cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dbdma.c (32495B)


      1/*
      2 *
      3 * BRIEF MODULE DESCRIPTION
      4 *      The Descriptor Based DMA channel manager that first appeared
      5 *	on the Au1550.  I started with dma.c, but I think all that is
      6 *	left is this initial comment :-)
      7 *
      8 * Copyright 2004 Embedded Edge, LLC
      9 *	dan@embeddededge.com
     10 *
     11 *  This program is free software; you can redistribute  it and/or modify it
     12 *  under  the terms of  the GNU General  Public License as published by the
     13 *  Free Software Foundation;  either version 2 of the  License, or (at your
     14 *  option) any later version.
     15 *
     16 *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
     17 *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
     18 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
     19 *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
     20 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21 *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
     22 *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
     23 *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
     24 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25 *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26 *
     27 *  You should have received a copy of the  GNU General Public License along
     28 *  with this program; if not, write  to the Free Software Foundation, Inc.,
     29 *  675 Mass Ave, Cambridge, MA 02139, USA.
     30 *
     31 */
     32
     33#include <linux/init.h>
     34#include <linux/kernel.h>
     35#include <linux/slab.h>
     36#include <linux/spinlock.h>
     37#include <linux/interrupt.h>
     38#include <linux/export.h>
     39#include <linux/syscore_ops.h>
     40#include <asm/mach-au1x00/au1000.h>
     41#include <asm/mach-au1x00/au1xxx_dbdma.h>
     42
     43/*
     44 * The Descriptor Based DMA supports up to 16 channels.
     45 *
     46 * There are 32 devices defined. We keep an internal structure
     47 * of devices using these channels, along with additional
     48 * information.
     49 *
     50 * We allocate the descriptors and allow access to them through various
     51 * functions.  The drivers allocate the data buffers and assign them
     52 * to the descriptors.
     53 */
     54static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
     55
     56/* I couldn't find a macro that did this... */
     57#define ALIGN_ADDR(x, a)	((((u32)(x)) + (a-1)) & ~(a-1))
     58
     59static dbdma_global_t *dbdma_gptr =
     60			(dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
     61static int dbdma_initialized;
     62
     63static dbdev_tab_t *dbdev_tab;
     64
     65static dbdev_tab_t au1550_dbdev_tab[] __initdata = {
     66	/* UARTS */
     67	{ AU1550_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
     68	{ AU1550_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8, 0x11100000, 0, 0 },
     69	{ AU1550_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
     70	{ AU1550_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN,  0, 8, 0x11400000, 0, 0 },
     71
     72	/* EXT DMA */
     73	{ AU1550_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
     74	{ AU1550_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
     75	{ AU1550_DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
     76	{ AU1550_DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
     77
     78	/* USB DEV */
     79	{ AU1550_DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN,  4, 8, 0x10200000, 0, 0 },
     80	{ AU1550_DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
     81	{ AU1550_DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
     82	{ AU1550_DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
     83	{ AU1550_DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN,  4, 8, 0x10200010, 0, 0 },
     84	{ AU1550_DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN,  4, 8, 0x10200014, 0, 0 },
     85
     86	/* PSCs */
     87	{ AU1550_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
     88	{ AU1550_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN,  0, 0, 0x11a0001c, 0, 0 },
     89	{ AU1550_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
     90	{ AU1550_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN,  0, 0, 0x11b0001c, 0, 0 },
     91	{ AU1550_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
     92	{ AU1550_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN,  0, 0, 0x10a0001c, 0, 0 },
     93	{ AU1550_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
     94	{ AU1550_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN,  0, 0, 0x10b0001c, 0, 0 },
     95
     96	{ AU1550_DSCR_CMD0_PCI_WRITE,  0, 0, 0, 0x00000000, 0, 0 },  /* PCI */
     97	{ AU1550_DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
     98
     99	/* MAC 0 */
    100	{ AU1550_DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN,  0, 0, 0x00000000, 0, 0 },
    101	{ AU1550_DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
    102
    103	/* MAC 1 */
    104	{ AU1550_DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN,  0, 0, 0x00000000, 0, 0 },
    105	{ AU1550_DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
    106
    107	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    108	{ DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    109};
    110
    111static dbdev_tab_t au1200_dbdev_tab[] __initdata = {
    112	{ AU1200_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
    113	{ AU1200_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8, 0x11100000, 0, 0 },
    114	{ AU1200_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
    115	{ AU1200_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN,  0, 8, 0x11200000, 0, 0 },
    116
    117	{ AU1200_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
    118	{ AU1200_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
    119
    120	{ AU1200_DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    121	{ AU1200_DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    122	{ AU1200_DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    123	{ AU1200_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    124
    125	{ AU1200_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
    126	{ AU1200_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN,  4, 8, 0x10600004, 0, 0 },
    127	{ AU1200_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
    128	{ AU1200_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN,  4, 8, 0x10680004, 0, 0 },
    129
    130	{ AU1200_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
    131	{ AU1200_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
    132
    133	{ AU1200_DSCR_CMD0_PSC0_TX,   DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
    134	{ AU1200_DSCR_CMD0_PSC0_RX,   DEV_FLAGS_IN,  0, 16, 0x11a0001c, 0, 0 },
    135	{ AU1200_DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    136	{ AU1200_DSCR_CMD0_PSC1_TX,   DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
    137	{ AU1200_DSCR_CMD0_PSC1_RX,   DEV_FLAGS_IN,  0, 16, 0x11b0001c, 0, 0 },
    138	{ AU1200_DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    139
    140	{ AU1200_DSCR_CMD0_CIM_RXA,  DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
    141	{ AU1200_DSCR_CMD0_CIM_RXB,  DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
    142	{ AU1200_DSCR_CMD0_CIM_RXC,  DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
    143	{ AU1200_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    144
    145	{ AU1200_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
    146
    147	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    148	{ DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    149};
    150
    151static dbdev_tab_t au1300_dbdev_tab[] __initdata = {
    152	{ AU1300_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8,  0x10100004, 0, 0 },
    153	{ AU1300_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8,  0x10100000, 0, 0 },
    154	{ AU1300_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8,  0x10101004, 0, 0 },
    155	{ AU1300_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN,  0, 8,  0x10101000, 0, 0 },
    156	{ AU1300_DSCR_CMD0_UART2_TX, DEV_FLAGS_OUT, 0, 8,  0x10102004, 0, 0 },
    157	{ AU1300_DSCR_CMD0_UART2_RX, DEV_FLAGS_IN,  0, 8,  0x10102000, 0, 0 },
    158	{ AU1300_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8,  0x10103004, 0, 0 },
    159	{ AU1300_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN,  0, 8,  0x10103000, 0, 0 },
    160
    161	{ AU1300_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8,  0x10600000, 0, 0 },
    162	{ AU1300_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN,  4, 8,  0x10600004, 0, 0 },
    163	{ AU1300_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 8, 8,  0x10601000, 0, 0 },
    164	{ AU1300_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN,  8, 8,  0x10601004, 0, 0 },
    165
    166	{ AU1300_DSCR_CMD0_AES_RX, DEV_FLAGS_IN ,   4, 32, 0x10300008, 0, 0 },
    167	{ AU1300_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT,   4, 32, 0x10300004, 0, 0 },
    168
    169	{ AU1300_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0001c, 0, 0 },
    170	{ AU1300_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN,   0, 16, 0x10a0001c, 0, 0 },
    171	{ AU1300_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0101c, 0, 0 },
    172	{ AU1300_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN,   0, 16, 0x10a0101c, 0, 0 },
    173	{ AU1300_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0201c, 0, 0 },
    174	{ AU1300_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN,   0, 16, 0x10a0201c, 0, 0 },
    175	{ AU1300_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT,  0, 16, 0x10a0301c, 0, 0 },
    176	{ AU1300_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN,   0, 16, 0x10a0301c, 0, 0 },
    177
    178	{ AU1300_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE,   0, 0,  0x00000000, 0, 0 },
    179	{ AU1300_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
    180
    181	{ AU1300_DSCR_CMD0_SDMS_TX2, DEV_FLAGS_OUT, 4, 8,  0x10602000, 0, 0 },
    182	{ AU1300_DSCR_CMD0_SDMS_RX2, DEV_FLAGS_IN,  4, 8,  0x10602004, 0, 0 },
    183
    184	{ AU1300_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    185
    186	{ AU1300_DSCR_CMD0_UDMA, DEV_FLAGS_ANYUSE,  0, 32, 0x14001810, 0, 0 },
    187
    188	{ AU1300_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
    189	{ AU1300_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
    190
    191	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    192	{ DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
    193};
    194
    195/* 32 predefined plus 32 custom */
    196#define DBDEV_TAB_SIZE		64
    197
    198static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
    199
    200static dbdev_tab_t *find_dbdev_id(u32 id)
    201{
    202	int i;
    203	dbdev_tab_t *p;
    204	for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
    205		p = &dbdev_tab[i];
    206		if (p->dev_id == id)
    207			return p;
    208	}
    209	return NULL;
    210}
    211
    212void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
    213{
    214	return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
    215}
    216EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
    217
    218u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
    219{
    220	u32 ret = 0;
    221	dbdev_tab_t *p;
    222	static u16 new_id = 0x1000;
    223
    224	p = find_dbdev_id(~0);
    225	if (NULL != p) {
    226		memcpy(p, dev, sizeof(dbdev_tab_t));
    227		p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
    228		ret = p->dev_id;
    229		new_id++;
    230#if 0
    231		printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
    232				  p->dev_id, p->dev_flags, p->dev_physaddr);
    233#endif
    234	}
    235
    236	return ret;
    237}
    238EXPORT_SYMBOL(au1xxx_ddma_add_device);
    239
    240void au1xxx_ddma_del_device(u32 devid)
    241{
    242	dbdev_tab_t *p = find_dbdev_id(devid);
    243
    244	if (p != NULL) {
    245		memset(p, 0, sizeof(dbdev_tab_t));
    246		p->dev_id = ~0;
    247	}
    248}
    249EXPORT_SYMBOL(au1xxx_ddma_del_device);
    250
    251/* Allocate a channel and return a non-zero descriptor if successful. */
    252u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
    253       void (*callback)(int, void *), void *callparam)
    254{
    255	unsigned long	flags;
    256	u32		used, chan;
    257	u32		dcp;
    258	int		i;
    259	dbdev_tab_t	*stp, *dtp;
    260	chan_tab_t	*ctp;
    261	au1x_dma_chan_t *cp;
    262
    263	/*
    264	 * We do the initialization on the first channel allocation.
    265	 * We have to wait because of the interrupt handler initialization
    266	 * which can't be done successfully during board set up.
    267	 */
    268	if (!dbdma_initialized)
    269		return 0;
    270
    271	stp = find_dbdev_id(srcid);
    272	if (stp == NULL)
    273		return 0;
    274	dtp = find_dbdev_id(destid);
    275	if (dtp == NULL)
    276		return 0;
    277
    278	used = 0;
    279
    280	/* Check to see if we can get both channels. */
    281	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
    282	if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
    283	     (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
    284		/* Got source */
    285		stp->dev_flags |= DEV_FLAGS_INUSE;
    286		if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
    287		     (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
    288			/* Got destination */
    289			dtp->dev_flags |= DEV_FLAGS_INUSE;
    290		} else {
    291			/* Can't get dest.  Release src. */
    292			stp->dev_flags &= ~DEV_FLAGS_INUSE;
    293			used++;
    294		}
    295	} else
    296		used++;
    297	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
    298
    299	if (used)
    300		return 0;
    301
    302	/* Let's see if we can allocate a channel for it. */
    303	ctp = NULL;
    304	chan = 0;
    305	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
    306	for (i = 0; i < NUM_DBDMA_CHANS; i++)
    307		if (chan_tab_ptr[i] == NULL) {
    308			/*
    309			 * If kmalloc fails, it is caught below same
    310			 * as a channel not available.
    311			 */
    312			ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
    313			chan_tab_ptr[i] = ctp;
    314			break;
    315		}
    316	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
    317
    318	if (ctp != NULL) {
    319		memset(ctp, 0, sizeof(chan_tab_t));
    320		ctp->chan_index = chan = i;
    321		dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
    322		dcp += (0x0100 * chan);
    323		ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
    324		cp = (au1x_dma_chan_t *)dcp;
    325		ctp->chan_src = stp;
    326		ctp->chan_dest = dtp;
    327		ctp->chan_callback = callback;
    328		ctp->chan_callparam = callparam;
    329
    330		/* Initialize channel configuration. */
    331		i = 0;
    332		if (stp->dev_intlevel)
    333			i |= DDMA_CFG_SED;
    334		if (stp->dev_intpolarity)
    335			i |= DDMA_CFG_SP;
    336		if (dtp->dev_intlevel)
    337			i |= DDMA_CFG_DED;
    338		if (dtp->dev_intpolarity)
    339			i |= DDMA_CFG_DP;
    340		if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
    341			(dtp->dev_flags & DEV_FLAGS_SYNC))
    342				i |= DDMA_CFG_SYNC;
    343		cp->ddma_cfg = i;
    344		wmb(); /* drain writebuffer */
    345
    346		/*
    347		 * Return a non-zero value that can be used to find the channel
    348		 * information in subsequent operations.
    349		 */
    350		return (u32)(&chan_tab_ptr[chan]);
    351	}
    352
    353	/* Release devices */
    354	stp->dev_flags &= ~DEV_FLAGS_INUSE;
    355	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
    356
    357	return 0;
    358}
    359EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
    360
    361/*
    362 * Set the device width if source or destination is a FIFO.
    363 * Should be 8, 16, or 32 bits.
    364 */
    365u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
    366{
    367	u32		rv;
    368	chan_tab_t	*ctp;
    369	dbdev_tab_t	*stp, *dtp;
    370
    371	ctp = *((chan_tab_t **)chanid);
    372	stp = ctp->chan_src;
    373	dtp = ctp->chan_dest;
    374	rv = 0;
    375
    376	if (stp->dev_flags & DEV_FLAGS_IN) {	/* Source in fifo */
    377		rv = stp->dev_devwidth;
    378		stp->dev_devwidth = bits;
    379	}
    380	if (dtp->dev_flags & DEV_FLAGS_OUT) {	/* Destination out fifo */
    381		rv = dtp->dev_devwidth;
    382		dtp->dev_devwidth = bits;
    383	}
    384
    385	return rv;
    386}
    387EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
    388
    389/* Allocate a descriptor ring, initializing as much as possible. */
    390u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
    391{
    392	int			i;
    393	u32			desc_base, srcid, destid;
    394	u32			cmd0, cmd1, src1, dest1;
    395	u32			src0, dest0;
    396	chan_tab_t		*ctp;
    397	dbdev_tab_t		*stp, *dtp;
    398	au1x_ddma_desc_t	*dp;
    399
    400	/*
    401	 * I guess we could check this to be within the
    402	 * range of the table......
    403	 */
    404	ctp = *((chan_tab_t **)chanid);
    405	stp = ctp->chan_src;
    406	dtp = ctp->chan_dest;
    407
    408	/*
    409	 * The descriptors must be 32-byte aligned.  There is a
    410	 * possibility the allocation will give us such an address,
    411	 * and if we try that first we are likely to not waste larger
    412	 * slabs of memory.
    413	 */
    414	desc_base = (u32)kmalloc_array(entries, sizeof(au1x_ddma_desc_t),
    415				       GFP_KERNEL|GFP_DMA);
    416	if (desc_base == 0)
    417		return 0;
    418
    419	if (desc_base & 0x1f) {
    420		/*
    421		 * Lost....do it again, allocate extra, and round
    422		 * the address base.
    423		 */
    424		kfree((const void *)desc_base);
    425		i = entries * sizeof(au1x_ddma_desc_t);
    426		i += (sizeof(au1x_ddma_desc_t) - 1);
    427		desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
    428		if (desc_base == 0)
    429			return 0;
    430
    431		ctp->cdb_membase = desc_base;
    432		desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
    433	} else
    434		ctp->cdb_membase = desc_base;
    435
    436	dp = (au1x_ddma_desc_t *)desc_base;
    437
    438	/* Keep track of the base descriptor. */
    439	ctp->chan_desc_base = dp;
    440
    441	/* Initialize the rings with as much information as we know. */
    442	srcid = stp->dev_id;
    443	destid = dtp->dev_id;
    444
    445	cmd0 = cmd1 = src1 = dest1 = 0;
    446	src0 = dest0 = 0;
    447
    448	cmd0 |= DSCR_CMD0_SID(srcid);
    449	cmd0 |= DSCR_CMD0_DID(destid);
    450	cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
    451	cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
    452
    453	/* Is it mem to mem transfer? */
    454	if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
    455	     (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
    456	    ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
    457	     (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
    458		cmd0 |= DSCR_CMD0_MEM;
    459
    460	switch (stp->dev_devwidth) {
    461	case 8:
    462		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
    463		break;
    464	case 16:
    465		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
    466		break;
    467	case 32:
    468	default:
    469		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
    470		break;
    471	}
    472
    473	switch (dtp->dev_devwidth) {
    474	case 8:
    475		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
    476		break;
    477	case 16:
    478		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
    479		break;
    480	case 32:
    481	default:
    482		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
    483		break;
    484	}
    485
    486	/*
    487	 * If the device is marked as an in/out FIFO, ensure it is
    488	 * set non-coherent.
    489	 */
    490	if (stp->dev_flags & DEV_FLAGS_IN)
    491		cmd0 |= DSCR_CMD0_SN;		/* Source in FIFO */
    492	if (dtp->dev_flags & DEV_FLAGS_OUT)
    493		cmd0 |= DSCR_CMD0_DN;		/* Destination out FIFO */
    494
    495	/*
    496	 * Set up source1.  For now, assume no stride and increment.
    497	 * A channel attribute update can change this later.
    498	 */
    499	switch (stp->dev_tsize) {
    500	case 1:
    501		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
    502		break;
    503	case 2:
    504		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
    505		break;
    506	case 4:
    507		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
    508		break;
    509	case 8:
    510	default:
    511		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
    512		break;
    513	}
    514
    515	/* If source input is FIFO, set static address. */
    516	if (stp->dev_flags & DEV_FLAGS_IN) {
    517		if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
    518			src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
    519		else
    520			src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
    521	}
    522
    523	if (stp->dev_physaddr)
    524		src0 = stp->dev_physaddr;
    525
    526	/*
    527	 * Set up dest1.  For now, assume no stride and increment.
    528	 * A channel attribute update can change this later.
    529	 */
    530	switch (dtp->dev_tsize) {
    531	case 1:
    532		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
    533		break;
    534	case 2:
    535		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
    536		break;
    537	case 4:
    538		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
    539		break;
    540	case 8:
    541	default:
    542		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
    543		break;
    544	}
    545
    546	/* If destination output is FIFO, set static address. */
    547	if (dtp->dev_flags & DEV_FLAGS_OUT) {
    548		if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
    549			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
    550		else
    551			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
    552	}
    553
    554	if (dtp->dev_physaddr)
    555		dest0 = dtp->dev_physaddr;
    556
    557#if 0
    558		printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
    559				  "source1:%x dest0:%x dest1:%x\n",
    560				  dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
    561				  src1, dest0, dest1);
    562#endif
    563	for (i = 0; i < entries; i++) {
    564		dp->dscr_cmd0 = cmd0;
    565		dp->dscr_cmd1 = cmd1;
    566		dp->dscr_source0 = src0;
    567		dp->dscr_source1 = src1;
    568		dp->dscr_dest0 = dest0;
    569		dp->dscr_dest1 = dest1;
    570		dp->dscr_stat = 0;
    571		dp->sw_context = 0;
    572		dp->sw_status = 0;
    573		dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
    574		dp++;
    575	}
    576
    577	/* Make last descriptor point to the first. */
    578	dp--;
    579	dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
    580	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
    581
    582	return (u32)ctp->chan_desc_base;
    583}
    584EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
    585
    586/*
    587 * Put a source buffer into the DMA ring.
    588 * This updates the source pointer and byte count.  Normally used
    589 * for memory to fifo transfers.
    590 */
    591u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
    592{
    593	chan_tab_t		*ctp;
    594	au1x_ddma_desc_t	*dp;
    595
    596	/*
    597	 * I guess we could check this to be within the
    598	 * range of the table......
    599	 */
    600	ctp = *(chan_tab_t **)chanid;
    601
    602	/*
    603	 * We should have multiple callers for a particular channel,
    604	 * an interrupt doesn't affect this pointer nor the descriptor,
    605	 * so no locking should be needed.
    606	 */
    607	dp = ctp->put_ptr;
    608
    609	/*
    610	 * If the descriptor is valid, we are way ahead of the DMA
    611	 * engine, so just return an error condition.
    612	 */
    613	if (dp->dscr_cmd0 & DSCR_CMD0_V)
    614		return 0;
    615
    616	/* Load up buffer address and byte count. */
    617	dp->dscr_source0 = buf & ~0UL;
    618	dp->dscr_cmd1 = nbytes;
    619	/* Check flags */
    620	if (flags & DDMA_FLAGS_IE)
    621		dp->dscr_cmd0 |= DSCR_CMD0_IE;
    622	if (flags & DDMA_FLAGS_NOIE)
    623		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
    624
    625	/*
    626	 * There is an errata on the Au1200/Au1550 parts that could result
    627	 * in "stale" data being DMA'ed. It has to do with the snoop logic on
    628	 * the cache eviction buffer.  DMA_NONCOHERENT is on by default for
    629	 * these parts. If it is fixed in the future, these dma_cache_inv will
    630	 * just be nothing more than empty macros. See io.h.
    631	 */
    632	dma_cache_wback_inv((unsigned long)buf, nbytes);
    633	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
    634	wmb(); /* drain writebuffer */
    635	dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
    636	ctp->chan_ptr->ddma_dbell = 0;
    637
    638	/* Get next descriptor pointer. */
    639	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
    640
    641	/* Return something non-zero. */
    642	return nbytes;
    643}
    644EXPORT_SYMBOL(au1xxx_dbdma_put_source);
    645
    646/* Put a destination buffer into the DMA ring.
    647 * This updates the destination pointer and byte count.  Normally used
    648 * to place an empty buffer into the ring for fifo to memory transfers.
    649 */
    650u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
    651{
    652	chan_tab_t		*ctp;
    653	au1x_ddma_desc_t	*dp;
    654
    655	/* I guess we could check this to be within the
    656	 * range of the table......
    657	 */
    658	ctp = *((chan_tab_t **)chanid);
    659
    660	/* We should have multiple callers for a particular channel,
    661	 * an interrupt doesn't affect this pointer nor the descriptor,
    662	 * so no locking should be needed.
    663	 */
    664	dp = ctp->put_ptr;
    665
    666	/* If the descriptor is valid, we are way ahead of the DMA
    667	 * engine, so just return an error condition.
    668	 */
    669	if (dp->dscr_cmd0 & DSCR_CMD0_V)
    670		return 0;
    671
    672	/* Load up buffer address and byte count */
    673
    674	/* Check flags  */
    675	if (flags & DDMA_FLAGS_IE)
    676		dp->dscr_cmd0 |= DSCR_CMD0_IE;
    677	if (flags & DDMA_FLAGS_NOIE)
    678		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
    679
    680	dp->dscr_dest0 = buf & ~0UL;
    681	dp->dscr_cmd1 = nbytes;
    682#if 0
    683	printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
    684			  dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
    685			  dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
    686#endif
    687	/*
    688	 * There is an errata on the Au1200/Au1550 parts that could result in
    689	 * "stale" data being DMA'ed. It has to do with the snoop logic on the
    690	 * cache eviction buffer.  DMA_NONCOHERENT is on by default for these
    691	 * parts. If it is fixed in the future, these dma_cache_inv will just
    692	 * be nothing more than empty macros. See io.h.
    693	 */
    694	dma_cache_inv((unsigned long)buf, nbytes);
    695	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
    696	wmb(); /* drain writebuffer */
    697	dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
    698	ctp->chan_ptr->ddma_dbell = 0;
    699
    700	/* Get next descriptor pointer. */
    701	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
    702
    703	/* Return something non-zero. */
    704	return nbytes;
    705}
    706EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
    707
    708/*
    709 * Get a destination buffer into the DMA ring.
    710 * Normally used to get a full buffer from the ring during fifo
    711 * to memory transfers.  This does not set the valid bit, you will
    712 * have to put another destination buffer to keep the DMA going.
    713 */
    714u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
    715{
    716	chan_tab_t		*ctp;
    717	au1x_ddma_desc_t	*dp;
    718	u32			rv;
    719
    720	/*
    721	 * I guess we could check this to be within the
    722	 * range of the table......
    723	 */
    724	ctp = *((chan_tab_t **)chanid);
    725
    726	/*
    727	 * We should have multiple callers for a particular channel,
    728	 * an interrupt doesn't affect this pointer nor the descriptor,
    729	 * so no locking should be needed.
    730	 */
    731	dp = ctp->get_ptr;
    732
    733	/*
    734	 * If the descriptor is valid, we are way ahead of the DMA
    735	 * engine, so just return an error condition.
    736	 */
    737	if (dp->dscr_cmd0 & DSCR_CMD0_V)
    738		return 0;
    739
    740	/* Return buffer address and byte count. */
    741	*buf = (void *)(phys_to_virt(dp->dscr_dest0));
    742	*nbytes = dp->dscr_cmd1;
    743	rv = dp->dscr_stat;
    744
    745	/* Get next descriptor pointer. */
    746	ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
    747
    748	/* Return something non-zero. */
    749	return rv;
    750}
    751EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
    752
    753void au1xxx_dbdma_stop(u32 chanid)
    754{
    755	chan_tab_t	*ctp;
    756	au1x_dma_chan_t *cp;
    757	int halt_timeout = 0;
    758
    759	ctp = *((chan_tab_t **)chanid);
    760
    761	cp = ctp->chan_ptr;
    762	cp->ddma_cfg &= ~DDMA_CFG_EN;	/* Disable channel */
    763	wmb(); /* drain writebuffer */
    764	while (!(cp->ddma_stat & DDMA_STAT_H)) {
    765		udelay(1);
    766		halt_timeout++;
    767		if (halt_timeout > 100) {
    768			printk(KERN_WARNING "warning: DMA channel won't halt\n");
    769			break;
    770		}
    771	}
    772	/* clear current desc valid and doorbell */
    773	cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
    774	wmb(); /* drain writebuffer */
    775}
    776EXPORT_SYMBOL(au1xxx_dbdma_stop);
    777
    778/*
    779 * Start using the current descriptor pointer.  If the DBDMA encounters
    780 * a non-valid descriptor, it will stop.  In this case, we can just
    781 * continue by adding a buffer to the list and starting again.
    782 */
    783void au1xxx_dbdma_start(u32 chanid)
    784{
    785	chan_tab_t	*ctp;
    786	au1x_dma_chan_t *cp;
    787
    788	ctp = *((chan_tab_t **)chanid);
    789	cp = ctp->chan_ptr;
    790	cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
    791	cp->ddma_cfg |= DDMA_CFG_EN;	/* Enable channel */
    792	wmb(); /* drain writebuffer */
    793	cp->ddma_dbell = 0;
    794	wmb(); /* drain writebuffer */
    795}
    796EXPORT_SYMBOL(au1xxx_dbdma_start);
    797
    798void au1xxx_dbdma_reset(u32 chanid)
    799{
    800	chan_tab_t		*ctp;
    801	au1x_ddma_desc_t	*dp;
    802
    803	au1xxx_dbdma_stop(chanid);
    804
    805	ctp = *((chan_tab_t **)chanid);
    806	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
    807
    808	/* Run through the descriptors and reset the valid indicator. */
    809	dp = ctp->chan_desc_base;
    810
    811	do {
    812		dp->dscr_cmd0 &= ~DSCR_CMD0_V;
    813		/*
    814		 * Reset our software status -- this is used to determine
    815		 * if a descriptor is in use by upper level software. Since
    816		 * posting can reset 'V' bit.
    817		 */
    818		dp->sw_status = 0;
    819		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
    820	} while (dp != ctp->chan_desc_base);
    821}
    822EXPORT_SYMBOL(au1xxx_dbdma_reset);
    823
    824u32 au1xxx_get_dma_residue(u32 chanid)
    825{
    826	chan_tab_t	*ctp;
    827	au1x_dma_chan_t *cp;
    828	u32		rv;
    829
    830	ctp = *((chan_tab_t **)chanid);
    831	cp = ctp->chan_ptr;
    832
    833	/* This is only valid if the channel is stopped. */
    834	rv = cp->ddma_bytecnt;
    835	wmb(); /* drain writebuffer */
    836
    837	return rv;
    838}
    839EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
    840
    841void au1xxx_dbdma_chan_free(u32 chanid)
    842{
    843	chan_tab_t	*ctp;
    844	dbdev_tab_t	*stp, *dtp;
    845
    846	ctp = *((chan_tab_t **)chanid);
    847	stp = ctp->chan_src;
    848	dtp = ctp->chan_dest;
    849
    850	au1xxx_dbdma_stop(chanid);
    851
    852	kfree((void *)ctp->cdb_membase);
    853
    854	stp->dev_flags &= ~DEV_FLAGS_INUSE;
    855	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
    856	chan_tab_ptr[ctp->chan_index] = NULL;
    857
    858	kfree(ctp);
    859}
    860EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
    861
    862static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
    863{
    864	u32 intstat;
    865	u32 chan_index;
    866	chan_tab_t		*ctp;
    867	au1x_ddma_desc_t	*dp;
    868	au1x_dma_chan_t *cp;
    869
    870	intstat = dbdma_gptr->ddma_intstat;
    871	wmb(); /* drain writebuffer */
    872	chan_index = __ffs(intstat);
    873
    874	ctp = chan_tab_ptr[chan_index];
    875	cp = ctp->chan_ptr;
    876	dp = ctp->cur_ptr;
    877
    878	/* Reset interrupt. */
    879	cp->ddma_irq = 0;
    880	wmb(); /* drain writebuffer */
    881
    882	if (ctp->chan_callback)
    883		ctp->chan_callback(irq, ctp->chan_callparam);
    884
    885	ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
    886	return IRQ_RETVAL(1);
    887}
    888
    889void au1xxx_dbdma_dump(u32 chanid)
    890{
    891	chan_tab_t	 *ctp;
    892	au1x_ddma_desc_t *dp;
    893	dbdev_tab_t	 *stp, *dtp;
    894	au1x_dma_chan_t	 *cp;
    895	u32 i		 = 0;
    896
    897	ctp = *((chan_tab_t **)chanid);
    898	stp = ctp->chan_src;
    899	dtp = ctp->chan_dest;
    900	cp = ctp->chan_ptr;
    901
    902	printk(KERN_DEBUG "Chan %x, stp %x (dev %d)  dtp %x (dev %d)\n",
    903			  (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
    904			  dtp - dbdev_tab);
    905	printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
    906			  (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
    907			  (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
    908
    909	printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
    910	printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
    911			  cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
    912	printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
    913			  cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
    914			  cp->ddma_bytecnt);
    915
    916	/* Run through the descriptors */
    917	dp = ctp->chan_desc_base;
    918
    919	do {
    920		printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
    921				  i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
    922		printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
    923				  dp->dscr_source0, dp->dscr_source1,
    924				  dp->dscr_dest0, dp->dscr_dest1);
    925		printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
    926				  dp->dscr_stat, dp->dscr_nxtptr);
    927		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
    928	} while (dp != ctp->chan_desc_base);
    929}
    930
    931/* Put a descriptor into the DMA ring.
    932 * This updates the source/destination pointers and byte count.
    933 */
    934u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
    935{
    936	chan_tab_t *ctp;
    937	au1x_ddma_desc_t *dp;
    938	u32 nbytes = 0;
    939
    940	/*
    941	 * I guess we could check this to be within the
    942	 * range of the table......
    943	 */
    944	ctp = *((chan_tab_t **)chanid);
    945
    946	/*
    947	 * We should have multiple callers for a particular channel,
    948	 * an interrupt doesn't affect this pointer nor the descriptor,
    949	 * so no locking should be needed.
    950	 */
    951	dp = ctp->put_ptr;
    952
    953	/*
    954	 * If the descriptor is valid, we are way ahead of the DMA
    955	 * engine, so just return an error condition.
    956	 */
    957	if (dp->dscr_cmd0 & DSCR_CMD0_V)
    958		return 0;
    959
    960	/* Load up buffer addresses and byte count. */
    961	dp->dscr_dest0 = dscr->dscr_dest0;
    962	dp->dscr_source0 = dscr->dscr_source0;
    963	dp->dscr_dest1 = dscr->dscr_dest1;
    964	dp->dscr_source1 = dscr->dscr_source1;
    965	dp->dscr_cmd1 = dscr->dscr_cmd1;
    966	nbytes = dscr->dscr_cmd1;
    967	/* Allow the caller to specify if an interrupt is generated */
    968	dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
    969	dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
    970	ctp->chan_ptr->ddma_dbell = 0;
    971
    972	/* Get next descriptor pointer. */
    973	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
    974
    975	/* Return something non-zero. */
    976	return nbytes;
    977}
    978
    979
    980static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6];
    981
    982static int alchemy_dbdma_suspend(void)
    983{
    984	int i;
    985	void __iomem *addr;
    986
    987	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
    988	alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00);
    989	alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04);
    990	alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08);
    991	alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c);
    992
    993	/* save channel configurations */
    994	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
    995	for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
    996		alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00);
    997		alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04);
    998		alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08);
    999		alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c);
   1000		alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10);
   1001		alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14);
   1002
   1003		/* halt channel */
   1004		__raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00);
   1005		wmb();
   1006		while (!(__raw_readl(addr + 0x14) & 1))
   1007			wmb();
   1008
   1009		addr += 0x100;	/* next channel base */
   1010	}
   1011	/* disable channel interrupts */
   1012	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
   1013	__raw_writel(0, addr + 0x0c);
   1014	wmb();
   1015
   1016	return 0;
   1017}
   1018
   1019static void alchemy_dbdma_resume(void)
   1020{
   1021	int i;
   1022	void __iomem *addr;
   1023
   1024	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
   1025	__raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00);
   1026	__raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04);
   1027	__raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08);
   1028	__raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c);
   1029
   1030	/* restore channel configurations */
   1031	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
   1032	for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
   1033		__raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00);
   1034		__raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04);
   1035		__raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08);
   1036		__raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c);
   1037		__raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10);
   1038		__raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14);
   1039		wmb();
   1040		addr += 0x100;	/* next channel base */
   1041	}
   1042}
   1043
   1044static struct syscore_ops alchemy_dbdma_syscore_ops = {
   1045	.suspend	= alchemy_dbdma_suspend,
   1046	.resume		= alchemy_dbdma_resume,
   1047};
   1048
   1049static int __init dbdma_setup(unsigned int irq, dbdev_tab_t *idtable)
   1050{
   1051	int ret;
   1052
   1053	dbdev_tab = kcalloc(DBDEV_TAB_SIZE, sizeof(dbdev_tab_t), GFP_KERNEL);
   1054	if (!dbdev_tab)
   1055		return -ENOMEM;
   1056
   1057	memcpy(dbdev_tab, idtable, 32 * sizeof(dbdev_tab_t));
   1058	for (ret = 32; ret < DBDEV_TAB_SIZE; ret++)
   1059		dbdev_tab[ret].dev_id = ~0;
   1060
   1061	dbdma_gptr->ddma_config = 0;
   1062	dbdma_gptr->ddma_throttle = 0;
   1063	dbdma_gptr->ddma_inten = 0xffff;
   1064	wmb(); /* drain writebuffer */
   1065
   1066	ret = request_irq(irq, dbdma_interrupt, 0, "dbdma", (void *)dbdma_gptr);
   1067	if (ret)
   1068		printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
   1069	else {
   1070		dbdma_initialized = 1;
   1071		register_syscore_ops(&alchemy_dbdma_syscore_ops);
   1072	}
   1073
   1074	return ret;
   1075}
   1076
   1077static int __init alchemy_dbdma_init(void)
   1078{
   1079	switch (alchemy_get_cputype()) {
   1080	case ALCHEMY_CPU_AU1550:
   1081		return dbdma_setup(AU1550_DDMA_INT, au1550_dbdev_tab);
   1082	case ALCHEMY_CPU_AU1200:
   1083		return dbdma_setup(AU1200_DDMA_INT, au1200_dbdev_tab);
   1084	case ALCHEMY_CPU_AU1300:
   1085		return dbdma_setup(AU1300_DDMA_INT, au1300_dbdev_tab);
   1086	}
   1087	return 0;
   1088}
   1089subsys_initcall(alchemy_dbdma_init);