process.c (22850B)
1/* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others. 7 * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org) 8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 9 * Copyright (C) 2004 Thiemo Seufer 10 * Copyright (C) 2013 Imagination Technologies Ltd. 11 */ 12#include <linux/cpu.h> 13#include <linux/errno.h> 14#include <linux/init.h> 15#include <linux/kallsyms.h> 16#include <linux/kernel.h> 17#include <linux/nmi.h> 18#include <linux/personality.h> 19#include <linux/prctl.h> 20#include <linux/random.h> 21#include <linux/sched.h> 22#include <linux/sched/debug.h> 23#include <linux/sched/task_stack.h> 24 25#include <asm/abi.h> 26#include <asm/asm.h> 27#include <asm/dsemul.h> 28#include <asm/dsp.h> 29#include <asm/exec.h> 30#include <asm/fpu.h> 31#include <asm/inst.h> 32#include <asm/irq.h> 33#include <asm/irq_regs.h> 34#include <asm/isadep.h> 35#include <asm/msa.h> 36#include <asm/mips-cps.h> 37#include <asm/mipsregs.h> 38#include <asm/processor.h> 39#include <asm/reg.h> 40#include <asm/stacktrace.h> 41 42#ifdef CONFIG_HOTPLUG_CPU 43void arch_cpu_idle_dead(void) 44{ 45 play_dead(); 46} 47#endif 48 49asmlinkage void ret_from_fork(void); 50asmlinkage void ret_from_kernel_thread(void); 51 52void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp) 53{ 54 unsigned long status; 55 56 /* New thread loses kernel privileges. */ 57 status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_CU2|ST0_FR|KU_MASK); 58 status |= KU_USER; 59 regs->cp0_status = status; 60 lose_fpu(0); 61 clear_thread_flag(TIF_MSA_CTX_LIVE); 62 clear_used_math(); 63#ifdef CONFIG_MIPS_FP_SUPPORT 64 atomic_set(¤t->thread.bd_emu_frame, BD_EMUFRAME_NONE); 65#endif 66 init_dsp(); 67 regs->cp0_epc = pc; 68 regs->regs[29] = sp; 69} 70 71void exit_thread(struct task_struct *tsk) 72{ 73 /* 74 * User threads may have allocated a delay slot emulation frame. 75 * If so, clean up that allocation. 76 */ 77 if (!(current->flags & PF_KTHREAD)) 78 dsemul_thread_cleanup(tsk); 79} 80 81int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 82{ 83 /* 84 * Save any process state which is live in hardware registers to the 85 * parent context prior to duplication. This prevents the new child 86 * state becoming stale if the parent is preempted before copy_thread() 87 * gets a chance to save the parent's live hardware registers to the 88 * child context. 89 */ 90 preempt_disable(); 91 92 if (is_msa_enabled()) 93 save_msa(current); 94 else if (is_fpu_owner()) 95 _save_fp(current); 96 97 save_dsp(current); 98 99 preempt_enable(); 100 101 *dst = *src; 102 return 0; 103} 104 105/* 106 * Copy architecture-specific thread state 107 */ 108int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 109{ 110 unsigned long clone_flags = args->flags; 111 unsigned long usp = args->stack; 112 unsigned long tls = args->tls; 113 struct thread_info *ti = task_thread_info(p); 114 struct pt_regs *childregs, *regs = current_pt_regs(); 115 unsigned long childksp; 116 117 childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32; 118 119 /* set up new TSS. */ 120 childregs = (struct pt_regs *) childksp - 1; 121 /* Put the stack after the struct pt_regs. */ 122 childksp = (unsigned long) childregs; 123 p->thread.cp0_status = (read_c0_status() & ~(ST0_CU2|ST0_CU1)) | ST0_KERNEL_CUMASK; 124 if (unlikely(args->fn)) { 125 /* kernel thread */ 126 unsigned long status = p->thread.cp0_status; 127 memset(childregs, 0, sizeof(struct pt_regs)); 128 p->thread.reg16 = (unsigned long)args->fn; 129 p->thread.reg17 = (unsigned long)args->fn_arg; 130 p->thread.reg29 = childksp; 131 p->thread.reg31 = (unsigned long) ret_from_kernel_thread; 132#if defined(CONFIG_CPU_R3000) 133 status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) | 134 ((status & (ST0_KUC | ST0_IEC)) << 2); 135#else 136 status |= ST0_EXL; 137#endif 138 childregs->cp0_status = status; 139 return 0; 140 } 141 142 /* user thread */ 143 *childregs = *regs; 144 childregs->regs[7] = 0; /* Clear error flag */ 145 childregs->regs[2] = 0; /* Child gets zero as return value */ 146 if (usp) 147 childregs->regs[29] = usp; 148 149 p->thread.reg29 = (unsigned long) childregs; 150 p->thread.reg31 = (unsigned long) ret_from_fork; 151 152 /* 153 * New tasks lose permission to use the fpu. This accelerates context 154 * switching for most programs since they don't use the fpu. 155 */ 156 childregs->cp0_status &= ~(ST0_CU2|ST0_CU1); 157 158 clear_tsk_thread_flag(p, TIF_USEDFPU); 159 clear_tsk_thread_flag(p, TIF_USEDMSA); 160 clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE); 161 162#ifdef CONFIG_MIPS_MT_FPAFF 163 clear_tsk_thread_flag(p, TIF_FPUBOUND); 164#endif /* CONFIG_MIPS_MT_FPAFF */ 165 166#ifdef CONFIG_MIPS_FP_SUPPORT 167 atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE); 168#endif 169 170 if (clone_flags & CLONE_SETTLS) 171 ti->tp_value = tls; 172 173 return 0; 174} 175 176#ifdef CONFIG_STACKPROTECTOR 177#include <linux/stackprotector.h> 178unsigned long __stack_chk_guard __read_mostly; 179EXPORT_SYMBOL(__stack_chk_guard); 180#endif 181 182struct mips_frame_info { 183 void *func; 184 unsigned long func_size; 185 int frame_size; 186 int pc_offset; 187}; 188 189#define J_TARGET(pc,target) \ 190 (((unsigned long)(pc) & 0xf0000000) | ((target) << 2)) 191 192static inline int is_jr_ra_ins(union mips_instruction *ip) 193{ 194#ifdef CONFIG_CPU_MICROMIPS 195 /* 196 * jr16 ra 197 * jr ra 198 */ 199 if (mm_insn_16bit(ip->word >> 16)) { 200 if (ip->mm16_r5_format.opcode == mm_pool16c_op && 201 ip->mm16_r5_format.rt == mm_jr16_op && 202 ip->mm16_r5_format.imm == 31) 203 return 1; 204 return 0; 205 } 206 207 if (ip->r_format.opcode == mm_pool32a_op && 208 ip->r_format.func == mm_pool32axf_op && 209 ((ip->u_format.uimmediate >> 6) & GENMASK(9, 0)) == mm_jalr_op && 210 ip->r_format.rt == 31) 211 return 1; 212 return 0; 213#else 214 if (ip->r_format.opcode == spec_op && 215 ip->r_format.func == jr_op && 216 ip->r_format.rs == 31) 217 return 1; 218 return 0; 219#endif 220} 221 222static inline int is_ra_save_ins(union mips_instruction *ip, int *poff) 223{ 224#ifdef CONFIG_CPU_MICROMIPS 225 /* 226 * swsp ra,offset 227 * swm16 reglist,offset(sp) 228 * swm32 reglist,offset(sp) 229 * sw32 ra,offset(sp) 230 * jradiussp - NOT SUPPORTED 231 * 232 * microMIPS is way more fun... 233 */ 234 if (mm_insn_16bit(ip->word >> 16)) { 235 switch (ip->mm16_r5_format.opcode) { 236 case mm_swsp16_op: 237 if (ip->mm16_r5_format.rt != 31) 238 return 0; 239 240 *poff = ip->mm16_r5_format.imm; 241 *poff = (*poff << 2) / sizeof(ulong); 242 return 1; 243 244 case mm_pool16c_op: 245 switch (ip->mm16_m_format.func) { 246 case mm_swm16_op: 247 *poff = ip->mm16_m_format.imm; 248 *poff += 1 + ip->mm16_m_format.rlist; 249 *poff = (*poff << 2) / sizeof(ulong); 250 return 1; 251 252 default: 253 return 0; 254 } 255 256 default: 257 return 0; 258 } 259 } 260 261 switch (ip->i_format.opcode) { 262 case mm_sw32_op: 263 if (ip->i_format.rs != 29) 264 return 0; 265 if (ip->i_format.rt != 31) 266 return 0; 267 268 *poff = ip->i_format.simmediate / sizeof(ulong); 269 return 1; 270 271 case mm_pool32b_op: 272 switch (ip->mm_m_format.func) { 273 case mm_swm32_func: 274 if (ip->mm_m_format.rd < 0x10) 275 return 0; 276 if (ip->mm_m_format.base != 29) 277 return 0; 278 279 *poff = ip->mm_m_format.simmediate; 280 *poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32); 281 *poff /= sizeof(ulong); 282 return 1; 283 default: 284 return 0; 285 } 286 287 default: 288 return 0; 289 } 290#else 291 /* sw / sd $ra, offset($sp) */ 292 if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) && 293 ip->i_format.rs == 29 && ip->i_format.rt == 31) { 294 *poff = ip->i_format.simmediate / sizeof(ulong); 295 return 1; 296 } 297#ifdef CONFIG_CPU_LOONGSON64 298 if ((ip->loongson3_lswc2_format.opcode == swc2_op) && 299 (ip->loongson3_lswc2_format.ls == 1) && 300 (ip->loongson3_lswc2_format.fr == 0) && 301 (ip->loongson3_lswc2_format.base == 29)) { 302 if (ip->loongson3_lswc2_format.rt == 31) { 303 *poff = ip->loongson3_lswc2_format.offset << 1; 304 return 1; 305 } 306 if (ip->loongson3_lswc2_format.rq == 31) { 307 *poff = (ip->loongson3_lswc2_format.offset << 1) + 1; 308 return 1; 309 } 310 } 311#endif 312 return 0; 313#endif 314} 315 316static inline int is_jump_ins(union mips_instruction *ip) 317{ 318#ifdef CONFIG_CPU_MICROMIPS 319 /* 320 * jr16,jrc,jalr16,jalr16 321 * jal 322 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb 323 * jraddiusp - NOT SUPPORTED 324 * 325 * microMIPS is kind of more fun... 326 */ 327 if (mm_insn_16bit(ip->word >> 16)) { 328 if ((ip->mm16_r5_format.opcode == mm_pool16c_op && 329 (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op)) 330 return 1; 331 return 0; 332 } 333 334 if (ip->j_format.opcode == mm_j32_op) 335 return 1; 336 if (ip->j_format.opcode == mm_jal32_op) 337 return 1; 338 if (ip->r_format.opcode != mm_pool32a_op || 339 ip->r_format.func != mm_pool32axf_op) 340 return 0; 341 return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op; 342#else 343 if (ip->j_format.opcode == j_op) 344 return 1; 345 if (ip->j_format.opcode == jal_op) 346 return 1; 347 if (ip->r_format.opcode != spec_op) 348 return 0; 349 return ip->r_format.func == jalr_op || ip->r_format.func == jr_op; 350#endif 351} 352 353static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size) 354{ 355#ifdef CONFIG_CPU_MICROMIPS 356 unsigned short tmp; 357 358 /* 359 * addiusp -imm 360 * addius5 sp,-imm 361 * addiu32 sp,sp,-imm 362 * jradiussp - NOT SUPPORTED 363 * 364 * microMIPS is not more fun... 365 */ 366 if (mm_insn_16bit(ip->word >> 16)) { 367 if (ip->mm16_r3_format.opcode == mm_pool16d_op && 368 ip->mm16_r3_format.simmediate & mm_addiusp_func) { 369 tmp = ip->mm_b0_format.simmediate >> 1; 370 tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100; 371 if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */ 372 tmp ^= 0x100; 373 *frame_size = -(signed short)(tmp << 2); 374 return 1; 375 } 376 if (ip->mm16_r5_format.opcode == mm_pool16d_op && 377 ip->mm16_r5_format.rt == 29) { 378 tmp = ip->mm16_r5_format.imm >> 1; 379 *frame_size = -(signed short)(tmp & 0xf); 380 return 1; 381 } 382 return 0; 383 } 384 385 if (ip->mm_i_format.opcode == mm_addiu32_op && 386 ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) { 387 *frame_size = -ip->i_format.simmediate; 388 return 1; 389 } 390#else 391 /* addiu/daddiu sp,sp,-imm */ 392 if (ip->i_format.rs != 29 || ip->i_format.rt != 29) 393 return 0; 394 395 if (ip->i_format.opcode == addiu_op || 396 ip->i_format.opcode == daddiu_op) { 397 *frame_size = -ip->i_format.simmediate; 398 return 1; 399 } 400#endif 401 return 0; 402} 403 404static int get_frame_info(struct mips_frame_info *info) 405{ 406 bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS); 407 union mips_instruction insn, *ip, *ip_end; 408 unsigned int last_insn_size = 0; 409 bool saw_jump = false; 410 411 info->pc_offset = -1; 412 info->frame_size = 0; 413 414 ip = (void *)msk_isa16_mode((ulong)info->func); 415 if (!ip) 416 goto err; 417 418 ip_end = (void *)ip + (info->func_size ? info->func_size : 512); 419 420 while (ip < ip_end) { 421 ip = (void *)ip + last_insn_size; 422 423 if (is_mmips && mm_insn_16bit(ip->halfword[0])) { 424 insn.word = ip->halfword[0] << 16; 425 last_insn_size = 2; 426 } else if (is_mmips) { 427 insn.word = ip->halfword[0] << 16 | ip->halfword[1]; 428 last_insn_size = 4; 429 } else { 430 insn.word = ip->word; 431 last_insn_size = 4; 432 } 433 434 if (is_jr_ra_ins(ip)) { 435 break; 436 } else if (!info->frame_size) { 437 is_sp_move_ins(&insn, &info->frame_size); 438 continue; 439 } else if (!saw_jump && is_jump_ins(ip)) { 440 /* 441 * If we see a jump instruction, we are finished 442 * with the frame save. 443 * 444 * Some functions can have a shortcut return at 445 * the beginning of the function, so don't start 446 * looking for jump instruction until we see the 447 * frame setup. 448 * 449 * The RA save instruction can get put into the 450 * delay slot of the jump instruction, so look 451 * at the next instruction, too. 452 */ 453 saw_jump = true; 454 continue; 455 } 456 if (info->pc_offset == -1 && 457 is_ra_save_ins(&insn, &info->pc_offset)) 458 break; 459 if (saw_jump) 460 break; 461 } 462 if (info->frame_size && info->pc_offset >= 0) /* nested */ 463 return 0; 464 if (info->pc_offset < 0) /* leaf */ 465 return 1; 466 /* prologue seems bogus... */ 467err: 468 return -1; 469} 470 471static struct mips_frame_info schedule_mfi __read_mostly; 472 473#ifdef CONFIG_KALLSYMS 474static unsigned long get___schedule_addr(void) 475{ 476 return kallsyms_lookup_name("__schedule"); 477} 478#else 479static unsigned long get___schedule_addr(void) 480{ 481 union mips_instruction *ip = (void *)schedule; 482 int max_insns = 8; 483 int i; 484 485 for (i = 0; i < max_insns; i++, ip++) { 486 if (ip->j_format.opcode == j_op) 487 return J_TARGET(ip, ip->j_format.target); 488 } 489 return 0; 490} 491#endif 492 493static int __init frame_info_init(void) 494{ 495 unsigned long size = 0; 496#ifdef CONFIG_KALLSYMS 497 unsigned long ofs; 498#endif 499 unsigned long addr; 500 501 addr = get___schedule_addr(); 502 if (!addr) 503 addr = (unsigned long)schedule; 504 505#ifdef CONFIG_KALLSYMS 506 kallsyms_lookup_size_offset(addr, &size, &ofs); 507#endif 508 schedule_mfi.func = (void *)addr; 509 schedule_mfi.func_size = size; 510 511 get_frame_info(&schedule_mfi); 512 513 /* 514 * Without schedule() frame info, result given by 515 * thread_saved_pc() and __get_wchan() are not reliable. 516 */ 517 if (schedule_mfi.pc_offset < 0) 518 printk("Can't analyze schedule() prologue at %p\n", schedule); 519 520 return 0; 521} 522 523arch_initcall(frame_info_init); 524 525/* 526 * Return saved PC of a blocked thread. 527 */ 528static unsigned long thread_saved_pc(struct task_struct *tsk) 529{ 530 struct thread_struct *t = &tsk->thread; 531 532 /* New born processes are a special case */ 533 if (t->reg31 == (unsigned long) ret_from_fork) 534 return t->reg31; 535 if (schedule_mfi.pc_offset < 0) 536 return 0; 537 return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset]; 538} 539 540 541#ifdef CONFIG_KALLSYMS 542/* generic stack unwinding function */ 543unsigned long notrace unwind_stack_by_address(unsigned long stack_page, 544 unsigned long *sp, 545 unsigned long pc, 546 unsigned long *ra) 547{ 548 unsigned long low, high, irq_stack_high; 549 struct mips_frame_info info; 550 unsigned long size, ofs; 551 struct pt_regs *regs; 552 int leaf; 553 554 if (!stack_page) 555 return 0; 556 557 /* 558 * IRQ stacks start at IRQ_STACK_START 559 * task stacks at THREAD_SIZE - 32 560 */ 561 low = stack_page; 562 if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) { 563 high = stack_page + IRQ_STACK_START; 564 irq_stack_high = high; 565 } else { 566 high = stack_page + THREAD_SIZE - 32; 567 irq_stack_high = 0; 568 } 569 570 /* 571 * If we reached the top of the interrupt stack, start unwinding 572 * the interrupted task stack. 573 */ 574 if (unlikely(*sp == irq_stack_high)) { 575 unsigned long task_sp = *(unsigned long *)*sp; 576 577 /* 578 * Check that the pointer saved in the IRQ stack head points to 579 * something within the stack of the current task 580 */ 581 if (!object_is_on_stack((void *)task_sp)) 582 return 0; 583 584 /* 585 * Follow pointer to tasks kernel stack frame where interrupted 586 * state was saved. 587 */ 588 regs = (struct pt_regs *)task_sp; 589 pc = regs->cp0_epc; 590 if (!user_mode(regs) && __kernel_text_address(pc)) { 591 *sp = regs->regs[29]; 592 *ra = regs->regs[31]; 593 return pc; 594 } 595 return 0; 596 } 597 if (!kallsyms_lookup_size_offset(pc, &size, &ofs)) 598 return 0; 599 /* 600 * Return ra if an exception occurred at the first instruction 601 */ 602 if (unlikely(ofs == 0)) { 603 pc = *ra; 604 *ra = 0; 605 return pc; 606 } 607 608 info.func = (void *)(pc - ofs); 609 info.func_size = ofs; /* analyze from start to ofs */ 610 leaf = get_frame_info(&info); 611 if (leaf < 0) 612 return 0; 613 614 if (*sp < low || *sp + info.frame_size > high) 615 return 0; 616 617 if (leaf) 618 /* 619 * For some extreme cases, get_frame_info() can 620 * consider wrongly a nested function as a leaf 621 * one. In that cases avoid to return always the 622 * same value. 623 */ 624 pc = pc != *ra ? *ra : 0; 625 else 626 pc = ((unsigned long *)(*sp))[info.pc_offset]; 627 628 *sp += info.frame_size; 629 *ra = 0; 630 return __kernel_text_address(pc) ? pc : 0; 631} 632EXPORT_SYMBOL(unwind_stack_by_address); 633 634/* used by show_backtrace() */ 635unsigned long unwind_stack(struct task_struct *task, unsigned long *sp, 636 unsigned long pc, unsigned long *ra) 637{ 638 unsigned long stack_page = 0; 639 int cpu; 640 641 for_each_possible_cpu(cpu) { 642 if (on_irq_stack(cpu, *sp)) { 643 stack_page = (unsigned long)irq_stack[cpu]; 644 break; 645 } 646 } 647 648 if (!stack_page) 649 stack_page = (unsigned long)task_stack_page(task); 650 651 return unwind_stack_by_address(stack_page, sp, pc, ra); 652} 653#endif 654 655/* 656 * __get_wchan - a maintenance nightmare^W^Wpain in the ass ... 657 */ 658unsigned long __get_wchan(struct task_struct *task) 659{ 660 unsigned long pc = 0; 661#ifdef CONFIG_KALLSYMS 662 unsigned long sp; 663 unsigned long ra = 0; 664#endif 665 666 if (!task_stack_page(task)) 667 goto out; 668 669 pc = thread_saved_pc(task); 670 671#ifdef CONFIG_KALLSYMS 672 sp = task->thread.reg29 + schedule_mfi.frame_size; 673 674 while (in_sched_functions(pc)) 675 pc = unwind_stack(task, &sp, pc, &ra); 676#endif 677 678out: 679 return pc; 680} 681 682unsigned long mips_stack_top(void) 683{ 684 unsigned long top = TASK_SIZE & PAGE_MASK; 685 686 if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) { 687 /* One page for branch delay slot "emulation" */ 688 top -= PAGE_SIZE; 689 } 690 691 /* Space for the VDSO, data page & GIC user page */ 692 top -= PAGE_ALIGN(current->thread.abi->vdso->size); 693 top -= PAGE_SIZE; 694 top -= mips_gic_present() ? PAGE_SIZE : 0; 695 696 /* Space for cache colour alignment */ 697 if (cpu_has_dc_aliases) 698 top -= shm_align_mask + 1; 699 700 /* Space to randomize the VDSO base */ 701 if (current->flags & PF_RANDOMIZE) 702 top -= VDSO_RANDOMIZE_SIZE; 703 704 return top; 705} 706 707/* 708 * Don't forget that the stack pointer must be aligned on a 8 bytes 709 * boundary for 32-bits ABI and 16 bytes for 64-bits ABI. 710 */ 711unsigned long arch_align_stack(unsigned long sp) 712{ 713 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 714 sp -= get_random_int() & ~PAGE_MASK; 715 716 return sp & ALMASK; 717} 718 719static struct cpumask backtrace_csd_busy; 720 721static void handle_backtrace(void *info) 722{ 723 nmi_cpu_backtrace(get_irq_regs()); 724 cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy); 725} 726 727static DEFINE_PER_CPU(call_single_data_t, backtrace_csd) = 728 CSD_INIT(handle_backtrace, NULL); 729 730static void raise_backtrace(cpumask_t *mask) 731{ 732 call_single_data_t *csd; 733 int cpu; 734 735 for_each_cpu(cpu, mask) { 736 /* 737 * If we previously sent an IPI to the target CPU & it hasn't 738 * cleared its bit in the busy cpumask then it didn't handle 739 * our previous IPI & it's not safe for us to reuse the 740 * call_single_data_t. 741 */ 742 if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) { 743 pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n", 744 cpu); 745 continue; 746 } 747 748 csd = &per_cpu(backtrace_csd, cpu); 749 smp_call_function_single_async(cpu, csd); 750 } 751} 752 753void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 754{ 755 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace); 756} 757 758int mips_get_process_fp_mode(struct task_struct *task) 759{ 760 int value = 0; 761 762 if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS)) 763 value |= PR_FP_MODE_FR; 764 if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS)) 765 value |= PR_FP_MODE_FRE; 766 767 return value; 768} 769 770static long prepare_for_fp_mode_switch(void *unused) 771{ 772 /* 773 * This is icky, but we use this to simply ensure that all CPUs have 774 * context switched, regardless of whether they were previously running 775 * kernel or user code. This ensures that no CPU that a mode-switching 776 * program may execute on keeps its FPU enabled (& in the old mode) 777 * throughout the mode switch. 778 */ 779 return 0; 780} 781 782int mips_set_process_fp_mode(struct task_struct *task, unsigned int value) 783{ 784 const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE; 785 struct task_struct *t; 786 struct cpumask process_cpus; 787 int cpu; 788 789 /* If nothing to change, return right away, successfully. */ 790 if (value == mips_get_process_fp_mode(task)) 791 return 0; 792 793 /* Only accept a mode change if 64-bit FP enabled for o32. */ 794 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) 795 return -EOPNOTSUPP; 796 797 /* And only for o32 tasks. */ 798 if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS)) 799 return -EOPNOTSUPP; 800 801 /* Check the value is valid */ 802 if (value & ~known_bits) 803 return -EOPNOTSUPP; 804 805 /* Setting FRE without FR is not supported. */ 806 if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE) 807 return -EOPNOTSUPP; 808 809 /* Avoid inadvertently triggering emulation */ 810 if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu && 811 !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64)) 812 return -EOPNOTSUPP; 813 if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre) 814 return -EOPNOTSUPP; 815 816 /* FR = 0 not supported in MIPS R6 */ 817 if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6) 818 return -EOPNOTSUPP; 819 820 /* Indicate the new FP mode in each thread */ 821 for_each_thread(task, t) { 822 /* Update desired FP register width */ 823 if (value & PR_FP_MODE_FR) { 824 clear_tsk_thread_flag(t, TIF_32BIT_FPREGS); 825 } else { 826 set_tsk_thread_flag(t, TIF_32BIT_FPREGS); 827 clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE); 828 } 829 830 /* Update desired FP single layout */ 831 if (value & PR_FP_MODE_FRE) 832 set_tsk_thread_flag(t, TIF_HYBRID_FPREGS); 833 else 834 clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS); 835 } 836 837 /* 838 * We need to ensure that all threads in the process have switched mode 839 * before returning, in order to allow userland to not worry about 840 * races. We can do this by forcing all CPUs that any thread in the 841 * process may be running on to schedule something else - in this case 842 * prepare_for_fp_mode_switch(). 843 * 844 * We begin by generating a mask of all CPUs that any thread in the 845 * process may be running on. 846 */ 847 cpumask_clear(&process_cpus); 848 for_each_thread(task, t) 849 cpumask_set_cpu(task_cpu(t), &process_cpus); 850 851 /* 852 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs. 853 * 854 * The CPUs may have rescheduled already since we switched mode or 855 * generated the cpumask, but that doesn't matter. If the task in this 856 * process is scheduled out then our scheduling 857 * prepare_for_fp_mode_switch() will simply be redundant. If it's 858 * scheduled in then it will already have picked up the new FP mode 859 * whilst doing so. 860 */ 861 cpus_read_lock(); 862 for_each_cpu_and(cpu, &process_cpus, cpu_online_mask) 863 work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL); 864 cpus_read_unlock(); 865 866 return 0; 867} 868 869#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32) 870void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs) 871{ 872 unsigned int i; 873 874 for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) { 875 /* k0/k1 are copied as zero. */ 876 if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27) 877 uregs[i] = 0; 878 else 879 uregs[i] = regs->regs[i - MIPS32_EF_R0]; 880 } 881 882 uregs[MIPS32_EF_LO] = regs->lo; 883 uregs[MIPS32_EF_HI] = regs->hi; 884 uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc; 885 uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr; 886 uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status; 887 uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause; 888} 889#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */ 890 891#ifdef CONFIG_64BIT 892void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs) 893{ 894 unsigned int i; 895 896 for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) { 897 /* k0/k1 are copied as zero. */ 898 if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27) 899 uregs[i] = 0; 900 else 901 uregs[i] = regs->regs[i - MIPS64_EF_R0]; 902 } 903 904 uregs[MIPS64_EF_LO] = regs->lo; 905 uregs[MIPS64_EF_HI] = regs->hi; 906 uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc; 907 uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr; 908 uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status; 909 uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause; 910} 911#endif /* CONFIG_64BIT */