au1000_dma.h (11155B)
1/* 2 * BRIEF MODULE DESCRIPTION 3 * Defines for using and allocating DMA channels on the Alchemy 4 * Au1x00 MIPS processors. 5 * 6 * Copyright 2000, 2008 MontaVista Software Inc. 7 * Author: MontaVista Software, Inc. <source@mvista.com> 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 15 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 17 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 20 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 21 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * 25 * You should have received a copy of the GNU General Public License along 26 * with this program; if not, write to the Free Software Foundation, Inc., 27 * 675 Mass Ave, Cambridge, MA 02139, USA. 28 * 29 */ 30#ifndef __ASM_AU1000_DMA_H 31#define __ASM_AU1000_DMA_H 32 33#include <linux/io.h> /* need byte IO */ 34#include <linux/spinlock.h> /* And spinlocks */ 35#include <linux/delay.h> 36 37#define NUM_AU1000_DMA_CHANNELS 8 38 39/* DMA Channel Register Offsets */ 40#define DMA_MODE_SET 0x00000000 41#define DMA_MODE_READ DMA_MODE_SET 42#define DMA_MODE_CLEAR 0x00000004 43/* DMA Mode register bits follow */ 44#define DMA_DAH_MASK (0x0f << 20) 45#define DMA_DID_BIT 16 46#define DMA_DID_MASK (0x0f << DMA_DID_BIT) 47#define DMA_DS (1 << 15) 48#define DMA_BE (1 << 13) 49#define DMA_DR (1 << 12) 50#define DMA_TS8 (1 << 11) 51#define DMA_DW_BIT 9 52#define DMA_DW_MASK (0x03 << DMA_DW_BIT) 53#define DMA_DW8 (0 << DMA_DW_BIT) 54#define DMA_DW16 (1 << DMA_DW_BIT) 55#define DMA_DW32 (2 << DMA_DW_BIT) 56#define DMA_NC (1 << 8) 57#define DMA_IE (1 << 7) 58#define DMA_HALT (1 << 6) 59#define DMA_GO (1 << 5) 60#define DMA_AB (1 << 4) 61#define DMA_D1 (1 << 3) 62#define DMA_BE1 (1 << 2) 63#define DMA_D0 (1 << 1) 64#define DMA_BE0 (1 << 0) 65 66#define DMA_PERIPHERAL_ADDR 0x00000008 67#define DMA_BUFFER0_START 0x0000000C 68#define DMA_BUFFER1_START 0x00000014 69#define DMA_BUFFER0_COUNT 0x00000010 70#define DMA_BUFFER1_COUNT 0x00000018 71#define DMA_BAH_BIT 16 72#define DMA_BAH_MASK (0x0f << DMA_BAH_BIT) 73#define DMA_COUNT_BIT 0 74#define DMA_COUNT_MASK (0xffff << DMA_COUNT_BIT) 75 76/* DMA Device IDs follow */ 77enum { 78 DMA_ID_UART0_TX = 0, 79 DMA_ID_UART0_RX, 80 DMA_ID_GP04, 81 DMA_ID_GP05, 82 DMA_ID_AC97C_TX, 83 DMA_ID_AC97C_RX, 84 DMA_ID_UART3_TX, 85 DMA_ID_UART3_RX, 86 DMA_ID_USBDEV_EP0_RX, 87 DMA_ID_USBDEV_EP0_TX, 88 DMA_ID_USBDEV_EP2_TX, 89 DMA_ID_USBDEV_EP3_TX, 90 DMA_ID_USBDEV_EP4_RX, 91 DMA_ID_USBDEV_EP5_RX, 92 DMA_ID_I2S_TX, 93 DMA_ID_I2S_RX, 94 DMA_NUM_DEV 95}; 96 97/* DMA Device ID's for 2nd bank (AU1100) follow */ 98enum { 99 DMA_ID_SD0_TX = 0, 100 DMA_ID_SD0_RX, 101 DMA_ID_SD1_TX, 102 DMA_ID_SD1_RX, 103 DMA_NUM_DEV_BANK2 104}; 105 106struct dma_chan { 107 int dev_id; /* this channel is allocated if >= 0, */ 108 /* free otherwise */ 109 void __iomem *io; 110 const char *dev_str; 111 int irq; 112 void *irq_dev; 113 unsigned int fifo_addr; 114 unsigned int mode; 115}; 116 117/* These are in arch/mips/au1000/common/dma.c */ 118extern struct dma_chan au1000_dma_table[]; 119extern int request_au1000_dma(int dev_id, 120 const char *dev_str, 121 irq_handler_t irqhandler, 122 unsigned long irqflags, 123 void *irq_dev_id); 124extern void free_au1000_dma(unsigned int dmanr); 125extern int au1000_dma_read_proc(char *buf, char **start, off_t fpos, 126 int length, int *eof, void *data); 127extern void dump_au1000_dma_channel(unsigned int dmanr); 128extern spinlock_t au1000_dma_spin_lock; 129 130static inline struct dma_chan *get_dma_chan(unsigned int dmanr) 131{ 132 if (dmanr >= NUM_AU1000_DMA_CHANNELS || 133 au1000_dma_table[dmanr].dev_id < 0) 134 return NULL; 135 return &au1000_dma_table[dmanr]; 136} 137 138static inline unsigned long claim_dma_lock(void) 139{ 140 unsigned long flags; 141 142 spin_lock_irqsave(&au1000_dma_spin_lock, flags); 143 return flags; 144} 145 146static inline void release_dma_lock(unsigned long flags) 147{ 148 spin_unlock_irqrestore(&au1000_dma_spin_lock, flags); 149} 150 151/* 152 * Set the DMA buffer enable bits in the mode register. 153 */ 154static inline void enable_dma_buffer0(unsigned int dmanr) 155{ 156 struct dma_chan *chan = get_dma_chan(dmanr); 157 158 if (!chan) 159 return; 160 __raw_writel(DMA_BE0, chan->io + DMA_MODE_SET); 161} 162 163static inline void enable_dma_buffer1(unsigned int dmanr) 164{ 165 struct dma_chan *chan = get_dma_chan(dmanr); 166 167 if (!chan) 168 return; 169 __raw_writel(DMA_BE1, chan->io + DMA_MODE_SET); 170} 171static inline void enable_dma_buffers(unsigned int dmanr) 172{ 173 struct dma_chan *chan = get_dma_chan(dmanr); 174 175 if (!chan) 176 return; 177 __raw_writel(DMA_BE0 | DMA_BE1, chan->io + DMA_MODE_SET); 178} 179 180static inline void start_dma(unsigned int dmanr) 181{ 182 struct dma_chan *chan = get_dma_chan(dmanr); 183 184 if (!chan) 185 return; 186 __raw_writel(DMA_GO, chan->io + DMA_MODE_SET); 187} 188 189#define DMA_HALT_POLL 0x5000 190 191static inline void halt_dma(unsigned int dmanr) 192{ 193 struct dma_chan *chan = get_dma_chan(dmanr); 194 int i; 195 196 if (!chan) 197 return; 198 __raw_writel(DMA_GO, chan->io + DMA_MODE_CLEAR); 199 200 /* Poll the halt bit */ 201 for (i = 0; i < DMA_HALT_POLL; i++) 202 if (__raw_readl(chan->io + DMA_MODE_READ) & DMA_HALT) 203 break; 204 if (i == DMA_HALT_POLL) 205 printk(KERN_INFO "halt_dma: HALT poll expired!\n"); 206} 207 208static inline void disable_dma(unsigned int dmanr) 209{ 210 struct dma_chan *chan = get_dma_chan(dmanr); 211 212 if (!chan) 213 return; 214 215 halt_dma(dmanr); 216 217 /* Now we can disable the buffers */ 218 __raw_writel(~DMA_GO, chan->io + DMA_MODE_CLEAR); 219} 220 221static inline int dma_halted(unsigned int dmanr) 222{ 223 struct dma_chan *chan = get_dma_chan(dmanr); 224 225 if (!chan) 226 return 1; 227 return (__raw_readl(chan->io + DMA_MODE_READ) & DMA_HALT) ? 1 : 0; 228} 229 230/* Initialize a DMA channel. */ 231static inline void init_dma(unsigned int dmanr) 232{ 233 struct dma_chan *chan = get_dma_chan(dmanr); 234 u32 mode; 235 236 if (!chan) 237 return; 238 239 disable_dma(dmanr); 240 241 /* Set device FIFO address */ 242 __raw_writel(CPHYSADDR(chan->fifo_addr), chan->io + DMA_PERIPHERAL_ADDR); 243 244 mode = chan->mode | (chan->dev_id << DMA_DID_BIT); 245 if (chan->irq) 246 mode |= DMA_IE; 247 248 __raw_writel(~mode, chan->io + DMA_MODE_CLEAR); 249 __raw_writel(mode, chan->io + DMA_MODE_SET); 250} 251 252/* 253 * Set mode for a specific DMA channel 254 */ 255static inline void set_dma_mode(unsigned int dmanr, unsigned int mode) 256{ 257 struct dma_chan *chan = get_dma_chan(dmanr); 258 259 if (!chan) 260 return; 261 /* 262 * set_dma_mode is only allowed to change endianess, direction, 263 * transfer size, device FIFO width, and coherency settings. 264 * Make sure anything else is masked off. 265 */ 266 mode &= (DMA_BE | DMA_DR | DMA_TS8 | DMA_DW_MASK | DMA_NC); 267 chan->mode &= ~(DMA_BE | DMA_DR | DMA_TS8 | DMA_DW_MASK | DMA_NC); 268 chan->mode |= mode; 269} 270 271static inline unsigned int get_dma_mode(unsigned int dmanr) 272{ 273 struct dma_chan *chan = get_dma_chan(dmanr); 274 275 if (!chan) 276 return 0; 277 return chan->mode; 278} 279 280static inline int get_dma_active_buffer(unsigned int dmanr) 281{ 282 struct dma_chan *chan = get_dma_chan(dmanr); 283 284 if (!chan) 285 return -1; 286 return (__raw_readl(chan->io + DMA_MODE_READ) & DMA_AB) ? 1 : 0; 287} 288 289/* 290 * Set the device FIFO address for a specific DMA channel - only 291 * applicable to GPO4 and GPO5. All the other devices have fixed 292 * FIFO addresses. 293 */ 294static inline void set_dma_fifo_addr(unsigned int dmanr, unsigned int a) 295{ 296 struct dma_chan *chan = get_dma_chan(dmanr); 297 298 if (!chan) 299 return; 300 301 if (chan->mode & DMA_DS) /* second bank of device IDs */ 302 return; 303 304 if (chan->dev_id != DMA_ID_GP04 && chan->dev_id != DMA_ID_GP05) 305 return; 306 307 __raw_writel(CPHYSADDR(a), chan->io + DMA_PERIPHERAL_ADDR); 308} 309 310/* 311 * Clear the DMA buffer done bits in the mode register. 312 */ 313static inline void clear_dma_done0(unsigned int dmanr) 314{ 315 struct dma_chan *chan = get_dma_chan(dmanr); 316 317 if (!chan) 318 return; 319 __raw_writel(DMA_D0, chan->io + DMA_MODE_CLEAR); 320} 321 322static inline void clear_dma_done1(unsigned int dmanr) 323{ 324 struct dma_chan *chan = get_dma_chan(dmanr); 325 326 if (!chan) 327 return; 328 __raw_writel(DMA_D1, chan->io + DMA_MODE_CLEAR); 329} 330 331/* 332 * This does nothing - not applicable to Au1000 DMA. 333 */ 334static inline void set_dma_page(unsigned int dmanr, char pagenr) 335{ 336} 337 338/* 339 * Set Buffer 0 transfer address for specific DMA channel. 340 */ 341static inline void set_dma_addr0(unsigned int dmanr, unsigned int a) 342{ 343 struct dma_chan *chan = get_dma_chan(dmanr); 344 345 if (!chan) 346 return; 347 __raw_writel(a, chan->io + DMA_BUFFER0_START); 348} 349 350/* 351 * Set Buffer 1 transfer address for specific DMA channel. 352 */ 353static inline void set_dma_addr1(unsigned int dmanr, unsigned int a) 354{ 355 struct dma_chan *chan = get_dma_chan(dmanr); 356 357 if (!chan) 358 return; 359 __raw_writel(a, chan->io + DMA_BUFFER1_START); 360} 361 362 363/* 364 * Set Buffer 0 transfer size (max 64k) for a specific DMA channel. 365 */ 366static inline void set_dma_count0(unsigned int dmanr, unsigned int count) 367{ 368 struct dma_chan *chan = get_dma_chan(dmanr); 369 370 if (!chan) 371 return; 372 count &= DMA_COUNT_MASK; 373 __raw_writel(count, chan->io + DMA_BUFFER0_COUNT); 374} 375 376/* 377 * Set Buffer 1 transfer size (max 64k) for a specific DMA channel. 378 */ 379static inline void set_dma_count1(unsigned int dmanr, unsigned int count) 380{ 381 struct dma_chan *chan = get_dma_chan(dmanr); 382 383 if (!chan) 384 return; 385 count &= DMA_COUNT_MASK; 386 __raw_writel(count, chan->io + DMA_BUFFER1_COUNT); 387} 388 389/* 390 * Set both buffer transfer sizes (max 64k) for a specific DMA channel. 391 */ 392static inline void set_dma_count(unsigned int dmanr, unsigned int count) 393{ 394 struct dma_chan *chan = get_dma_chan(dmanr); 395 396 if (!chan) 397 return; 398 count &= DMA_COUNT_MASK; 399 __raw_writel(count, chan->io + DMA_BUFFER0_COUNT); 400 __raw_writel(count, chan->io + DMA_BUFFER1_COUNT); 401} 402 403/* 404 * Returns which buffer has its done bit set in the mode register. 405 * Returns -1 if neither or both done bits set. 406 */ 407static inline unsigned int get_dma_buffer_done(unsigned int dmanr) 408{ 409 struct dma_chan *chan = get_dma_chan(dmanr); 410 411 if (!chan) 412 return 0; 413 return __raw_readl(chan->io + DMA_MODE_READ) & (DMA_D0 | DMA_D1); 414} 415 416 417/* 418 * Returns the DMA channel's Buffer Done IRQ number. 419 */ 420static inline int get_dma_done_irq(unsigned int dmanr) 421{ 422 struct dma_chan *chan = get_dma_chan(dmanr); 423 424 if (!chan) 425 return -1; 426 return chan->irq; 427} 428 429/* 430 * Get DMA residue count. Returns the number of _bytes_ left to transfer. 431 */ 432static inline int get_dma_residue(unsigned int dmanr) 433{ 434 int curBufCntReg, count; 435 struct dma_chan *chan = get_dma_chan(dmanr); 436 437 if (!chan) 438 return 0; 439 440 curBufCntReg = (__raw_readl(chan->io + DMA_MODE_READ) & DMA_AB) ? 441 DMA_BUFFER1_COUNT : DMA_BUFFER0_COUNT; 442 443 count = __raw_readl(chan->io + curBufCntReg) & DMA_COUNT_MASK; 444 445 if ((chan->mode & DMA_DW_MASK) == DMA_DW16) 446 count <<= 1; 447 else if ((chan->mode & DMA_DW_MASK) == DMA_DW32) 448 count <<= 2; 449 450 return count; 451} 452 453#endif /* __ASM_AU1000_DMA_H */