cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

perf_event_mipsxx.c (54061B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Linux performance counter support for MIPS.
      4 *
      5 * Copyright (C) 2010 MIPS Technologies, Inc.
      6 * Copyright (C) 2011 Cavium Networks, Inc.
      7 * Author: Deng-Cheng Zhu
      8 *
      9 * This code is based on the implementation for ARM, which is in turn
     10 * based on the sparc64 perf event code and the x86 code. Performance
     11 * counter access is based on the MIPS Oprofile code. And the callchain
     12 * support references the code of MIPS stacktrace.c.
     13 */
     14
     15#include <linux/cpumask.h>
     16#include <linux/interrupt.h>
     17#include <linux/smp.h>
     18#include <linux/kernel.h>
     19#include <linux/perf_event.h>
     20#include <linux/uaccess.h>
     21
     22#include <asm/irq.h>
     23#include <asm/irq_regs.h>
     24#include <asm/stacktrace.h>
     25#include <asm/time.h> /* For perf_irq */
     26
     27#define MIPS_MAX_HWEVENTS 4
     28#define MIPS_TCS_PER_COUNTER 2
     29#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
     30
     31struct cpu_hw_events {
     32	/* Array of events on this cpu. */
     33	struct perf_event	*events[MIPS_MAX_HWEVENTS];
     34
     35	/*
     36	 * Set the bit (indexed by the counter number) when the counter
     37	 * is used for an event.
     38	 */
     39	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
     40
     41	/*
     42	 * Software copy of the control register for each performance counter.
     43	 * MIPS CPUs vary in performance counters. They use this differently,
     44	 * and even may not use it.
     45	 */
     46	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
     47};
     48DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
     49	.saved_ctrl = {0},
     50};
     51
     52/* The description of MIPS performance events. */
     53struct mips_perf_event {
     54	unsigned int event_id;
     55	/*
     56	 * MIPS performance counters are indexed starting from 0.
     57	 * CNTR_EVEN indicates the indexes of the counters to be used are
     58	 * even numbers.
     59	 */
     60	unsigned int cntr_mask;
     61	#define CNTR_EVEN	0x55555555
     62	#define CNTR_ODD	0xaaaaaaaa
     63	#define CNTR_ALL	0xffffffff
     64	enum {
     65		T  = 0,
     66		V  = 1,
     67		P  = 2,
     68	} range;
     69};
     70
     71static struct mips_perf_event raw_event;
     72static DEFINE_MUTEX(raw_event_mutex);
     73
     74#define C(x) PERF_COUNT_HW_CACHE_##x
     75
     76struct mips_pmu {
     77	u64		max_period;
     78	u64		valid_count;
     79	u64		overflow;
     80	const char	*name;
     81	int		irq;
     82	u64		(*read_counter)(unsigned int idx);
     83	void		(*write_counter)(unsigned int idx, u64 val);
     84	const struct mips_perf_event *(*map_raw_event)(u64 config);
     85	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
     86	const struct mips_perf_event (*cache_event_map)
     87				[PERF_COUNT_HW_CACHE_MAX]
     88				[PERF_COUNT_HW_CACHE_OP_MAX]
     89				[PERF_COUNT_HW_CACHE_RESULT_MAX];
     90	unsigned int	num_counters;
     91};
     92
     93static int counter_bits;
     94static struct mips_pmu mipspmu;
     95
     96#define M_PERFCTL_EVENT(event)		(((event) << MIPS_PERFCTRL_EVENT_S) & \
     97					 MIPS_PERFCTRL_EVENT)
     98#define M_PERFCTL_VPEID(vpe)		((vpe)	  << MIPS_PERFCTRL_VPEID_S)
     99
    100#ifdef CONFIG_CPU_BMIPS5000
    101#define M_PERFCTL_MT_EN(filter)		0
    102#else /* !CONFIG_CPU_BMIPS5000 */
    103#define M_PERFCTL_MT_EN(filter)		(filter)
    104#endif /* CONFIG_CPU_BMIPS5000 */
    105
    106#define	   M_TC_EN_ALL			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
    107#define	   M_TC_EN_VPE			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
    108#define	   M_TC_EN_TC			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
    109
    110#define M_PERFCTL_COUNT_EVENT_WHENEVER	(MIPS_PERFCTRL_EXL |		\
    111					 MIPS_PERFCTRL_K |		\
    112					 MIPS_PERFCTRL_U |		\
    113					 MIPS_PERFCTRL_S |		\
    114					 MIPS_PERFCTRL_IE)
    115
    116#ifdef CONFIG_MIPS_MT_SMP
    117#define M_PERFCTL_CONFIG_MASK		0x3fff801f
    118#else
    119#define M_PERFCTL_CONFIG_MASK		0x1f
    120#endif
    121
    122#define CNTR_BIT_MASK(n)	(((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
    123
    124#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
    125static DEFINE_RWLOCK(pmuint_rwlock);
    126
    127#if defined(CONFIG_CPU_BMIPS5000)
    128#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
    129			 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
    130#else
    131#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
    132			 0 : cpu_vpe_id(&current_cpu_data))
    133#endif
    134
    135/* Copied from op_model_mipsxx.c */
    136static unsigned int vpe_shift(void)
    137{
    138	if (num_possible_cpus() > 1)
    139		return 1;
    140
    141	return 0;
    142}
    143
    144static unsigned int counters_total_to_per_cpu(unsigned int counters)
    145{
    146	return counters >> vpe_shift();
    147}
    148
    149#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
    150#define vpe_id()	0
    151
    152#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
    153
    154static void resume_local_counters(void);
    155static void pause_local_counters(void);
    156static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
    157static int mipsxx_pmu_handle_shared_irq(void);
    158
    159/* 0: Not Loongson-3
    160 * 1: Loongson-3A1000/3B1000/3B1500
    161 * 2: Loongson-3A2000/3A3000
    162 * 3: Loongson-3A4000+
    163 */
    164
    165#define LOONGSON_PMU_TYPE0 0
    166#define LOONGSON_PMU_TYPE1 1
    167#define LOONGSON_PMU_TYPE2 2
    168#define LOONGSON_PMU_TYPE3 3
    169
    170static inline int get_loongson3_pmu_type(void)
    171{
    172	if (boot_cpu_type() != CPU_LOONGSON64)
    173		return LOONGSON_PMU_TYPE0;
    174	if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY)
    175		return LOONGSON_PMU_TYPE1;
    176	if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C)
    177		return LOONGSON_PMU_TYPE2;
    178	if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G)
    179		return LOONGSON_PMU_TYPE3;
    180
    181	return LOONGSON_PMU_TYPE0;
    182}
    183
    184static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
    185{
    186	if (vpe_id() == 1)
    187		idx = (idx + 2) & 3;
    188	return idx;
    189}
    190
    191static u64 mipsxx_pmu_read_counter(unsigned int idx)
    192{
    193	idx = mipsxx_pmu_swizzle_perf_idx(idx);
    194
    195	switch (idx) {
    196	case 0:
    197		/*
    198		 * The counters are unsigned, we must cast to truncate
    199		 * off the high bits.
    200		 */
    201		return (u32)read_c0_perfcntr0();
    202	case 1:
    203		return (u32)read_c0_perfcntr1();
    204	case 2:
    205		return (u32)read_c0_perfcntr2();
    206	case 3:
    207		return (u32)read_c0_perfcntr3();
    208	default:
    209		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
    210		return 0;
    211	}
    212}
    213
    214static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
    215{
    216	u64 mask = CNTR_BIT_MASK(counter_bits);
    217	idx = mipsxx_pmu_swizzle_perf_idx(idx);
    218
    219	switch (idx) {
    220	case 0:
    221		return read_c0_perfcntr0_64() & mask;
    222	case 1:
    223		return read_c0_perfcntr1_64() & mask;
    224	case 2:
    225		return read_c0_perfcntr2_64() & mask;
    226	case 3:
    227		return read_c0_perfcntr3_64() & mask;
    228	default:
    229		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
    230		return 0;
    231	}
    232}
    233
    234static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
    235{
    236	idx = mipsxx_pmu_swizzle_perf_idx(idx);
    237
    238	switch (idx) {
    239	case 0:
    240		write_c0_perfcntr0(val);
    241		return;
    242	case 1:
    243		write_c0_perfcntr1(val);
    244		return;
    245	case 2:
    246		write_c0_perfcntr2(val);
    247		return;
    248	case 3:
    249		write_c0_perfcntr3(val);
    250		return;
    251	}
    252}
    253
    254static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
    255{
    256	val &= CNTR_BIT_MASK(counter_bits);
    257	idx = mipsxx_pmu_swizzle_perf_idx(idx);
    258
    259	switch (idx) {
    260	case 0:
    261		write_c0_perfcntr0_64(val);
    262		return;
    263	case 1:
    264		write_c0_perfcntr1_64(val);
    265		return;
    266	case 2:
    267		write_c0_perfcntr2_64(val);
    268		return;
    269	case 3:
    270		write_c0_perfcntr3_64(val);
    271		return;
    272	}
    273}
    274
    275static unsigned int mipsxx_pmu_read_control(unsigned int idx)
    276{
    277	idx = mipsxx_pmu_swizzle_perf_idx(idx);
    278
    279	switch (idx) {
    280	case 0:
    281		return read_c0_perfctrl0();
    282	case 1:
    283		return read_c0_perfctrl1();
    284	case 2:
    285		return read_c0_perfctrl2();
    286	case 3:
    287		return read_c0_perfctrl3();
    288	default:
    289		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
    290		return 0;
    291	}
    292}
    293
    294static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
    295{
    296	idx = mipsxx_pmu_swizzle_perf_idx(idx);
    297
    298	switch (idx) {
    299	case 0:
    300		write_c0_perfctrl0(val);
    301		return;
    302	case 1:
    303		write_c0_perfctrl1(val);
    304		return;
    305	case 2:
    306		write_c0_perfctrl2(val);
    307		return;
    308	case 3:
    309		write_c0_perfctrl3(val);
    310		return;
    311	}
    312}
    313
    314static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
    315				    struct hw_perf_event *hwc)
    316{
    317	int i;
    318	unsigned long cntr_mask;
    319
    320	/*
    321	 * We only need to care the counter mask. The range has been
    322	 * checked definitely.
    323	 */
    324	if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
    325		cntr_mask = (hwc->event_base >> 10) & 0xffff;
    326	else
    327		cntr_mask = (hwc->event_base >> 8) & 0xffff;
    328
    329	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
    330		/*
    331		 * Note that some MIPS perf events can be counted by both
    332		 * even and odd counters, whereas many other are only by
    333		 * even _or_ odd counters. This introduces an issue that
    334		 * when the former kind of event takes the counter the
    335		 * latter kind of event wants to use, then the "counter
    336		 * allocation" for the latter event will fail. In fact if
    337		 * they can be dynamically swapped, they both feel happy.
    338		 * But here we leave this issue alone for now.
    339		 */
    340		if (test_bit(i, &cntr_mask) &&
    341			!test_and_set_bit(i, cpuc->used_mask))
    342			return i;
    343	}
    344
    345	return -EAGAIN;
    346}
    347
    348static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
    349{
    350	struct perf_event *event = container_of(evt, struct perf_event, hw);
    351	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    352	unsigned int range = evt->event_base >> 24;
    353
    354	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
    355
    356	if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
    357		cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) |
    358			(evt->config_base & M_PERFCTL_CONFIG_MASK) |
    359			/* Make sure interrupt enabled. */
    360			MIPS_PERFCTRL_IE;
    361	else
    362		cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
    363			(evt->config_base & M_PERFCTL_CONFIG_MASK) |
    364			/* Make sure interrupt enabled. */
    365			MIPS_PERFCTRL_IE;
    366
    367	if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
    368		/* enable the counter for the calling thread */
    369		cpuc->saved_ctrl[idx] |=
    370			(1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
    371	} else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
    372		/* The counter is processor wide. Set it up to count all TCs. */
    373		pr_debug("Enabling perf counter for all TCs\n");
    374		cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
    375	} else {
    376		unsigned int cpu, ctrl;
    377
    378		/*
    379		 * Set up the counter for a particular CPU when event->cpu is
    380		 * a valid CPU number. Otherwise set up the counter for the CPU
    381		 * scheduling this thread.
    382		 */
    383		cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
    384
    385		ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
    386		ctrl |= M_TC_EN_VPE;
    387		cpuc->saved_ctrl[idx] |= ctrl;
    388		pr_debug("Enabling perf counter for CPU%d\n", cpu);
    389	}
    390	/*
    391	 * We do not actually let the counter run. Leave it until start().
    392	 */
    393}
    394
    395static void mipsxx_pmu_disable_event(int idx)
    396{
    397	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    398	unsigned long flags;
    399
    400	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
    401
    402	local_irq_save(flags);
    403	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
    404		~M_PERFCTL_COUNT_EVENT_WHENEVER;
    405	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
    406	local_irq_restore(flags);
    407}
    408
    409static int mipspmu_event_set_period(struct perf_event *event,
    410				    struct hw_perf_event *hwc,
    411				    int idx)
    412{
    413	u64 left = local64_read(&hwc->period_left);
    414	u64 period = hwc->sample_period;
    415	int ret = 0;
    416
    417	if (unlikely((left + period) & (1ULL << 63))) {
    418		/* left underflowed by more than period. */
    419		left = period;
    420		local64_set(&hwc->period_left, left);
    421		hwc->last_period = period;
    422		ret = 1;
    423	} else	if (unlikely((left + period) <= period)) {
    424		/* left underflowed by less than period. */
    425		left += period;
    426		local64_set(&hwc->period_left, left);
    427		hwc->last_period = period;
    428		ret = 1;
    429	}
    430
    431	if (left > mipspmu.max_period) {
    432		left = mipspmu.max_period;
    433		local64_set(&hwc->period_left, left);
    434	}
    435
    436	local64_set(&hwc->prev_count, mipspmu.overflow - left);
    437
    438	if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
    439		mipsxx_pmu_write_control(idx,
    440				M_PERFCTL_EVENT(hwc->event_base & 0x3ff));
    441
    442	mipspmu.write_counter(idx, mipspmu.overflow - left);
    443
    444	perf_event_update_userpage(event);
    445
    446	return ret;
    447}
    448
    449static void mipspmu_event_update(struct perf_event *event,
    450				 struct hw_perf_event *hwc,
    451				 int idx)
    452{
    453	u64 prev_raw_count, new_raw_count;
    454	u64 delta;
    455
    456again:
    457	prev_raw_count = local64_read(&hwc->prev_count);
    458	new_raw_count = mipspmu.read_counter(idx);
    459
    460	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
    461				new_raw_count) != prev_raw_count)
    462		goto again;
    463
    464	delta = new_raw_count - prev_raw_count;
    465
    466	local64_add(delta, &event->count);
    467	local64_sub(delta, &hwc->period_left);
    468}
    469
    470static void mipspmu_start(struct perf_event *event, int flags)
    471{
    472	struct hw_perf_event *hwc = &event->hw;
    473
    474	if (flags & PERF_EF_RELOAD)
    475		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
    476
    477	hwc->state = 0;
    478
    479	/* Set the period for the event. */
    480	mipspmu_event_set_period(event, hwc, hwc->idx);
    481
    482	/* Enable the event. */
    483	mipsxx_pmu_enable_event(hwc, hwc->idx);
    484}
    485
    486static void mipspmu_stop(struct perf_event *event, int flags)
    487{
    488	struct hw_perf_event *hwc = &event->hw;
    489
    490	if (!(hwc->state & PERF_HES_STOPPED)) {
    491		/* We are working on a local event. */
    492		mipsxx_pmu_disable_event(hwc->idx);
    493		barrier();
    494		mipspmu_event_update(event, hwc, hwc->idx);
    495		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
    496	}
    497}
    498
    499static int mipspmu_add(struct perf_event *event, int flags)
    500{
    501	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    502	struct hw_perf_event *hwc = &event->hw;
    503	int idx;
    504	int err = 0;
    505
    506	perf_pmu_disable(event->pmu);
    507
    508	/* To look for a free counter for this event. */
    509	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
    510	if (idx < 0) {
    511		err = idx;
    512		goto out;
    513	}
    514
    515	/*
    516	 * If there is an event in the counter we are going to use then
    517	 * make sure it is disabled.
    518	 */
    519	event->hw.idx = idx;
    520	mipsxx_pmu_disable_event(idx);
    521	cpuc->events[idx] = event;
    522
    523	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
    524	if (flags & PERF_EF_START)
    525		mipspmu_start(event, PERF_EF_RELOAD);
    526
    527	/* Propagate our changes to the userspace mapping. */
    528	perf_event_update_userpage(event);
    529
    530out:
    531	perf_pmu_enable(event->pmu);
    532	return err;
    533}
    534
    535static void mipspmu_del(struct perf_event *event, int flags)
    536{
    537	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
    538	struct hw_perf_event *hwc = &event->hw;
    539	int idx = hwc->idx;
    540
    541	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
    542
    543	mipspmu_stop(event, PERF_EF_UPDATE);
    544	cpuc->events[idx] = NULL;
    545	clear_bit(idx, cpuc->used_mask);
    546
    547	perf_event_update_userpage(event);
    548}
    549
    550static void mipspmu_read(struct perf_event *event)
    551{
    552	struct hw_perf_event *hwc = &event->hw;
    553
    554	/* Don't read disabled counters! */
    555	if (hwc->idx < 0)
    556		return;
    557
    558	mipspmu_event_update(event, hwc, hwc->idx);
    559}
    560
    561static void mipspmu_enable(struct pmu *pmu)
    562{
    563#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
    564	write_unlock(&pmuint_rwlock);
    565#endif
    566	resume_local_counters();
    567}
    568
    569/*
    570 * MIPS performance counters can be per-TC. The control registers can
    571 * not be directly accessed across CPUs. Hence if we want to do global
    572 * control, we need cross CPU calls. on_each_cpu() can help us, but we
    573 * can not make sure this function is called with interrupts enabled. So
    574 * here we pause local counters and then grab a rwlock and leave the
    575 * counters on other CPUs alone. If any counter interrupt raises while
    576 * we own the write lock, simply pause local counters on that CPU and
    577 * spin in the handler. Also we know we won't be switched to another
    578 * CPU after pausing local counters and before grabbing the lock.
    579 */
    580static void mipspmu_disable(struct pmu *pmu)
    581{
    582	pause_local_counters();
    583#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
    584	write_lock(&pmuint_rwlock);
    585#endif
    586}
    587
    588static atomic_t active_events = ATOMIC_INIT(0);
    589static DEFINE_MUTEX(pmu_reserve_mutex);
    590static int (*save_perf_irq)(void);
    591
    592static int mipspmu_get_irq(void)
    593{
    594	int err;
    595
    596	if (mipspmu.irq >= 0) {
    597		/* Request my own irq handler. */
    598		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
    599				  IRQF_PERCPU | IRQF_NOBALANCING |
    600				  IRQF_NO_THREAD | IRQF_NO_SUSPEND |
    601				  IRQF_SHARED,
    602				  "mips_perf_pmu", &mipspmu);
    603		if (err) {
    604			pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
    605				mipspmu.irq);
    606		}
    607	} else if (cp0_perfcount_irq < 0) {
    608		/*
    609		 * We are sharing the irq number with the timer interrupt.
    610		 */
    611		save_perf_irq = perf_irq;
    612		perf_irq = mipsxx_pmu_handle_shared_irq;
    613		err = 0;
    614	} else {
    615		pr_warn("The platform hasn't properly defined its interrupt controller\n");
    616		err = -ENOENT;
    617	}
    618
    619	return err;
    620}
    621
    622static void mipspmu_free_irq(void)
    623{
    624	if (mipspmu.irq >= 0)
    625		free_irq(mipspmu.irq, &mipspmu);
    626	else if (cp0_perfcount_irq < 0)
    627		perf_irq = save_perf_irq;
    628}
    629
    630/*
    631 * mipsxx/rm9000/loongson2 have different performance counters, they have
    632 * specific low-level init routines.
    633 */
    634static void reset_counters(void *arg);
    635static int __hw_perf_event_init(struct perf_event *event);
    636
    637static void hw_perf_event_destroy(struct perf_event *event)
    638{
    639	if (atomic_dec_and_mutex_lock(&active_events,
    640				&pmu_reserve_mutex)) {
    641		/*
    642		 * We must not call the destroy function with interrupts
    643		 * disabled.
    644		 */
    645		on_each_cpu(reset_counters,
    646			(void *)(long)mipspmu.num_counters, 1);
    647		mipspmu_free_irq();
    648		mutex_unlock(&pmu_reserve_mutex);
    649	}
    650}
    651
    652static int mipspmu_event_init(struct perf_event *event)
    653{
    654	int err = 0;
    655
    656	/* does not support taken branch sampling */
    657	if (has_branch_stack(event))
    658		return -EOPNOTSUPP;
    659
    660	switch (event->attr.type) {
    661	case PERF_TYPE_RAW:
    662	case PERF_TYPE_HARDWARE:
    663	case PERF_TYPE_HW_CACHE:
    664		break;
    665
    666	default:
    667		return -ENOENT;
    668	}
    669
    670	if (event->cpu >= 0 && !cpu_online(event->cpu))
    671		return -ENODEV;
    672
    673	if (!atomic_inc_not_zero(&active_events)) {
    674		mutex_lock(&pmu_reserve_mutex);
    675		if (atomic_read(&active_events) == 0)
    676			err = mipspmu_get_irq();
    677
    678		if (!err)
    679			atomic_inc(&active_events);
    680		mutex_unlock(&pmu_reserve_mutex);
    681	}
    682
    683	if (err)
    684		return err;
    685
    686	return __hw_perf_event_init(event);
    687}
    688
    689static struct pmu pmu = {
    690	.pmu_enable	= mipspmu_enable,
    691	.pmu_disable	= mipspmu_disable,
    692	.event_init	= mipspmu_event_init,
    693	.add		= mipspmu_add,
    694	.del		= mipspmu_del,
    695	.start		= mipspmu_start,
    696	.stop		= mipspmu_stop,
    697	.read		= mipspmu_read,
    698};
    699
    700static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
    701{
    702/*
    703 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
    704 * event_id.
    705 */
    706#ifdef CONFIG_MIPS_MT_SMP
    707	if (num_possible_cpus() > 1)
    708		return ((unsigned int)pev->range << 24) |
    709			(pev->cntr_mask & 0xffff00) |
    710			(pev->event_id & 0xff);
    711	else
    712#endif /* CONFIG_MIPS_MT_SMP */
    713	{
    714		if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
    715			return (pev->cntr_mask & 0xfffc00) |
    716				(pev->event_id & 0x3ff);
    717		else
    718			return (pev->cntr_mask & 0xffff00) |
    719				(pev->event_id & 0xff);
    720	}
    721}
    722
    723static const struct mips_perf_event *mipspmu_map_general_event(int idx)
    724{
    725
    726	if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
    727		return ERR_PTR(-EOPNOTSUPP);
    728	return &(*mipspmu.general_event_map)[idx];
    729}
    730
    731static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
    732{
    733	unsigned int cache_type, cache_op, cache_result;
    734	const struct mips_perf_event *pev;
    735
    736	cache_type = (config >> 0) & 0xff;
    737	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
    738		return ERR_PTR(-EINVAL);
    739
    740	cache_op = (config >> 8) & 0xff;
    741	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
    742		return ERR_PTR(-EINVAL);
    743
    744	cache_result = (config >> 16) & 0xff;
    745	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
    746		return ERR_PTR(-EINVAL);
    747
    748	pev = &((*mipspmu.cache_event_map)
    749					[cache_type]
    750					[cache_op]
    751					[cache_result]);
    752
    753	if (pev->cntr_mask == 0)
    754		return ERR_PTR(-EOPNOTSUPP);
    755
    756	return pev;
    757
    758}
    759
    760static int validate_group(struct perf_event *event)
    761{
    762	struct perf_event *sibling, *leader = event->group_leader;
    763	struct cpu_hw_events fake_cpuc;
    764
    765	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
    766
    767	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
    768		return -EINVAL;
    769
    770	for_each_sibling_event(sibling, leader) {
    771		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
    772			return -EINVAL;
    773	}
    774
    775	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
    776		return -EINVAL;
    777
    778	return 0;
    779}
    780
    781/* This is needed by specific irq handlers in perf_event_*.c */
    782static void handle_associated_event(struct cpu_hw_events *cpuc,
    783				    int idx, struct perf_sample_data *data,
    784				    struct pt_regs *regs)
    785{
    786	struct perf_event *event = cpuc->events[idx];
    787	struct hw_perf_event *hwc = &event->hw;
    788
    789	mipspmu_event_update(event, hwc, idx);
    790	data->period = event->hw.last_period;
    791	if (!mipspmu_event_set_period(event, hwc, idx))
    792		return;
    793
    794	if (perf_event_overflow(event, data, regs))
    795		mipsxx_pmu_disable_event(idx);
    796}
    797
    798
    799static int __n_counters(void)
    800{
    801	if (!cpu_has_perf)
    802		return 0;
    803	if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
    804		return 1;
    805	if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
    806		return 2;
    807	if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
    808		return 3;
    809
    810	return 4;
    811}
    812
    813static int n_counters(void)
    814{
    815	int counters;
    816
    817	switch (current_cpu_type()) {
    818	case CPU_R10000:
    819		counters = 2;
    820		break;
    821
    822	case CPU_R12000:
    823	case CPU_R14000:
    824	case CPU_R16000:
    825		counters = 4;
    826		break;
    827
    828	default:
    829		counters = __n_counters();
    830	}
    831
    832	return counters;
    833}
    834
    835static void loongson3_reset_counters(void *arg)
    836{
    837	int counters = (int)(long)arg;
    838
    839	switch (counters) {
    840	case 4:
    841		mipsxx_pmu_write_control(3, 0);
    842		mipspmu.write_counter(3, 0);
    843		mipsxx_pmu_write_control(3, 127<<5);
    844		mipspmu.write_counter(3, 0);
    845		mipsxx_pmu_write_control(3, 191<<5);
    846		mipspmu.write_counter(3, 0);
    847		mipsxx_pmu_write_control(3, 255<<5);
    848		mipspmu.write_counter(3, 0);
    849		mipsxx_pmu_write_control(3, 319<<5);
    850		mipspmu.write_counter(3, 0);
    851		mipsxx_pmu_write_control(3, 383<<5);
    852		mipspmu.write_counter(3, 0);
    853		mipsxx_pmu_write_control(3, 575<<5);
    854		mipspmu.write_counter(3, 0);
    855		fallthrough;
    856	case 3:
    857		mipsxx_pmu_write_control(2, 0);
    858		mipspmu.write_counter(2, 0);
    859		mipsxx_pmu_write_control(2, 127<<5);
    860		mipspmu.write_counter(2, 0);
    861		mipsxx_pmu_write_control(2, 191<<5);
    862		mipspmu.write_counter(2, 0);
    863		mipsxx_pmu_write_control(2, 255<<5);
    864		mipspmu.write_counter(2, 0);
    865		mipsxx_pmu_write_control(2, 319<<5);
    866		mipspmu.write_counter(2, 0);
    867		mipsxx_pmu_write_control(2, 383<<5);
    868		mipspmu.write_counter(2, 0);
    869		mipsxx_pmu_write_control(2, 575<<5);
    870		mipspmu.write_counter(2, 0);
    871		fallthrough;
    872	case 2:
    873		mipsxx_pmu_write_control(1, 0);
    874		mipspmu.write_counter(1, 0);
    875		mipsxx_pmu_write_control(1, 127<<5);
    876		mipspmu.write_counter(1, 0);
    877		mipsxx_pmu_write_control(1, 191<<5);
    878		mipspmu.write_counter(1, 0);
    879		mipsxx_pmu_write_control(1, 255<<5);
    880		mipspmu.write_counter(1, 0);
    881		mipsxx_pmu_write_control(1, 319<<5);
    882		mipspmu.write_counter(1, 0);
    883		mipsxx_pmu_write_control(1, 383<<5);
    884		mipspmu.write_counter(1, 0);
    885		mipsxx_pmu_write_control(1, 575<<5);
    886		mipspmu.write_counter(1, 0);
    887		fallthrough;
    888	case 1:
    889		mipsxx_pmu_write_control(0, 0);
    890		mipspmu.write_counter(0, 0);
    891		mipsxx_pmu_write_control(0, 127<<5);
    892		mipspmu.write_counter(0, 0);
    893		mipsxx_pmu_write_control(0, 191<<5);
    894		mipspmu.write_counter(0, 0);
    895		mipsxx_pmu_write_control(0, 255<<5);
    896		mipspmu.write_counter(0, 0);
    897		mipsxx_pmu_write_control(0, 319<<5);
    898		mipspmu.write_counter(0, 0);
    899		mipsxx_pmu_write_control(0, 383<<5);
    900		mipspmu.write_counter(0, 0);
    901		mipsxx_pmu_write_control(0, 575<<5);
    902		mipspmu.write_counter(0, 0);
    903		break;
    904	}
    905}
    906
    907static void reset_counters(void *arg)
    908{
    909	int counters = (int)(long)arg;
    910
    911	if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
    912		loongson3_reset_counters(arg);
    913		return;
    914	}
    915
    916	switch (counters) {
    917	case 4:
    918		mipsxx_pmu_write_control(3, 0);
    919		mipspmu.write_counter(3, 0);
    920		fallthrough;
    921	case 3:
    922		mipsxx_pmu_write_control(2, 0);
    923		mipspmu.write_counter(2, 0);
    924		fallthrough;
    925	case 2:
    926		mipsxx_pmu_write_control(1, 0);
    927		mipspmu.write_counter(1, 0);
    928		fallthrough;
    929	case 1:
    930		mipsxx_pmu_write_control(0, 0);
    931		mipspmu.write_counter(0, 0);
    932		break;
    933	}
    934}
    935
    936/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
    937static const struct mips_perf_event mipsxxcore_event_map
    938				[PERF_COUNT_HW_MAX] = {
    939	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
    940	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
    941	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
    942	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
    943};
    944
    945/* 74K/proAptiv core has different branch event code. */
    946static const struct mips_perf_event mipsxxcore_event_map2
    947				[PERF_COUNT_HW_MAX] = {
    948	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
    949	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
    950	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
    951	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
    952};
    953
    954static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
    955	[PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
    956	[PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
    957	/* These only count dcache, not icache */
    958	[PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
    959	[PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
    960	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
    961	[PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
    962};
    963
    964static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = {
    965	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
    966	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
    967	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
    968	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
    969};
    970
    971static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = {
    972	[PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL },
    973	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL },
    974	[PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL },
    975	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL },
    976	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL },
    977};
    978
    979static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = {
    980	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL },
    981	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL },
    982	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL },
    983	[PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL },
    984	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL },
    985	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL },
    986};
    987
    988static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
    989	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
    990	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
    991	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
    992	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL	 },
    993	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
    994	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
    995	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
    996};
    997
    998static const struct mips_perf_event bmips5000_event_map
    999				[PERF_COUNT_HW_MAX] = {
   1000	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
   1001	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
   1002	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
   1003};
   1004
   1005/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
   1006static const struct mips_perf_event mipsxxcore_cache_map
   1007				[PERF_COUNT_HW_CACHE_MAX]
   1008				[PERF_COUNT_HW_CACHE_OP_MAX]
   1009				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
   1010[C(L1D)] = {
   1011	/*
   1012	 * Like some other architectures (e.g. ARM), the performance
   1013	 * counters don't differentiate between read and write
   1014	 * accesses/misses, so this isn't strictly correct, but it's the
   1015	 * best we can do. Writes and reads get combined.
   1016	 */
   1017	[C(OP_READ)] = {
   1018		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
   1019		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
   1020	},
   1021	[C(OP_WRITE)] = {
   1022		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
   1023		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
   1024	},
   1025},
   1026[C(L1I)] = {
   1027	[C(OP_READ)] = {
   1028		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
   1029		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
   1030	},
   1031	[C(OP_WRITE)] = {
   1032		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
   1033		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
   1034	},
   1035	[C(OP_PREFETCH)] = {
   1036		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
   1037		/*
   1038		 * Note that MIPS has only "hit" events countable for
   1039		 * the prefetch operation.
   1040		 */
   1041	},
   1042},
   1043[C(LL)] = {
   1044	[C(OP_READ)] = {
   1045		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
   1046		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
   1047	},
   1048	[C(OP_WRITE)] = {
   1049		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
   1050		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
   1051	},
   1052},
   1053[C(DTLB)] = {
   1054	[C(OP_READ)] = {
   1055		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
   1056		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
   1057	},
   1058	[C(OP_WRITE)] = {
   1059		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
   1060		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
   1061	},
   1062},
   1063[C(ITLB)] = {
   1064	[C(OP_READ)] = {
   1065		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
   1066		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
   1067	},
   1068	[C(OP_WRITE)] = {
   1069		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
   1070		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
   1071	},
   1072},
   1073[C(BPU)] = {
   1074	/* Using the same code for *HW_BRANCH* */
   1075	[C(OP_READ)] = {
   1076		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
   1077		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
   1078	},
   1079	[C(OP_WRITE)] = {
   1080		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
   1081		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
   1082	},
   1083},
   1084};
   1085
   1086/* 74K/proAptiv core has completely different cache event map. */
   1087static const struct mips_perf_event mipsxxcore_cache_map2
   1088				[PERF_COUNT_HW_CACHE_MAX]
   1089				[PERF_COUNT_HW_CACHE_OP_MAX]
   1090				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
   1091[C(L1D)] = {
   1092	/*
   1093	 * Like some other architectures (e.g. ARM), the performance
   1094	 * counters don't differentiate between read and write
   1095	 * accesses/misses, so this isn't strictly correct, but it's the
   1096	 * best we can do. Writes and reads get combined.
   1097	 */
   1098	[C(OP_READ)] = {
   1099		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
   1100		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
   1101	},
   1102	[C(OP_WRITE)] = {
   1103		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
   1104		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
   1105	},
   1106},
   1107[C(L1I)] = {
   1108	[C(OP_READ)] = {
   1109		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
   1110		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
   1111	},
   1112	[C(OP_WRITE)] = {
   1113		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
   1114		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
   1115	},
   1116	[C(OP_PREFETCH)] = {
   1117		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
   1118		/*
   1119		 * Note that MIPS has only "hit" events countable for
   1120		 * the prefetch operation.
   1121		 */
   1122	},
   1123},
   1124[C(LL)] = {
   1125	[C(OP_READ)] = {
   1126		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
   1127		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
   1128	},
   1129	[C(OP_WRITE)] = {
   1130		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
   1131		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
   1132	},
   1133},
   1134/*
   1135 * 74K core does not have specific DTLB events. proAptiv core has
   1136 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
   1137 * not included here. One can use raw events if really needed.
   1138 */
   1139[C(ITLB)] = {
   1140	[C(OP_READ)] = {
   1141		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
   1142		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
   1143	},
   1144	[C(OP_WRITE)] = {
   1145		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
   1146		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
   1147	},
   1148},
   1149[C(BPU)] = {
   1150	/* Using the same code for *HW_BRANCH* */
   1151	[C(OP_READ)] = {
   1152		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
   1153		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
   1154	},
   1155	[C(OP_WRITE)] = {
   1156		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
   1157		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
   1158	},
   1159},
   1160};
   1161
   1162static const struct mips_perf_event i6x00_cache_map
   1163				[PERF_COUNT_HW_CACHE_MAX]
   1164				[PERF_COUNT_HW_CACHE_OP_MAX]
   1165				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
   1166[C(L1D)] = {
   1167	[C(OP_READ)] = {
   1168		[C(RESULT_ACCESS)]	= { 0x46, CNTR_EVEN | CNTR_ODD },
   1169		[C(RESULT_MISS)]	= { 0x49, CNTR_EVEN | CNTR_ODD },
   1170	},
   1171	[C(OP_WRITE)] = {
   1172		[C(RESULT_ACCESS)]	= { 0x47, CNTR_EVEN | CNTR_ODD },
   1173		[C(RESULT_MISS)]	= { 0x4a, CNTR_EVEN | CNTR_ODD },
   1174	},
   1175},
   1176[C(L1I)] = {
   1177	[C(OP_READ)] = {
   1178		[C(RESULT_ACCESS)]	= { 0x84, CNTR_EVEN | CNTR_ODD },
   1179		[C(RESULT_MISS)]	= { 0x85, CNTR_EVEN | CNTR_ODD },
   1180	},
   1181},
   1182[C(DTLB)] = {
   1183	/* Can't distinguish read & write */
   1184	[C(OP_READ)] = {
   1185		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
   1186		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
   1187	},
   1188	[C(OP_WRITE)] = {
   1189		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
   1190		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
   1191	},
   1192},
   1193[C(BPU)] = {
   1194	/* Conditional branches / mispredicted */
   1195	[C(OP_READ)] = {
   1196		[C(RESULT_ACCESS)]	= { 0x15, CNTR_EVEN | CNTR_ODD },
   1197		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN | CNTR_ODD },
   1198	},
   1199},
   1200};
   1201
   1202static const struct mips_perf_event loongson3_cache_map1
   1203				[PERF_COUNT_HW_CACHE_MAX]
   1204				[PERF_COUNT_HW_CACHE_OP_MAX]
   1205				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
   1206[C(L1D)] = {
   1207	/*
   1208	 * Like some other architectures (e.g. ARM), the performance
   1209	 * counters don't differentiate between read and write
   1210	 * accesses/misses, so this isn't strictly correct, but it's the
   1211	 * best we can do. Writes and reads get combined.
   1212	 */
   1213	[C(OP_READ)] = {
   1214		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
   1215	},
   1216	[C(OP_WRITE)] = {
   1217		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
   1218	},
   1219},
   1220[C(L1I)] = {
   1221	[C(OP_READ)] = {
   1222		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
   1223	},
   1224	[C(OP_WRITE)] = {
   1225		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
   1226	},
   1227},
   1228[C(DTLB)] = {
   1229	[C(OP_READ)] = {
   1230		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
   1231	},
   1232	[C(OP_WRITE)] = {
   1233		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
   1234	},
   1235},
   1236[C(ITLB)] = {
   1237	[C(OP_READ)] = {
   1238		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
   1239	},
   1240	[C(OP_WRITE)] = {
   1241		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
   1242	},
   1243},
   1244[C(BPU)] = {
   1245	/* Using the same code for *HW_BRANCH* */
   1246	[C(OP_READ)] = {
   1247		[C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
   1248		[C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
   1249	},
   1250	[C(OP_WRITE)] = {
   1251		[C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
   1252		[C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
   1253	},
   1254},
   1255};
   1256
   1257static const struct mips_perf_event loongson3_cache_map2
   1258				[PERF_COUNT_HW_CACHE_MAX]
   1259				[PERF_COUNT_HW_CACHE_OP_MAX]
   1260				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
   1261[C(L1D)] = {
   1262	/*
   1263	 * Like some other architectures (e.g. ARM), the performance
   1264	 * counters don't differentiate between read and write
   1265	 * accesses/misses, so this isn't strictly correct, but it's the
   1266	 * best we can do. Writes and reads get combined.
   1267	 */
   1268	[C(OP_READ)] = {
   1269		[C(RESULT_ACCESS)]	= { 0x156, CNTR_ALL },
   1270	},
   1271	[C(OP_WRITE)] = {
   1272		[C(RESULT_ACCESS)]	= { 0x155, CNTR_ALL },
   1273		[C(RESULT_MISS)]        = { 0x153, CNTR_ALL },
   1274	},
   1275},
   1276[C(L1I)] = {
   1277	[C(OP_READ)] = {
   1278		[C(RESULT_MISS)]	= { 0x18, CNTR_ALL },
   1279	},
   1280	[C(OP_WRITE)] = {
   1281		[C(RESULT_MISS)]        = { 0x18, CNTR_ALL },
   1282	},
   1283},
   1284[C(LL)] = {
   1285	[C(OP_READ)] = {
   1286		[C(RESULT_ACCESS)]	= { 0x1b6, CNTR_ALL },
   1287	},
   1288	[C(OP_WRITE)] = {
   1289		[C(RESULT_ACCESS)]	= { 0x1b7, CNTR_ALL },
   1290	},
   1291	[C(OP_PREFETCH)] = {
   1292		[C(RESULT_ACCESS)]	= { 0x1bf, CNTR_ALL },
   1293	},
   1294},
   1295[C(DTLB)] = {
   1296	[C(OP_READ)] = {
   1297		[C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
   1298	},
   1299	[C(OP_WRITE)] = {
   1300		[C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
   1301	},
   1302},
   1303[C(ITLB)] = {
   1304	[C(OP_READ)] = {
   1305		[C(RESULT_MISS)]	= { 0x1a, CNTR_ALL },
   1306	},
   1307	[C(OP_WRITE)] = {
   1308		[C(RESULT_MISS)]	= { 0x1a, CNTR_ALL },
   1309	},
   1310},
   1311[C(BPU)] = {
   1312	/* Using the same code for *HW_BRANCH* */
   1313	[C(OP_READ)] = {
   1314		[C(RESULT_ACCESS)]      = { 0x94, CNTR_ALL },
   1315		[C(RESULT_MISS)]        = { 0x9c, CNTR_ALL },
   1316	},
   1317},
   1318};
   1319
   1320static const struct mips_perf_event loongson3_cache_map3
   1321				[PERF_COUNT_HW_CACHE_MAX]
   1322				[PERF_COUNT_HW_CACHE_OP_MAX]
   1323				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
   1324[C(L1D)] = {
   1325	/*
   1326	 * Like some other architectures (e.g. ARM), the performance
   1327	 * counters don't differentiate between read and write
   1328	 * accesses/misses, so this isn't strictly correct, but it's the
   1329	 * best we can do. Writes and reads get combined.
   1330	 */
   1331	[C(OP_READ)] = {
   1332		[C(RESULT_ACCESS)]      = { 0x1e, CNTR_ALL },
   1333		[C(RESULT_MISS)]        = { 0x1f, CNTR_ALL },
   1334	},
   1335	[C(OP_PREFETCH)] = {
   1336		[C(RESULT_ACCESS)]	= { 0xaa, CNTR_ALL },
   1337		[C(RESULT_MISS)]	= { 0xa9, CNTR_ALL },
   1338	},
   1339},
   1340[C(L1I)] = {
   1341	[C(OP_READ)] = {
   1342		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ALL },
   1343		[C(RESULT_MISS)]	= { 0x1d, CNTR_ALL },
   1344	},
   1345},
   1346[C(LL)] = {
   1347	[C(OP_READ)] = {
   1348		[C(RESULT_ACCESS)]	= { 0x2e, CNTR_ALL },
   1349		[C(RESULT_MISS)]	= { 0x2f, CNTR_ALL },
   1350	},
   1351},
   1352[C(DTLB)] = {
   1353	[C(OP_READ)] = {
   1354		[C(RESULT_ACCESS)]      = { 0x14, CNTR_ALL },
   1355		[C(RESULT_MISS)]	= { 0x1b, CNTR_ALL },
   1356	},
   1357},
   1358[C(ITLB)] = {
   1359	[C(OP_READ)] = {
   1360		[C(RESULT_MISS)]	= { 0x1a, CNTR_ALL },
   1361	},
   1362},
   1363[C(BPU)] = {
   1364	/* Using the same code for *HW_BRANCH* */
   1365	[C(OP_READ)] = {
   1366		[C(RESULT_ACCESS)]      = { 0x02, CNTR_ALL },
   1367		[C(RESULT_MISS)]        = { 0x08, CNTR_ALL },
   1368	},
   1369},
   1370};
   1371
   1372/* BMIPS5000 */
   1373static const struct mips_perf_event bmips5000_cache_map
   1374				[PERF_COUNT_HW_CACHE_MAX]
   1375				[PERF_COUNT_HW_CACHE_OP_MAX]
   1376				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
   1377[C(L1D)] = {
   1378	/*
   1379	 * Like some other architectures (e.g. ARM), the performance
   1380	 * counters don't differentiate between read and write
   1381	 * accesses/misses, so this isn't strictly correct, but it's the
   1382	 * best we can do. Writes and reads get combined.
   1383	 */
   1384	[C(OP_READ)] = {
   1385		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
   1386		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
   1387	},
   1388	[C(OP_WRITE)] = {
   1389		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
   1390		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
   1391	},
   1392},
   1393[C(L1I)] = {
   1394	[C(OP_READ)] = {
   1395		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
   1396		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
   1397	},
   1398	[C(OP_WRITE)] = {
   1399		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
   1400		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
   1401	},
   1402	[C(OP_PREFETCH)] = {
   1403		[C(RESULT_ACCESS)]	= { 23, CNTR_EVEN, T },
   1404		/*
   1405		 * Note that MIPS has only "hit" events countable for
   1406		 * the prefetch operation.
   1407		 */
   1408	},
   1409},
   1410[C(LL)] = {
   1411	[C(OP_READ)] = {
   1412		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
   1413		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
   1414	},
   1415	[C(OP_WRITE)] = {
   1416		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
   1417		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
   1418	},
   1419},
   1420[C(BPU)] = {
   1421	/* Using the same code for *HW_BRANCH* */
   1422	[C(OP_READ)] = {
   1423		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
   1424	},
   1425	[C(OP_WRITE)] = {
   1426		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
   1427	},
   1428},
   1429};
   1430
   1431static const struct mips_perf_event octeon_cache_map
   1432				[PERF_COUNT_HW_CACHE_MAX]
   1433				[PERF_COUNT_HW_CACHE_OP_MAX]
   1434				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
   1435[C(L1D)] = {
   1436	[C(OP_READ)] = {
   1437		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
   1438		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
   1439	},
   1440	[C(OP_WRITE)] = {
   1441		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
   1442	},
   1443},
   1444[C(L1I)] = {
   1445	[C(OP_READ)] = {
   1446		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
   1447	},
   1448	[C(OP_PREFETCH)] = {
   1449		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
   1450	},
   1451},
   1452[C(DTLB)] = {
   1453	/*
   1454	 * Only general DTLB misses are counted use the same event for
   1455	 * read and write.
   1456	 */
   1457	[C(OP_READ)] = {
   1458		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
   1459	},
   1460	[C(OP_WRITE)] = {
   1461		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
   1462	},
   1463},
   1464[C(ITLB)] = {
   1465	[C(OP_READ)] = {
   1466		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
   1467	},
   1468},
   1469};
   1470
   1471static int __hw_perf_event_init(struct perf_event *event)
   1472{
   1473	struct perf_event_attr *attr = &event->attr;
   1474	struct hw_perf_event *hwc = &event->hw;
   1475	const struct mips_perf_event *pev;
   1476	int err;
   1477
   1478	/* Returning MIPS event descriptor for generic perf event. */
   1479	if (PERF_TYPE_HARDWARE == event->attr.type) {
   1480		if (event->attr.config >= PERF_COUNT_HW_MAX)
   1481			return -EINVAL;
   1482		pev = mipspmu_map_general_event(event->attr.config);
   1483	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
   1484		pev = mipspmu_map_cache_event(event->attr.config);
   1485	} else if (PERF_TYPE_RAW == event->attr.type) {
   1486		/* We are working on the global raw event. */
   1487		mutex_lock(&raw_event_mutex);
   1488		pev = mipspmu.map_raw_event(event->attr.config);
   1489	} else {
   1490		/* The event type is not (yet) supported. */
   1491		return -EOPNOTSUPP;
   1492	}
   1493
   1494	if (IS_ERR(pev)) {
   1495		if (PERF_TYPE_RAW == event->attr.type)
   1496			mutex_unlock(&raw_event_mutex);
   1497		return PTR_ERR(pev);
   1498	}
   1499
   1500	/*
   1501	 * We allow max flexibility on how each individual counter shared
   1502	 * by the single CPU operates (the mode exclusion and the range).
   1503	 */
   1504	hwc->config_base = MIPS_PERFCTRL_IE;
   1505
   1506	hwc->event_base = mipspmu_perf_event_encode(pev);
   1507	if (PERF_TYPE_RAW == event->attr.type)
   1508		mutex_unlock(&raw_event_mutex);
   1509
   1510	if (!attr->exclude_user)
   1511		hwc->config_base |= MIPS_PERFCTRL_U;
   1512	if (!attr->exclude_kernel) {
   1513		hwc->config_base |= MIPS_PERFCTRL_K;
   1514		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
   1515		hwc->config_base |= MIPS_PERFCTRL_EXL;
   1516	}
   1517	if (!attr->exclude_hv)
   1518		hwc->config_base |= MIPS_PERFCTRL_S;
   1519
   1520	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
   1521	/*
   1522	 * The event can belong to another cpu. We do not assign a local
   1523	 * counter for it for now.
   1524	 */
   1525	hwc->idx = -1;
   1526	hwc->config = 0;
   1527
   1528	if (!hwc->sample_period) {
   1529		hwc->sample_period  = mipspmu.max_period;
   1530		hwc->last_period    = hwc->sample_period;
   1531		local64_set(&hwc->period_left, hwc->sample_period);
   1532	}
   1533
   1534	err = 0;
   1535	if (event->group_leader != event)
   1536		err = validate_group(event);
   1537
   1538	event->destroy = hw_perf_event_destroy;
   1539
   1540	if (err)
   1541		event->destroy(event);
   1542
   1543	return err;
   1544}
   1545
   1546static void pause_local_counters(void)
   1547{
   1548	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1549	int ctr = mipspmu.num_counters;
   1550	unsigned long flags;
   1551
   1552	local_irq_save(flags);
   1553	do {
   1554		ctr--;
   1555		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
   1556		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
   1557					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
   1558	} while (ctr > 0);
   1559	local_irq_restore(flags);
   1560}
   1561
   1562static void resume_local_counters(void)
   1563{
   1564	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1565	int ctr = mipspmu.num_counters;
   1566
   1567	do {
   1568		ctr--;
   1569		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
   1570	} while (ctr > 0);
   1571}
   1572
   1573static int mipsxx_pmu_handle_shared_irq(void)
   1574{
   1575	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
   1576	struct perf_sample_data data;
   1577	unsigned int counters = mipspmu.num_counters;
   1578	u64 counter;
   1579	int n, handled = IRQ_NONE;
   1580	struct pt_regs *regs;
   1581
   1582	if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
   1583		return handled;
   1584	/*
   1585	 * First we pause the local counters, so that when we are locked
   1586	 * here, the counters are all paused. When it gets locked due to
   1587	 * perf_disable(), the timer interrupt handler will be delayed.
   1588	 *
   1589	 * See also mipsxx_pmu_start().
   1590	 */
   1591	pause_local_counters();
   1592#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
   1593	read_lock(&pmuint_rwlock);
   1594#endif
   1595
   1596	regs = get_irq_regs();
   1597
   1598	perf_sample_data_init(&data, 0, 0);
   1599
   1600	for (n = counters - 1; n >= 0; n--) {
   1601		if (!test_bit(n, cpuc->used_mask))
   1602			continue;
   1603
   1604		counter = mipspmu.read_counter(n);
   1605		if (!(counter & mipspmu.overflow))
   1606			continue;
   1607
   1608		handle_associated_event(cpuc, n, &data, regs);
   1609		handled = IRQ_HANDLED;
   1610	}
   1611
   1612#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
   1613	read_unlock(&pmuint_rwlock);
   1614#endif
   1615	resume_local_counters();
   1616
   1617	/*
   1618	 * Do all the work for the pending perf events. We can do this
   1619	 * in here because the performance counter interrupt is a regular
   1620	 * interrupt, not NMI.
   1621	 */
   1622	if (handled == IRQ_HANDLED)
   1623		irq_work_run();
   1624
   1625	return handled;
   1626}
   1627
   1628static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
   1629{
   1630	return mipsxx_pmu_handle_shared_irq();
   1631}
   1632
   1633/* 24K */
   1634#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
   1635	((b) == 0 || (b) == 1 || (b) == 11)
   1636
   1637/* 34K */
   1638#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
   1639	((b) == 0 || (b) == 1 || (b) == 11)
   1640#ifdef CONFIG_MIPS_MT_SMP
   1641#define IS_RANGE_P_34K_EVENT(r, b)					\
   1642	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
   1643	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
   1644	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
   1645	 ((b) >= 64 && (b) <= 67))
   1646#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
   1647#endif
   1648
   1649/* 74K */
   1650#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
   1651	((b) == 0 || (b) == 1)
   1652
   1653/* proAptiv */
   1654#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)				\
   1655	((b) == 0 || (b) == 1)
   1656/* P5600 */
   1657#define IS_BOTH_COUNTERS_P5600_EVENT(b)					\
   1658	((b) == 0 || (b) == 1)
   1659
   1660/* 1004K */
   1661#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
   1662	((b) == 0 || (b) == 1 || (b) == 11)
   1663#ifdef CONFIG_MIPS_MT_SMP
   1664#define IS_RANGE_P_1004K_EVENT(r, b)					\
   1665	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
   1666	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
   1667	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
   1668	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
   1669	 ((b) >= 64 && (b) <= 67))
   1670#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
   1671#endif
   1672
   1673/* interAptiv */
   1674#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)				\
   1675	((b) == 0 || (b) == 1 || (b) == 11)
   1676#ifdef CONFIG_MIPS_MT_SMP
   1677/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
   1678#define IS_RANGE_P_INTERAPTIV_EVENT(r, b)				\
   1679	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
   1680	 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||		\
   1681	 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&		\
   1682	 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||		\
   1683	 ((b) >= 64 && (b) <= 67))
   1684#define IS_RANGE_V_INTERAPTIV_EVENT(r)	((r) == 47 || (r) == 175)
   1685#endif
   1686
   1687/* BMIPS5000 */
   1688#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)				\
   1689	((b) == 0 || (b) == 1)
   1690
   1691
   1692/*
   1693 * For most cores the user can use 0-255 raw events, where 0-127 for the events
   1694 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
   1695 * indicate the even/odd bank selector. So, for example, when user wants to take
   1696 * the Event Num of 15 for odd counters (by referring to the user manual), then
   1697 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
   1698 * to be used.
   1699 *
   1700 * Some newer cores have even more events, in which case the user can use raw
   1701 * events 0-511, where 0-255 are for the events of even counters, and 256-511
   1702 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
   1703 */
   1704static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
   1705{
   1706	/* currently most cores have 7-bit event numbers */
   1707	int pmu_type;
   1708	unsigned int raw_id = config & 0xff;
   1709	unsigned int base_id = raw_id & 0x7f;
   1710
   1711	switch (current_cpu_type()) {
   1712	case CPU_24K:
   1713		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
   1714			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
   1715		else
   1716			raw_event.cntr_mask =
   1717				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
   1718#ifdef CONFIG_MIPS_MT_SMP
   1719		/*
   1720		 * This is actually doing nothing. Non-multithreading
   1721		 * CPUs will not check and calculate the range.
   1722		 */
   1723		raw_event.range = P;
   1724#endif
   1725		break;
   1726	case CPU_34K:
   1727		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
   1728			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
   1729		else
   1730			raw_event.cntr_mask =
   1731				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
   1732#ifdef CONFIG_MIPS_MT_SMP
   1733		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
   1734			raw_event.range = P;
   1735		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
   1736			raw_event.range = V;
   1737		else
   1738			raw_event.range = T;
   1739#endif
   1740		break;
   1741	case CPU_74K:
   1742	case CPU_1074K:
   1743		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
   1744			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
   1745		else
   1746			raw_event.cntr_mask =
   1747				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
   1748#ifdef CONFIG_MIPS_MT_SMP
   1749		raw_event.range = P;
   1750#endif
   1751		break;
   1752	case CPU_PROAPTIV:
   1753		if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
   1754			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
   1755		else
   1756			raw_event.cntr_mask =
   1757				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
   1758#ifdef CONFIG_MIPS_MT_SMP
   1759		raw_event.range = P;
   1760#endif
   1761		break;
   1762	case CPU_P5600:
   1763	case CPU_P6600:
   1764		/* 8-bit event numbers */
   1765		raw_id = config & 0x1ff;
   1766		base_id = raw_id & 0xff;
   1767		if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
   1768			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
   1769		else
   1770			raw_event.cntr_mask =
   1771				raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
   1772#ifdef CONFIG_MIPS_MT_SMP
   1773		raw_event.range = P;
   1774#endif
   1775		break;
   1776	case CPU_I6400:
   1777	case CPU_I6500:
   1778		/* 8-bit event numbers */
   1779		base_id = config & 0xff;
   1780		raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
   1781		break;
   1782	case CPU_1004K:
   1783		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
   1784			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
   1785		else
   1786			raw_event.cntr_mask =
   1787				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
   1788#ifdef CONFIG_MIPS_MT_SMP
   1789		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
   1790			raw_event.range = P;
   1791		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
   1792			raw_event.range = V;
   1793		else
   1794			raw_event.range = T;
   1795#endif
   1796		break;
   1797	case CPU_INTERAPTIV:
   1798		if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
   1799			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
   1800		else
   1801			raw_event.cntr_mask =
   1802				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
   1803#ifdef CONFIG_MIPS_MT_SMP
   1804		if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
   1805			raw_event.range = P;
   1806		else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
   1807			raw_event.range = V;
   1808		else
   1809			raw_event.range = T;
   1810#endif
   1811		break;
   1812	case CPU_BMIPS5000:
   1813		if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
   1814			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
   1815		else
   1816			raw_event.cntr_mask =
   1817				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
   1818		break;
   1819	case CPU_LOONGSON64:
   1820		pmu_type = get_loongson3_pmu_type();
   1821
   1822		switch (pmu_type) {
   1823		case LOONGSON_PMU_TYPE1:
   1824			raw_event.cntr_mask =
   1825				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
   1826			break;
   1827		case LOONGSON_PMU_TYPE2:
   1828			base_id = config & 0x3ff;
   1829			raw_event.cntr_mask = CNTR_ALL;
   1830
   1831			if ((base_id >= 1 && base_id < 28) ||
   1832				(base_id >= 64 && base_id < 90) ||
   1833				(base_id >= 128 && base_id < 164) ||
   1834				(base_id >= 192 && base_id < 200) ||
   1835				(base_id >= 256 && base_id < 275) ||
   1836				(base_id >= 320 && base_id < 361) ||
   1837				(base_id >= 384 && base_id < 574))
   1838				break;
   1839
   1840			return ERR_PTR(-EOPNOTSUPP);
   1841		case LOONGSON_PMU_TYPE3:
   1842			base_id = raw_id;
   1843			raw_event.cntr_mask = CNTR_ALL;
   1844			break;
   1845		}
   1846		break;
   1847	}
   1848
   1849	raw_event.event_id = base_id;
   1850
   1851	return &raw_event;
   1852}
   1853
   1854static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
   1855{
   1856	unsigned int base_id = config & 0x7f;
   1857	unsigned int event_max;
   1858
   1859
   1860	raw_event.cntr_mask = CNTR_ALL;
   1861	raw_event.event_id = base_id;
   1862
   1863	if (current_cpu_type() == CPU_CAVIUM_OCTEON3)
   1864		event_max = 0x5f;
   1865	else if (current_cpu_type() == CPU_CAVIUM_OCTEON2)
   1866		event_max = 0x42;
   1867	else
   1868		event_max = 0x3a;
   1869
   1870	if (base_id > event_max) {
   1871		return ERR_PTR(-EOPNOTSUPP);
   1872	}
   1873
   1874	switch (base_id) {
   1875	case 0x00:
   1876	case 0x0f:
   1877	case 0x1e:
   1878	case 0x1f:
   1879	case 0x2f:
   1880	case 0x34:
   1881	case 0x3e ... 0x3f:
   1882		return ERR_PTR(-EOPNOTSUPP);
   1883	default:
   1884		break;
   1885	}
   1886
   1887	return &raw_event;
   1888}
   1889
   1890static int __init
   1891init_hw_perf_events(void)
   1892{
   1893	int counters, irq, pmu_type;
   1894
   1895	pr_info("Performance counters: ");
   1896
   1897	counters = n_counters();
   1898	if (counters == 0) {
   1899		pr_cont("No available PMU.\n");
   1900		return -ENODEV;
   1901	}
   1902
   1903#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
   1904	if (!cpu_has_mipsmt_pertccounters)
   1905		counters = counters_total_to_per_cpu(counters);
   1906#endif
   1907
   1908	if (get_c0_perfcount_int)
   1909		irq = get_c0_perfcount_int();
   1910	else if (cp0_perfcount_irq >= 0)
   1911		irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
   1912	else
   1913		irq = -1;
   1914
   1915	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
   1916
   1917	switch (current_cpu_type()) {
   1918	case CPU_24K:
   1919		mipspmu.name = "mips/24K";
   1920		mipspmu.general_event_map = &mipsxxcore_event_map;
   1921		mipspmu.cache_event_map = &mipsxxcore_cache_map;
   1922		break;
   1923	case CPU_34K:
   1924		mipspmu.name = "mips/34K";
   1925		mipspmu.general_event_map = &mipsxxcore_event_map;
   1926		mipspmu.cache_event_map = &mipsxxcore_cache_map;
   1927		break;
   1928	case CPU_74K:
   1929		mipspmu.name = "mips/74K";
   1930		mipspmu.general_event_map = &mipsxxcore_event_map2;
   1931		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
   1932		break;
   1933	case CPU_PROAPTIV:
   1934		mipspmu.name = "mips/proAptiv";
   1935		mipspmu.general_event_map = &mipsxxcore_event_map2;
   1936		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
   1937		break;
   1938	case CPU_P5600:
   1939		mipspmu.name = "mips/P5600";
   1940		mipspmu.general_event_map = &mipsxxcore_event_map2;
   1941		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
   1942		break;
   1943	case CPU_P6600:
   1944		mipspmu.name = "mips/P6600";
   1945		mipspmu.general_event_map = &mipsxxcore_event_map2;
   1946		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
   1947		break;
   1948	case CPU_I6400:
   1949		mipspmu.name = "mips/I6400";
   1950		mipspmu.general_event_map = &i6x00_event_map;
   1951		mipspmu.cache_event_map = &i6x00_cache_map;
   1952		break;
   1953	case CPU_I6500:
   1954		mipspmu.name = "mips/I6500";
   1955		mipspmu.general_event_map = &i6x00_event_map;
   1956		mipspmu.cache_event_map = &i6x00_cache_map;
   1957		break;
   1958	case CPU_1004K:
   1959		mipspmu.name = "mips/1004K";
   1960		mipspmu.general_event_map = &mipsxxcore_event_map;
   1961		mipspmu.cache_event_map = &mipsxxcore_cache_map;
   1962		break;
   1963	case CPU_1074K:
   1964		mipspmu.name = "mips/1074K";
   1965		mipspmu.general_event_map = &mipsxxcore_event_map;
   1966		mipspmu.cache_event_map = &mipsxxcore_cache_map;
   1967		break;
   1968	case CPU_INTERAPTIV:
   1969		mipspmu.name = "mips/interAptiv";
   1970		mipspmu.general_event_map = &mipsxxcore_event_map;
   1971		mipspmu.cache_event_map = &mipsxxcore_cache_map;
   1972		break;
   1973	case CPU_LOONGSON32:
   1974		mipspmu.name = "mips/loongson1";
   1975		mipspmu.general_event_map = &mipsxxcore_event_map;
   1976		mipspmu.cache_event_map = &mipsxxcore_cache_map;
   1977		break;
   1978	case CPU_LOONGSON64:
   1979		mipspmu.name = "mips/loongson3";
   1980		pmu_type = get_loongson3_pmu_type();
   1981
   1982		switch (pmu_type) {
   1983		case LOONGSON_PMU_TYPE1:
   1984			counters = 2;
   1985			mipspmu.general_event_map = &loongson3_event_map1;
   1986			mipspmu.cache_event_map = &loongson3_cache_map1;
   1987			break;
   1988		case LOONGSON_PMU_TYPE2:
   1989			counters = 4;
   1990			mipspmu.general_event_map = &loongson3_event_map2;
   1991			mipspmu.cache_event_map = &loongson3_cache_map2;
   1992			break;
   1993		case LOONGSON_PMU_TYPE3:
   1994			counters = 4;
   1995			mipspmu.general_event_map = &loongson3_event_map3;
   1996			mipspmu.cache_event_map = &loongson3_cache_map3;
   1997			break;
   1998		}
   1999		break;
   2000	case CPU_CAVIUM_OCTEON:
   2001	case CPU_CAVIUM_OCTEON_PLUS:
   2002	case CPU_CAVIUM_OCTEON2:
   2003	case CPU_CAVIUM_OCTEON3:
   2004		mipspmu.name = "octeon";
   2005		mipspmu.general_event_map = &octeon_event_map;
   2006		mipspmu.cache_event_map = &octeon_cache_map;
   2007		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
   2008		break;
   2009	case CPU_BMIPS5000:
   2010		mipspmu.name = "BMIPS5000";
   2011		mipspmu.general_event_map = &bmips5000_event_map;
   2012		mipspmu.cache_event_map = &bmips5000_cache_map;
   2013		break;
   2014	default:
   2015		pr_cont("Either hardware does not support performance "
   2016			"counters, or not yet implemented.\n");
   2017		return -ENODEV;
   2018	}
   2019
   2020	mipspmu.num_counters = counters;
   2021	mipspmu.irq = irq;
   2022
   2023	if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
   2024		if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
   2025			counter_bits = 48;
   2026			mipspmu.max_period = (1ULL << 47) - 1;
   2027			mipspmu.valid_count = (1ULL << 47) - 1;
   2028			mipspmu.overflow = 1ULL << 47;
   2029		} else {
   2030			counter_bits = 64;
   2031			mipspmu.max_period = (1ULL << 63) - 1;
   2032			mipspmu.valid_count = (1ULL << 63) - 1;
   2033			mipspmu.overflow = 1ULL << 63;
   2034		}
   2035		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
   2036		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
   2037	} else {
   2038		counter_bits = 32;
   2039		mipspmu.max_period = (1ULL << 31) - 1;
   2040		mipspmu.valid_count = (1ULL << 31) - 1;
   2041		mipspmu.overflow = 1ULL << 31;
   2042		mipspmu.read_counter = mipsxx_pmu_read_counter;
   2043		mipspmu.write_counter = mipsxx_pmu_write_counter;
   2044	}
   2045
   2046	on_each_cpu(reset_counters, (void *)(long)counters, 1);
   2047
   2048	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
   2049		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
   2050		irq < 0 ? " (share with timer interrupt)" : "");
   2051
   2052	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
   2053
   2054	return 0;
   2055}
   2056early_initcall(init_hw_perf_events);