cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pm-cps.c (21472B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright (C) 2014 Imagination Technologies
      4 * Author: Paul Burton <paul.burton@mips.com>
      5 */
      6
      7#include <linux/cpuhotplug.h>
      8#include <linux/init.h>
      9#include <linux/percpu.h>
     10#include <linux/slab.h>
     11#include <linux/suspend.h>
     12
     13#include <asm/asm-offsets.h>
     14#include <asm/cacheflush.h>
     15#include <asm/cacheops.h>
     16#include <asm/idle.h>
     17#include <asm/mips-cps.h>
     18#include <asm/mipsmtregs.h>
     19#include <asm/pm.h>
     20#include <asm/pm-cps.h>
     21#include <asm/smp-cps.h>
     22#include <asm/uasm.h>
     23
     24/*
     25 * cps_nc_entry_fn - type of a generated non-coherent state entry function
     26 * @online: the count of online coupled VPEs
     27 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
     28 *
     29 * The code entering & exiting non-coherent states is generated at runtime
     30 * using uasm, in order to ensure that the compiler cannot insert a stray
     31 * memory access at an unfortunate time and to allow the generation of optimal
     32 * core-specific code particularly for cache routines. If coupled_coherence
     33 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
     34 * returns the number of VPEs that were in the wait state at the point this
     35 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
     36 * the entry function for CPS_PM_NC_WAIT.
     37 */
     38typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
     39
     40/*
     41 * The entry point of the generated non-coherent idle state entry/exit
     42 * functions. Actually per-core rather than per-CPU.
     43 */
     44static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
     45				  nc_asm_enter);
     46
     47/* Bitmap indicating which states are supported by the system */
     48static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
     49
     50/*
     51 * Indicates the number of coupled VPEs ready to operate in a non-coherent
     52 * state. Actually per-core rather than per-CPU.
     53 */
     54static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
     55
     56/* Indicates online CPUs coupled with the current CPU */
     57static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
     58
     59/*
     60 * Used to synchronize entry to deep idle states. Actually per-core rather
     61 * than per-CPU.
     62 */
     63static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
     64
     65/* Saved CPU state across the CPS_PM_POWER_GATED state */
     66DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
     67
     68/* A somewhat arbitrary number of labels & relocs for uasm */
     69static struct uasm_label labels[32];
     70static struct uasm_reloc relocs[32];
     71
     72enum mips_reg {
     73	zero, at, v0, v1, a0, a1, a2, a3,
     74	t0, t1, t2, t3, t4, t5, t6, t7,
     75	s0, s1, s2, s3, s4, s5, s6, s7,
     76	t8, t9, k0, k1, gp, sp, fp, ra,
     77};
     78
     79bool cps_pm_support_state(enum cps_pm_state state)
     80{
     81	return test_bit(state, state_support);
     82}
     83
     84static void coupled_barrier(atomic_t *a, unsigned online)
     85{
     86	/*
     87	 * This function is effectively the same as
     88	 * cpuidle_coupled_parallel_barrier, which can't be used here since
     89	 * there's no cpuidle device.
     90	 */
     91
     92	if (!coupled_coherence)
     93		return;
     94
     95	smp_mb__before_atomic();
     96	atomic_inc(a);
     97
     98	while (atomic_read(a) < online)
     99		cpu_relax();
    100
    101	if (atomic_inc_return(a) == online * 2) {
    102		atomic_set(a, 0);
    103		return;
    104	}
    105
    106	while (atomic_read(a) > online)
    107		cpu_relax();
    108}
    109
    110int cps_pm_enter_state(enum cps_pm_state state)
    111{
    112	unsigned cpu = smp_processor_id();
    113	unsigned core = cpu_core(&current_cpu_data);
    114	unsigned online, left;
    115	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
    116	u32 *core_ready_count, *nc_core_ready_count;
    117	void *nc_addr;
    118	cps_nc_entry_fn entry;
    119	struct core_boot_config *core_cfg;
    120	struct vpe_boot_config *vpe_cfg;
    121
    122	/* Check that there is an entry function for this state */
    123	entry = per_cpu(nc_asm_enter, core)[state];
    124	if (!entry)
    125		return -EINVAL;
    126
    127	/* Calculate which coupled CPUs (VPEs) are online */
    128#if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
    129	if (cpu_online(cpu)) {
    130		cpumask_and(coupled_mask, cpu_online_mask,
    131			    &cpu_sibling_map[cpu]);
    132		online = cpumask_weight(coupled_mask);
    133		cpumask_clear_cpu(cpu, coupled_mask);
    134	} else
    135#endif
    136	{
    137		cpumask_clear(coupled_mask);
    138		online = 1;
    139	}
    140
    141	/* Setup the VPE to run mips_cps_pm_restore when started again */
    142	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
    143		/* Power gating relies upon CPS SMP */
    144		if (!mips_cps_smp_in_use())
    145			return -EINVAL;
    146
    147		core_cfg = &mips_cps_core_bootcfg[core];
    148		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
    149		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
    150		vpe_cfg->gp = (unsigned long)current_thread_info();
    151		vpe_cfg->sp = 0;
    152	}
    153
    154	/* Indicate that this CPU might not be coherent */
    155	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
    156	smp_mb__after_atomic();
    157
    158	/* Create a non-coherent mapping of the core ready_count */
    159	core_ready_count = per_cpu(ready_count, core);
    160	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
    161				   (unsigned long)core_ready_count);
    162	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
    163	nc_core_ready_count = nc_addr;
    164
    165	/* Ensure ready_count is zero-initialised before the assembly runs */
    166	WRITE_ONCE(*nc_core_ready_count, 0);
    167	coupled_barrier(&per_cpu(pm_barrier, core), online);
    168
    169	/* Run the generated entry code */
    170	left = entry(online, nc_core_ready_count);
    171
    172	/* Remove the non-coherent mapping of ready_count */
    173	kunmap_noncoherent();
    174
    175	/* Indicate that this CPU is definitely coherent */
    176	cpumask_set_cpu(cpu, &cpu_coherent_mask);
    177
    178	/*
    179	 * If this VPE is the first to leave the non-coherent wait state then
    180	 * it needs to wake up any coupled VPEs still running their wait
    181	 * instruction so that they return to cpuidle, which can then complete
    182	 * coordination between the coupled VPEs & provide the governor with
    183	 * a chance to reflect on the length of time the VPEs were in the
    184	 * idle state.
    185	 */
    186	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
    187		arch_send_call_function_ipi_mask(coupled_mask);
    188
    189	return 0;
    190}
    191
    192static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
    193				  struct uasm_reloc **pr,
    194				  const struct cache_desc *cache,
    195				  unsigned op, int lbl)
    196{
    197	unsigned cache_size = cache->ways << cache->waybit;
    198	unsigned i;
    199	const unsigned unroll_lines = 32;
    200
    201	/* If the cache isn't present this function has it easy */
    202	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
    203		return;
    204
    205	/* Load base address */
    206	UASM_i_LA(pp, t0, (long)CKSEG0);
    207
    208	/* Calculate end address */
    209	if (cache_size < 0x8000)
    210		uasm_i_addiu(pp, t1, t0, cache_size);
    211	else
    212		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
    213
    214	/* Start of cache op loop */
    215	uasm_build_label(pl, *pp, lbl);
    216
    217	/* Generate the cache ops */
    218	for (i = 0; i < unroll_lines; i++) {
    219		if (cpu_has_mips_r6) {
    220			uasm_i_cache(pp, op, 0, t0);
    221			uasm_i_addiu(pp, t0, t0, cache->linesz);
    222		} else {
    223			uasm_i_cache(pp, op, i * cache->linesz, t0);
    224		}
    225	}
    226
    227	if (!cpu_has_mips_r6)
    228		/* Update the base address */
    229		uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
    230
    231	/* Loop if we haven't reached the end address yet */
    232	uasm_il_bne(pp, pr, t0, t1, lbl);
    233	uasm_i_nop(pp);
    234}
    235
    236static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
    237			     struct uasm_reloc **pr,
    238			     const struct cpuinfo_mips *cpu_info,
    239			     int lbl)
    240{
    241	unsigned i, fsb_size = 8;
    242	unsigned num_loads = (fsb_size * 3) / 2;
    243	unsigned line_stride = 2;
    244	unsigned line_size = cpu_info->dcache.linesz;
    245	unsigned perf_counter, perf_event;
    246	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
    247
    248	/*
    249	 * Determine whether this CPU requires an FSB flush, and if so which
    250	 * performance counter/event reflect stalls due to a full FSB.
    251	 */
    252	switch (__get_cpu_type(cpu_info->cputype)) {
    253	case CPU_INTERAPTIV:
    254		perf_counter = 1;
    255		perf_event = 51;
    256		break;
    257
    258	case CPU_PROAPTIV:
    259		/* Newer proAptiv cores don't require this workaround */
    260		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
    261			return 0;
    262
    263		/* On older ones it's unavailable */
    264		return -1;
    265
    266	default:
    267		/* Assume that the CPU does not need this workaround */
    268		return 0;
    269	}
    270
    271	/*
    272	 * Ensure that the fill/store buffer (FSB) is not holding the results
    273	 * of a prefetch, since if it is then the CPC sequencer may become
    274	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
    275	 */
    276
    277	/* Preserve perf counter setup */
    278	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
    279	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
    280
    281	/* Setup perf counter to count FSB full pipeline stalls */
    282	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
    283	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
    284	uasm_i_ehb(pp);
    285	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
    286	uasm_i_ehb(pp);
    287
    288	/* Base address for loads */
    289	UASM_i_LA(pp, t0, (long)CKSEG0);
    290
    291	/* Start of clear loop */
    292	uasm_build_label(pl, *pp, lbl);
    293
    294	/* Perform some loads to fill the FSB */
    295	for (i = 0; i < num_loads; i++)
    296		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
    297
    298	/*
    299	 * Invalidate the new D-cache entries so that the cache will need
    300	 * refilling (via the FSB) if the loop is executed again.
    301	 */
    302	for (i = 0; i < num_loads; i++) {
    303		uasm_i_cache(pp, Hit_Invalidate_D,
    304			     i * line_size * line_stride, t0);
    305		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
    306			     i * line_size * line_stride, t0);
    307	}
    308
    309	/* Barrier ensuring previous cache invalidates are complete */
    310	uasm_i_sync(pp, __SYNC_full);
    311	uasm_i_ehb(pp);
    312
    313	/* Check whether the pipeline stalled due to the FSB being full */
    314	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
    315
    316	/* Loop if it didn't */
    317	uasm_il_beqz(pp, pr, t1, lbl);
    318	uasm_i_nop(pp);
    319
    320	/* Restore perf counter 1. The count may well now be wrong... */
    321	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
    322	uasm_i_ehb(pp);
    323	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
    324	uasm_i_ehb(pp);
    325
    326	return 0;
    327}
    328
    329static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
    330				struct uasm_reloc **pr,
    331				unsigned r_addr, int lbl)
    332{
    333	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
    334	uasm_build_label(pl, *pp, lbl);
    335	uasm_i_ll(pp, t1, 0, r_addr);
    336	uasm_i_or(pp, t1, t1, t0);
    337	uasm_i_sc(pp, t1, 0, r_addr);
    338	uasm_il_beqz(pp, pr, t1, lbl);
    339	uasm_i_nop(pp);
    340}
    341
    342static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
    343{
    344	struct uasm_label *l = labels;
    345	struct uasm_reloc *r = relocs;
    346	u32 *buf, *p;
    347	const unsigned r_online = a0;
    348	const unsigned r_nc_count = a1;
    349	const unsigned r_pcohctl = t7;
    350	const unsigned max_instrs = 256;
    351	unsigned cpc_cmd;
    352	int err;
    353	enum {
    354		lbl_incready = 1,
    355		lbl_poll_cont,
    356		lbl_secondary_hang,
    357		lbl_disable_coherence,
    358		lbl_flush_fsb,
    359		lbl_invicache,
    360		lbl_flushdcache,
    361		lbl_hang,
    362		lbl_set_cont,
    363		lbl_secondary_cont,
    364		lbl_decready,
    365	};
    366
    367	/* Allocate a buffer to hold the generated code */
    368	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
    369	if (!buf)
    370		return NULL;
    371
    372	/* Clear labels & relocs ready for (re)use */
    373	memset(labels, 0, sizeof(labels));
    374	memset(relocs, 0, sizeof(relocs));
    375
    376	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
    377		/* Power gating relies upon CPS SMP */
    378		if (!mips_cps_smp_in_use())
    379			goto out_err;
    380
    381		/*
    382		 * Save CPU state. Note the non-standard calling convention
    383		 * with the return address placed in v0 to avoid clobbering
    384		 * the ra register before it is saved.
    385		 */
    386		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
    387		uasm_i_jalr(&p, v0, t0);
    388		uasm_i_nop(&p);
    389	}
    390
    391	/*
    392	 * Load addresses of required CM & CPC registers. This is done early
    393	 * because they're needed in both the enable & disable coherence steps
    394	 * but in the coupled case the enable step will only run on one VPE.
    395	 */
    396	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
    397
    398	if (coupled_coherence) {
    399		/* Increment ready_count */
    400		uasm_i_sync(&p, __SYNC_mb);
    401		uasm_build_label(&l, p, lbl_incready);
    402		uasm_i_ll(&p, t1, 0, r_nc_count);
    403		uasm_i_addiu(&p, t2, t1, 1);
    404		uasm_i_sc(&p, t2, 0, r_nc_count);
    405		uasm_il_beqz(&p, &r, t2, lbl_incready);
    406		uasm_i_addiu(&p, t1, t1, 1);
    407
    408		/* Barrier ensuring all CPUs see the updated r_nc_count value */
    409		uasm_i_sync(&p, __SYNC_mb);
    410
    411		/*
    412		 * If this is the last VPE to become ready for non-coherence
    413		 * then it should branch below.
    414		 */
    415		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
    416		uasm_i_nop(&p);
    417
    418		if (state < CPS_PM_POWER_GATED) {
    419			/*
    420			 * Otherwise this is not the last VPE to become ready
    421			 * for non-coherence. It needs to wait until coherence
    422			 * has been disabled before proceeding, which it will do
    423			 * by polling for the top bit of ready_count being set.
    424			 */
    425			uasm_i_addiu(&p, t1, zero, -1);
    426			uasm_build_label(&l, p, lbl_poll_cont);
    427			uasm_i_lw(&p, t0, 0, r_nc_count);
    428			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
    429			uasm_i_ehb(&p);
    430			if (cpu_has_mipsmt)
    431				uasm_i_yield(&p, zero, t1);
    432			uasm_il_b(&p, &r, lbl_poll_cont);
    433			uasm_i_nop(&p);
    434		} else {
    435			/*
    436			 * The core will lose power & this VPE will not continue
    437			 * so it can simply halt here.
    438			 */
    439			if (cpu_has_mipsmt) {
    440				/* Halt the VPE via C0 tchalt register */
    441				uasm_i_addiu(&p, t0, zero, TCHALT_H);
    442				uasm_i_mtc0(&p, t0, 2, 4);
    443			} else if (cpu_has_vp) {
    444				/* Halt the VP via the CPC VP_STOP register */
    445				unsigned int vpe_id;
    446
    447				vpe_id = cpu_vpe_id(&cpu_data[cpu]);
    448				uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
    449				UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
    450				uasm_i_sw(&p, t0, 0, t1);
    451			} else {
    452				BUG();
    453			}
    454			uasm_build_label(&l, p, lbl_secondary_hang);
    455			uasm_il_b(&p, &r, lbl_secondary_hang);
    456			uasm_i_nop(&p);
    457		}
    458	}
    459
    460	/*
    461	 * This is the point of no return - this VPE will now proceed to
    462	 * disable coherence. At this point we *must* be sure that no other
    463	 * VPE within the core will interfere with the L1 dcache.
    464	 */
    465	uasm_build_label(&l, p, lbl_disable_coherence);
    466
    467	/* Invalidate the L1 icache */
    468	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
    469			      Index_Invalidate_I, lbl_invicache);
    470
    471	/* Writeback & invalidate the L1 dcache */
    472	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
    473			      Index_Writeback_Inv_D, lbl_flushdcache);
    474
    475	/* Barrier ensuring previous cache invalidates are complete */
    476	uasm_i_sync(&p, __SYNC_full);
    477	uasm_i_ehb(&p);
    478
    479	if (mips_cm_revision() < CM_REV_CM3) {
    480		/*
    481		* Disable all but self interventions. The load from COHCTL is
    482		* defined by the interAptiv & proAptiv SUMs as ensuring that the
    483		*  operation resulting from the preceding store is complete.
    484		*/
    485		uasm_i_addiu(&p, t0, zero, 1 << cpu_core(&cpu_data[cpu]));
    486		uasm_i_sw(&p, t0, 0, r_pcohctl);
    487		uasm_i_lw(&p, t0, 0, r_pcohctl);
    488
    489		/* Barrier to ensure write to coherence control is complete */
    490		uasm_i_sync(&p, __SYNC_full);
    491		uasm_i_ehb(&p);
    492	}
    493
    494	/* Disable coherence */
    495	uasm_i_sw(&p, zero, 0, r_pcohctl);
    496	uasm_i_lw(&p, t0, 0, r_pcohctl);
    497
    498	if (state >= CPS_PM_CLOCK_GATED) {
    499		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
    500					lbl_flush_fsb);
    501		if (err)
    502			goto out_err;
    503
    504		/* Determine the CPC command to issue */
    505		switch (state) {
    506		case CPS_PM_CLOCK_GATED:
    507			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
    508			break;
    509		case CPS_PM_POWER_GATED:
    510			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
    511			break;
    512		default:
    513			BUG();
    514			goto out_err;
    515		}
    516
    517		/* Issue the CPC command */
    518		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
    519		uasm_i_addiu(&p, t1, zero, cpc_cmd);
    520		uasm_i_sw(&p, t1, 0, t0);
    521
    522		if (state == CPS_PM_POWER_GATED) {
    523			/* If anything goes wrong just hang */
    524			uasm_build_label(&l, p, lbl_hang);
    525			uasm_il_b(&p, &r, lbl_hang);
    526			uasm_i_nop(&p);
    527
    528			/*
    529			 * There's no point generating more code, the core is
    530			 * powered down & if powered back up will run from the
    531			 * reset vector not from here.
    532			 */
    533			goto gen_done;
    534		}
    535
    536		/* Barrier to ensure write to CPC command is complete */
    537		uasm_i_sync(&p, __SYNC_full);
    538		uasm_i_ehb(&p);
    539	}
    540
    541	if (state == CPS_PM_NC_WAIT) {
    542		/*
    543		 * At this point it is safe for all VPEs to proceed with
    544		 * execution. This VPE will set the top bit of ready_count
    545		 * to indicate to the other VPEs that they may continue.
    546		 */
    547		if (coupled_coherence)
    548			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
    549					    lbl_set_cont);
    550
    551		/*
    552		 * VPEs which did not disable coherence will continue
    553		 * executing, after coherence has been disabled, from this
    554		 * point.
    555		 */
    556		uasm_build_label(&l, p, lbl_secondary_cont);
    557
    558		/* Now perform our wait */
    559		uasm_i_wait(&p, 0);
    560	}
    561
    562	/*
    563	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
    564	 * will run this. The first will actually re-enable coherence & the
    565	 * rest will just be performing a rather unusual nop.
    566	 */
    567	uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
    568				? CM_GCR_Cx_COHERENCE_COHDOMAINEN
    569				: CM3_GCR_Cx_COHERENCE_COHEN);
    570
    571	uasm_i_sw(&p, t0, 0, r_pcohctl);
    572	uasm_i_lw(&p, t0, 0, r_pcohctl);
    573
    574	/* Barrier to ensure write to coherence control is complete */
    575	uasm_i_sync(&p, __SYNC_full);
    576	uasm_i_ehb(&p);
    577
    578	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
    579		/* Decrement ready_count */
    580		uasm_build_label(&l, p, lbl_decready);
    581		uasm_i_sync(&p, __SYNC_mb);
    582		uasm_i_ll(&p, t1, 0, r_nc_count);
    583		uasm_i_addiu(&p, t2, t1, -1);
    584		uasm_i_sc(&p, t2, 0, r_nc_count);
    585		uasm_il_beqz(&p, &r, t2, lbl_decready);
    586		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
    587
    588		/* Barrier ensuring all CPUs see the updated r_nc_count value */
    589		uasm_i_sync(&p, __SYNC_mb);
    590	}
    591
    592	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
    593		/*
    594		 * At this point it is safe for all VPEs to proceed with
    595		 * execution. This VPE will set the top bit of ready_count
    596		 * to indicate to the other VPEs that they may continue.
    597		 */
    598		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
    599
    600		/*
    601		 * This core will be reliant upon another core sending a
    602		 * power-up command to the CPC in order to resume operation.
    603		 * Thus an arbitrary VPE can't trigger the core leaving the
    604		 * idle state and the one that disables coherence might as well
    605		 * be the one to re-enable it. The rest will continue from here
    606		 * after that has been done.
    607		 */
    608		uasm_build_label(&l, p, lbl_secondary_cont);
    609
    610		/* Barrier ensuring all CPUs see the updated r_nc_count value */
    611		uasm_i_sync(&p, __SYNC_mb);
    612	}
    613
    614	/* The core is coherent, time to return to C code */
    615	uasm_i_jr(&p, ra);
    616	uasm_i_nop(&p);
    617
    618gen_done:
    619	/* Ensure the code didn't exceed the resources allocated for it */
    620	BUG_ON((p - buf) > max_instrs);
    621	BUG_ON((l - labels) > ARRAY_SIZE(labels));
    622	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
    623
    624	/* Patch branch offsets */
    625	uasm_resolve_relocs(relocs, labels);
    626
    627	/* Flush the icache */
    628	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
    629
    630	return buf;
    631out_err:
    632	kfree(buf);
    633	return NULL;
    634}
    635
    636static int cps_pm_online_cpu(unsigned int cpu)
    637{
    638	enum cps_pm_state state;
    639	unsigned core = cpu_core(&cpu_data[cpu]);
    640	void *entry_fn, *core_rc;
    641
    642	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
    643		if (per_cpu(nc_asm_enter, core)[state])
    644			continue;
    645		if (!test_bit(state, state_support))
    646			continue;
    647
    648		entry_fn = cps_gen_entry_code(cpu, state);
    649		if (!entry_fn) {
    650			pr_err("Failed to generate core %u state %u entry\n",
    651			       core, state);
    652			clear_bit(state, state_support);
    653		}
    654
    655		per_cpu(nc_asm_enter, core)[state] = entry_fn;
    656	}
    657
    658	if (!per_cpu(ready_count, core)) {
    659		core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
    660		if (!core_rc) {
    661			pr_err("Failed allocate core %u ready_count\n", core);
    662			return -ENOMEM;
    663		}
    664		per_cpu(ready_count, core) = core_rc;
    665	}
    666
    667	return 0;
    668}
    669
    670static int cps_pm_power_notifier(struct notifier_block *this,
    671				 unsigned long event, void *ptr)
    672{
    673	unsigned int stat;
    674
    675	switch (event) {
    676	case PM_SUSPEND_PREPARE:
    677		stat = read_cpc_cl_stat_conf();
    678		/*
    679		 * If we're attempting to suspend the system and power down all
    680		 * of the cores, the JTAG detect bit indicates that the CPC will
    681		 * instead put the cores into clock-off state. In this state
    682		 * a connected debugger can cause the CPU to attempt
    683		 * interactions with the powered down system. At best this will
    684		 * fail. At worst, it can hang the NoC, requiring a hard reset.
    685		 * To avoid this, just block system suspend if a JTAG probe
    686		 * is detected.
    687		 */
    688		if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) {
    689			pr_warn("JTAG probe is connected - abort suspend\n");
    690			return NOTIFY_BAD;
    691		}
    692		return NOTIFY_DONE;
    693	default:
    694		return NOTIFY_DONE;
    695	}
    696}
    697
    698static int __init cps_pm_init(void)
    699{
    700	/* A CM is required for all non-coherent states */
    701	if (!mips_cm_present()) {
    702		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
    703		return 0;
    704	}
    705
    706	/*
    707	 * If interrupts were enabled whilst running a wait instruction on a
    708	 * non-coherent core then the VPE may end up processing interrupts
    709	 * whilst non-coherent. That would be bad.
    710	 */
    711	if (cpu_wait == r4k_wait_irqoff)
    712		set_bit(CPS_PM_NC_WAIT, state_support);
    713	else
    714		pr_warn("pm-cps: non-coherent wait unavailable\n");
    715
    716	/* Detect whether a CPC is present */
    717	if (mips_cpc_present()) {
    718		/* Detect whether clock gating is implemented */
    719		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL)
    720			set_bit(CPS_PM_CLOCK_GATED, state_support);
    721		else
    722			pr_warn("pm-cps: CPC does not support clock gating\n");
    723
    724		/* Power gating is available with CPS SMP & any CPC */
    725		if (mips_cps_smp_in_use())
    726			set_bit(CPS_PM_POWER_GATED, state_support);
    727		else
    728			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
    729	} else {
    730		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
    731	}
    732
    733	pm_notifier(cps_pm_power_notifier, 0);
    734
    735	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
    736				 cps_pm_online_cpu, NULL);
    737}
    738arch_initcall(cps_pm_init);