4, 0;
    886	lbui	r3, r5, 1;
    887	brid	ret_from_exc;
    888store6:	sbi	r3, r4, 1;	/* Delay slot */
    889#else
    890	lbui	r3, r5, 2;
    891store5:	sbi	r3, r4, 0;
    892	lbui	r3, r5, 3;
    893	brid	ret_from_exc;
    894store6:	sbi	r3, r4, 1;	/* Delay slot */
    895#endif
    896
    897ex_sw_end_vm:			/* Exception handling of store word, ends. */
    898
    899/* We have to prevent cases that get/put_user macros get unaligned pointer
    900 * to bad page area. We have to find out which origin instruction caused it
    901 * and called fixup for that origin instruction not instruction in unaligned
    902 * handler */
    903ex_unaligned_fixup:
    904	ori	r5, r7, 0 /* setup pointer to pt_regs */
    905	lwi	r6, r7, PT_PC; /* faulting address is one instruction above */
    906	addik	r6, r6, -4 /* for finding proper fixup */
    907	swi	r6, r7, PT_PC; /* a save back it to PT_PC */
    908	addik	r7, r0, SIGSEGV
    909	/* call bad_page_fault for finding aligned fixup, fixup address is saved
    910	 * in PT_PC which is used as return address from exception */
    911	addik	r15, r0, ret_from_exc-8 /* setup return address */
    912	brid	bad_page_fault
    913	nop
    914
    915/* We prevent all load/store because it could failed any attempt to access */
    916.section __ex_table,"a";
    917	.word	load1,ex_unaligned_fixup;
    918	.word	load2,ex_unaligned_fixup;
    919	.word	load3,ex_unaligned_fixup;
    920	.word	load4,ex_unaligned_fixup;
    921	.word	load5,ex_unaligned_fixup;
    922	.word	store1,ex_unaligned_fixup;
    923	.word	store2,ex_unaligned_fixup;
    924	.word	store3,ex_unaligned_fixup;
    925	.word	store4,ex_unaligned_fixup;
    926	.word	store5,ex_unaligned_fixup;
    927	.word	store6,ex_unaligned_fixup;
    928.previous;
    929.end _unaligned_data_exception
    930
    931.global ex_handler_unhandled
    932ex_handler_unhandled:
    933/* FIXME add handle function for unhandled exception - dump register */
    934	bri 0
    935
    936/*
    937 * hw_exception_handler Jump Table
    938 * - Contains code snippets for each register that caused the unalign exception
    939 * - Hence exception handler is NOT self-modifying
    940 * - Separate table for load exceptions and store exceptions.
    941 * - Each table is of size: (8 * 32) = 256 bytes
    942 */
    943
    944.section .text
    945.align 4
    946lw_table:
    947lw_r0:		R3_TO_LWREG	(0);
    948lw_r1:		LWREG_NOP;
    949lw_r2:		R3_TO_LWREG	(2);
    950lw_r3:		R3_TO_LWREG_V	(3);
    951lw_r4:		R3_TO_LWREG_V	(4);
    952lw_r5:		R3_TO_LWREG_V	(5);
    953lw_r6:		R3_TO_LWREG_V	(6);
    954lw_r7:		R3_TO_LWREG	(7);
    955lw_r8:		R3_TO_LWREG	(8);
    956lw_r9:		R3_TO_LWREG	(9);
    957lw_r10:		R3_TO_LWREG	(10);
    958lw_r11:		R3_TO_LWREG	(11);
    959lw_r12:		R3_TO_LWREG	(12);
    960lw_r13:		R3_TO_LWREG	(13);
    961lw_r14:		R3_TO_LWREG	(14);
    962lw_r15:		R3_TO_LWREG	(15);
    963lw_r16:		R3_TO_LWREG	(16);
    964lw_r17:		LWREG_NOP;
    965lw_r18:		R3_TO_LWREG	(18);
    966lw_r19:		R3_TO_LWREG	(19);
    967lw_r20:		R3_TO_LWREG	(20);
    968lw_r21:		R3_TO_LWREG	(21);
    969lw_r22:		R3_TO_LWREG	(22);
    970lw_r23:		R3_TO_LWREG	(23);
    971lw_r24:		R3_TO_LWREG	(24);
    972lw_r25:		R3_TO_LWREG	(25);
    973lw_r26:		R3_TO_LWREG	(26);
    974lw_r27:		R3_TO_LWREG	(27);
    975lw_r28:		R3_TO_LWREG	(28);
    976lw_r29:		R3_TO_LWREG	(29);
    977lw_r30:		R3_TO_LWREG	(30);
    978lw_r31: 	R3_TO_LWREG_V	(31);
    979
    980sw_table:
    981sw_r0:		SWREG_TO_R3	(0);
    982sw_r1:		SWREG_NOP;
    983sw_r2:		SWREG_TO_R3	(2);
    984sw_r3:		SWREG_TO_R3_V	(3);
    985sw_r4:		SWREG_TO_R3_V	(4);
    986sw_r5:		SWREG_TO_R3_V	(5);
    987sw_r6:		SWREG_TO_R3_V	(6);
    988sw_r7:		SWREG_TO_R3	(7);
    989sw_r8:		SWREG_TO_R3	(8);
    990sw_r9:		SWREG_TO_R3	(9);
    991sw_r10:		SWREG_TO_R3	(10);
    992sw_r11:		SWREG_TO_R3	(11);
    993sw_r12:		SWREG_TO_R3	(12);
    994sw_r13:		SWREG_TO_R3	(13);
    995sw_r14:		SWREG_TO_R3	(14);
    996sw_r15:		SWREG_TO_R3	(15);
    997sw_r16:		SWREG_TO_R3	(16);
    998sw_r17:		SWREG_NOP;
    999sw_r18:		SWREG_TO_R3	(18);
   1000sw_r19:		SWREG_TO_R3	(19);
   1001sw_r20:		SWREG_TO_R3	(20);
   1002sw_r21:		SWREG_TO_R3	(21);
   1003sw_r22:		SWREG_TO_R3	(22);
   1004sw_r23:		SWREG_TO_R3	(23);
   1005sw_r24:		SWREG_TO_R3	(24);
   1006sw_r25:		SWREG_TO_R3	(25);
   1007sw_r26:		SWREG_TO_R3	(26);
   1008sw_r27:		SWREG_TO_R3	(27);
   1009sw_r28:		SWREG_TO_R3	(28);
   1010sw_r29:		SWREG_TO_R3	(29);
   1011sw_r30:		SWREG_TO_R3	(30);
   1012sw_r31:		SWREG_TO_R3_V	(31);
   1013
   1014lw_table_vm:
   1015lw_r0_vm:	R3_TO_LWREG_VM		(0);
   1016lw_r1_vm:	R3_TO_LWREG_VM_V	(1);
   1017lw_r2_vm:	R3_TO_LWREG_VM_V	(2);
   1018lw_r3_vm:	R3_TO_LWREG_VM_V	(3);
   1019lw_r4_vm:	R3_TO_LWREG_VM_V	(4);
   1020lw_r5_vm:	R3_TO_LWREG_VM_V	(5);
   1021lw_r6_vm:	R3_TO_LWREG_VM_V	(6);
   1022lw_r7_vm:	R3_TO_LWREG_VM_V	(7);
   1023lw_r8_vm:	R3_TO_LWREG_VM_V	(8);
   1024lw_r9_vm:	R3_TO_LWREG_VM_V	(9);
   1025lw_r10_vm:	R3_TO_LWREG_VM_V	(10);
   1026lw_r11_vm:	R3_TO_LWREG_VM_V	(11);
   1027lw_r12_vm:	R3_TO_LWREG_VM_V	(12);
   1028lw_r13_vm:	R3_TO_LWREG_VM_V	(13);
   1029lw_r14_vm:	R3_TO_LWREG_VM_V	(14);
   1030lw_r15_vm:	R3_TO_LWREG_VM_V	(15);
   1031lw_r16_vm:	R3_TO_LWREG_VM_V	(16);
   1032lw_r17_vm:	R3_TO_LWREG_VM_V	(17);
   1033lw_r18_vm:	R3_TO_LWREG_VM_V	(18);
   1034lw_r19_vm:	R3_TO_LWREG_VM_V	(19);
   1035lw_r20_vm:	R3_TO_LWREG_VM_V	(20);
   1036lw_r21_vm:	R3_TO_LWREG_VM_V	(21);
   1037lw_r22_vm:	R3_TO_LWREG_VM_V	(22);
   1038lw_r23_vm:	R3_TO_LWREG_VM_V	(23);
   1039lw_r24_vm:	R3_TO_LWREG_VM_V	(24);
   1040lw_r25_vm:	R3_TO_LWREG_VM_V	(25);
   1041lw_r26_vm:	R3_TO_LWREG_VM_V	(26);
   1042lw_r27_vm:	R3_TO_LWREG_VM_V	(27);
   1043lw_r28_vm:	R3_TO_LWREG_VM_V	(28);
   1044lw_r29_vm:	R3_TO_LWREG_VM_V	(29);
   1045lw_r30_vm:	R3_TO_LWREG_VM_V	(30);
   1046lw_r31_vm:	R3_TO_LWREG_VM_V	(31);
   1047
   1048sw_table_vm:
   1049sw_r0_vm:	SWREG_TO_R3_VM		(0);
   1050sw_r1_vm:	SWREG_TO_R3_VM_V	(1);
   1051sw_r2_vm:	SWREG_TO_R3_VM_V	(2);
   1052sw_r3_vm:	SWREG_TO_R3_VM_V	(3);
   1053sw_r4_vm:	SWREG_TO_R3_VM_V	(4);
   1054sw_r5_vm:	SWREG_TO_R3_VM_V	(5);
   1055sw_r6_vm:	SWREG_TO_R3_VM_V	(6);
   1056sw_r7_vm:	SWREG_TO_R3_VM_V	(7);
   1057sw_r8_vm:	SWREG_TO_R3_VM_V	(8);
   1058sw_r9_vm:	SWREG_TO_R3_VM_V	(9);
   1059sw_r10_vm:	SWREG_TO_R3_VM_V	(10);
   1060sw_r11_vm:	SWREG_TO_R3_VM_V	(11);
   1061sw_r12_vm:	SWREG_TO_R3_VM_V	(12);
   1062sw_r13_vm:	SWREG_TO_R3_VM_V	(13);
   1063sw_r14_vm:	SWREG_TO_R3_VM_V	(14);
   1064sw_r15_vm:	SWREG_TO_R3_VM_V	(15);
   1065sw_r16_vm:	SWREG_TO_R3_VM_V	(16);
   1066sw_r17_vm:	SWREG_TO_R3_VM_V	(17);
   1067sw_r18_vm:	SWREG_TO_R3_VM_V	(18);
   1068sw_r19_vm:	SWREG_TO_R3_VM_V	(19);
   1069sw_r20_vm:	SWREG_TO_R3_VM_V	(20);
   1070sw_r21_vm:	SWREG_TO_R3_VM_V	(21);
   1071sw_r22_vm:	SWREG_TO_R3_VM_V	(22);
   1072sw_r23_vm:	SWREG_TO_R3_VM_V	(23);
   1073sw_r24_vm:	SWREG_TO_R3_VM_V	(24);
   1074sw_r25_vm:	SWREG_TO_R3_VM_V	(25);
   1075sw_r26_vm:	SWREG_TO_R3_VM_V	(26);
   1076sw_r27_vm:	SWREG_TO_R3_VM_V	(27);
   1077sw_r28_vm:	SWREG_TO_R3_VM_V	(28);
   1078sw_r29_vm:	SWREG_TO_R3_VM_V	(29);
   1079sw_r30_vm:	SWREG_TO_R3_VM_V	(30);
   1080sw_r31_vm:	SWREG_TO_R3_VM_V	(31);
   1081
   1082/* Temporary data structures used in the handler */
   1083.section .data
   1084.align 4
   1085ex_tmp_data_loc_0:
   1086	.byte 0
   1087ex_tmp_data_loc_1:
   1088	.byte 0
   1089ex_tmp_data_loc_2:
   1090	.byte 0
   1091ex_tmp_data_loc_3:
   1092	.byte 0
   1093ex_reg_op:
   1094	.byte 0