cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmu_context.h (6205B)


      1/*
      2 * Switch a MMU context.
      3 *
      4 * This file is subject to the terms and conditions of the GNU General Public
      5 * License.  See the file "COPYING" in the main directory of this archive
      6 * for more details.
      7 *
      8 * Copyright (C) 1996, 1997, 1998, 1999 by Ralf Baechle
      9 * Copyright (C) 1999 Silicon Graphics, Inc.
     10 */
     11#ifndef _ASM_MMU_CONTEXT_H
     12#define _ASM_MMU_CONTEXT_H
     13
     14#include <linux/errno.h>
     15#include <linux/sched.h>
     16#include <linux/mm_types.h>
     17#include <linux/smp.h>
     18#include <linux/slab.h>
     19
     20#include <asm/barrier.h>
     21#include <asm/cacheflush.h>
     22#include <asm/dsemul.h>
     23#include <asm/ginvt.h>
     24#include <asm/hazards.h>
     25#include <asm/tlbflush.h>
     26#include <asm-generic/mm_hooks.h>
     27
     28#define htw_set_pwbase(pgd)						\
     29do {									\
     30	if (cpu_has_htw) {						\
     31		write_c0_pwbase(pgd);					\
     32		back_to_back_c0_hazard();				\
     33	}								\
     34} while (0)
     35
     36extern void tlbmiss_handler_setup_pgd(unsigned long);
     37extern char tlbmiss_handler_setup_pgd_end[];
     38
     39/* Note: This is also implemented with uasm in arch/mips/kvm/entry.c */
     40#define TLBMISS_HANDLER_SETUP_PGD(pgd)					\
     41do {									\
     42	tlbmiss_handler_setup_pgd((unsigned long)(pgd));		\
     43	htw_set_pwbase((unsigned long)pgd);				\
     44} while (0)
     45
     46#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
     47
     48#define TLBMISS_HANDLER_RESTORE()					\
     49	write_c0_xcontext((unsigned long) smp_processor_id() <<		\
     50			  SMP_CPUID_REGSHIFT)
     51
     52#define TLBMISS_HANDLER_SETUP()						\
     53	do {								\
     54		TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir);		\
     55		TLBMISS_HANDLER_RESTORE();				\
     56	} while (0)
     57
     58#else /* !CONFIG_MIPS_PGD_C0_CONTEXT: using  pgd_current*/
     59
     60/*
     61 * For the fast tlb miss handlers, we keep a per cpu array of pointers
     62 * to the current pgd for each processor. Also, the proc. id is stuffed
     63 * into the context register.
     64 */
     65extern unsigned long pgd_current[];
     66
     67#define TLBMISS_HANDLER_RESTORE()					\
     68	write_c0_context((unsigned long) smp_processor_id() <<		\
     69			 SMP_CPUID_REGSHIFT)
     70
     71#define TLBMISS_HANDLER_SETUP()						\
     72	TLBMISS_HANDLER_RESTORE();					\
     73	back_to_back_c0_hazard();					\
     74	TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir)
     75#endif /* CONFIG_MIPS_PGD_C0_CONTEXT*/
     76
     77/*
     78 * The ginvt instruction will invalidate wired entries when its type field
     79 * targets anything other than the entire TLB. That means that if we were to
     80 * allow the kernel to create wired entries with the MMID of current->active_mm
     81 * then those wired entries could be invalidated when we later use ginvt to
     82 * invalidate TLB entries with that MMID.
     83 *
     84 * In order to prevent ginvt from trashing wired entries, we reserve one MMID
     85 * for use by the kernel when creating wired entries. This MMID will never be
     86 * assigned to a struct mm, and we'll never target it with a ginvt instruction.
     87 */
     88#define MMID_KERNEL_WIRED	0
     89
     90/*
     91 *  All unused by hardware upper bits will be considered
     92 *  as a software asid extension.
     93 */
     94static inline u64 asid_version_mask(unsigned int cpu)
     95{
     96	unsigned long asid_mask = cpu_asid_mask(&cpu_data[cpu]);
     97
     98	return ~(u64)(asid_mask | (asid_mask - 1));
     99}
    100
    101static inline u64 asid_first_version(unsigned int cpu)
    102{
    103	return ~asid_version_mask(cpu) + 1;
    104}
    105
    106static inline u64 cpu_context(unsigned int cpu, const struct mm_struct *mm)
    107{
    108	if (cpu_has_mmid)
    109		return atomic64_read(&mm->context.mmid);
    110
    111	return mm->context.asid[cpu];
    112}
    113
    114static inline void set_cpu_context(unsigned int cpu,
    115				   struct mm_struct *mm, u64 ctx)
    116{
    117	if (cpu_has_mmid)
    118		atomic64_set(&mm->context.mmid, ctx);
    119	else
    120		mm->context.asid[cpu] = ctx;
    121}
    122
    123#define asid_cache(cpu)		(cpu_data[cpu].asid_cache)
    124#define cpu_asid(cpu, mm) \
    125	(cpu_context((cpu), (mm)) & cpu_asid_mask(&cpu_data[cpu]))
    126
    127extern void get_new_mmu_context(struct mm_struct *mm);
    128extern void check_mmu_context(struct mm_struct *mm);
    129extern void check_switch_mmu_context(struct mm_struct *mm);
    130
    131/*
    132 * Initialize the context related info for a new mm_struct
    133 * instance.
    134 */
    135#define init_new_context init_new_context
    136static inline int
    137init_new_context(struct task_struct *tsk, struct mm_struct *mm)
    138{
    139	int i;
    140
    141	if (cpu_has_mmid) {
    142		set_cpu_context(0, mm, 0);
    143	} else {
    144		for_each_possible_cpu(i)
    145			set_cpu_context(i, mm, 0);
    146	}
    147
    148	mm->context.bd_emupage_allocmap = NULL;
    149	spin_lock_init(&mm->context.bd_emupage_lock);
    150	init_waitqueue_head(&mm->context.bd_emupage_queue);
    151
    152	return 0;
    153}
    154
    155static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
    156			     struct task_struct *tsk)
    157{
    158	unsigned int cpu = smp_processor_id();
    159	unsigned long flags;
    160	local_irq_save(flags);
    161
    162	htw_stop();
    163	check_switch_mmu_context(next);
    164
    165	/*
    166	 * Mark current->active_mm as not "active" anymore.
    167	 * We don't want to mislead possible IPI tlb flush routines.
    168	 */
    169	cpumask_clear_cpu(cpu, mm_cpumask(prev));
    170	cpumask_set_cpu(cpu, mm_cpumask(next));
    171	htw_start();
    172
    173	local_irq_restore(flags);
    174}
    175
    176/*
    177 * Destroy context related info for an mm_struct that is about
    178 * to be put to rest.
    179 */
    180#define destroy_context destroy_context
    181static inline void destroy_context(struct mm_struct *mm)
    182{
    183	dsemul_mm_cleanup(mm);
    184}
    185
    186static inline void
    187drop_mmu_context(struct mm_struct *mm)
    188{
    189	unsigned long flags;
    190	unsigned int cpu;
    191	u32 old_mmid;
    192	u64 ctx;
    193
    194	local_irq_save(flags);
    195
    196	cpu = smp_processor_id();
    197	ctx = cpu_context(cpu, mm);
    198
    199	if (!ctx) {
    200		/* no-op */
    201	} else if (cpu_has_mmid) {
    202		/*
    203		 * Globally invalidating TLB entries associated with the MMID
    204		 * is pretty cheap using the GINVT instruction, so we'll do
    205		 * that rather than incur the overhead of allocating a new
    206		 * MMID. The latter would be especially difficult since MMIDs
    207		 * are global & other CPUs may be actively using ctx.
    208		 */
    209		htw_stop();
    210		old_mmid = read_c0_memorymapid();
    211		write_c0_memorymapid(ctx & cpu_asid_mask(&cpu_data[cpu]));
    212		mtc0_tlbw_hazard();
    213		ginvt_mmid();
    214		sync_ginv();
    215		write_c0_memorymapid(old_mmid);
    216		instruction_hazard();
    217		htw_start();
    218	} else if (cpumask_test_cpu(cpu, mm_cpumask(mm))) {
    219		/*
    220		 * mm is currently active, so we can't really drop it.
    221		 * Instead we bump the ASID.
    222		 */
    223		htw_stop();
    224		get_new_mmu_context(mm);
    225		write_c0_entryhi(cpu_asid(cpu, mm));
    226		htw_start();
    227	} else {
    228		/* will get a new context next time */
    229		set_cpu_context(cpu, mm, 0);
    230	}
    231
    232	local_irq_restore(flags);
    233}
    234
    235#include <asm-generic/mmu_context.h>
    236
    237#endif /* _ASM_MMU_CONTEXT_H */