cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

traps.c (63868B)


      1/*
      2 * This file is subject to the terms and conditions of the GNU General Public
      3 * License.  See the file "COPYING" in the main directory of this archive
      4 * for more details.
      5 *
      6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
      7 * Copyright (C) 1995, 1996 Paul M. Antoine
      8 * Copyright (C) 1998 Ulf Carlsson
      9 * Copyright (C) 1999 Silicon Graphics, Inc.
     10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
     11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
     12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
     13 * Copyright (C) 2014, Imagination Technologies Ltd.
     14 */
     15#include <linux/bitops.h>
     16#include <linux/bug.h>
     17#include <linux/compiler.h>
     18#include <linux/context_tracking.h>
     19#include <linux/cpu_pm.h>
     20#include <linux/kexec.h>
     21#include <linux/init.h>
     22#include <linux/kernel.h>
     23#include <linux/module.h>
     24#include <linux/extable.h>
     25#include <linux/mm.h>
     26#include <linux/sched/mm.h>
     27#include <linux/sched/debug.h>
     28#include <linux/smp.h>
     29#include <linux/spinlock.h>
     30#include <linux/kallsyms.h>
     31#include <linux/memblock.h>
     32#include <linux/interrupt.h>
     33#include <linux/ptrace.h>
     34#include <linux/kgdb.h>
     35#include <linux/kdebug.h>
     36#include <linux/kprobes.h>
     37#include <linux/notifier.h>
     38#include <linux/kdb.h>
     39#include <linux/irq.h>
     40#include <linux/perf_event.h>
     41
     42#include <asm/addrspace.h>
     43#include <asm/bootinfo.h>
     44#include <asm/branch.h>
     45#include <asm/break.h>
     46#include <asm/cop2.h>
     47#include <asm/cpu.h>
     48#include <asm/cpu-type.h>
     49#include <asm/dsp.h>
     50#include <asm/fpu.h>
     51#include <asm/fpu_emulator.h>
     52#include <asm/idle.h>
     53#include <asm/isa-rev.h>
     54#include <asm/mips-cps.h>
     55#include <asm/mips-r2-to-r6-emul.h>
     56#include <asm/mipsregs.h>
     57#include <asm/mipsmtregs.h>
     58#include <asm/module.h>
     59#include <asm/msa.h>
     60#include <asm/ptrace.h>
     61#include <asm/sections.h>
     62#include <asm/siginfo.h>
     63#include <asm/tlbdebug.h>
     64#include <asm/traps.h>
     65#include <linux/uaccess.h>
     66#include <asm/watch.h>
     67#include <asm/mmu_context.h>
     68#include <asm/types.h>
     69#include <asm/stacktrace.h>
     70#include <asm/tlbex.h>
     71#include <asm/uasm.h>
     72
     73#include <asm/mach-loongson64/cpucfg-emul.h>
     74
     75#include "access-helper.h"
     76
     77extern void check_wait(void);
     78extern asmlinkage void rollback_handle_int(void);
     79extern asmlinkage void handle_int(void);
     80extern asmlinkage void handle_adel(void);
     81extern asmlinkage void handle_ades(void);
     82extern asmlinkage void handle_ibe(void);
     83extern asmlinkage void handle_dbe(void);
     84extern asmlinkage void handle_sys(void);
     85extern asmlinkage void handle_bp(void);
     86extern asmlinkage void handle_ri(void);
     87extern asmlinkage void handle_ri_rdhwr_tlbp(void);
     88extern asmlinkage void handle_ri_rdhwr(void);
     89extern asmlinkage void handle_cpu(void);
     90extern asmlinkage void handle_ov(void);
     91extern asmlinkage void handle_tr(void);
     92extern asmlinkage void handle_msa_fpe(void);
     93extern asmlinkage void handle_fpe(void);
     94extern asmlinkage void handle_ftlb(void);
     95extern asmlinkage void handle_gsexc(void);
     96extern asmlinkage void handle_msa(void);
     97extern asmlinkage void handle_mdmx(void);
     98extern asmlinkage void handle_watch(void);
     99extern asmlinkage void handle_mt(void);
    100extern asmlinkage void handle_dsp(void);
    101extern asmlinkage void handle_mcheck(void);
    102extern asmlinkage void handle_reserved(void);
    103extern void tlb_do_page_fault_0(void);
    104
    105void (*board_be_init)(void);
    106static int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
    107void (*board_nmi_handler_setup)(void);
    108void (*board_ejtag_handler_setup)(void);
    109void (*board_bind_eic_interrupt)(int irq, int regset);
    110void (*board_ebase_setup)(void);
    111void(*board_cache_error_setup)(void);
    112
    113void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup))
    114{
    115	board_be_handler = handler;
    116}
    117EXPORT_SYMBOL_GPL(mips_set_be_handler);
    118
    119static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
    120			       bool user)
    121{
    122	unsigned long *sp = (unsigned long *)(reg29 & ~3);
    123	unsigned long addr;
    124
    125	printk("%sCall Trace:", loglvl);
    126#ifdef CONFIG_KALLSYMS
    127	printk("%s\n", loglvl);
    128#endif
    129	while (!kstack_end(sp)) {
    130		if (__get_addr(&addr, sp++, user)) {
    131			printk("%s (Bad stack address)", loglvl);
    132			break;
    133		}
    134		if (__kernel_text_address(addr))
    135			print_ip_sym(loglvl, addr);
    136	}
    137	printk("%s\n", loglvl);
    138}
    139
    140#ifdef CONFIG_KALLSYMS
    141int raw_show_trace;
    142static int __init set_raw_show_trace(char *str)
    143{
    144	raw_show_trace = 1;
    145	return 1;
    146}
    147__setup("raw_show_trace", set_raw_show_trace);
    148#endif
    149
    150static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
    151			   const char *loglvl, bool user)
    152{
    153	unsigned long sp = regs->regs[29];
    154	unsigned long ra = regs->regs[31];
    155	unsigned long pc = regs->cp0_epc;
    156
    157	if (!task)
    158		task = current;
    159
    160	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
    161		show_raw_backtrace(sp, loglvl, user);
    162		return;
    163	}
    164	printk("%sCall Trace:\n", loglvl);
    165	do {
    166		print_ip_sym(loglvl, pc);
    167		pc = unwind_stack(task, &sp, pc, &ra);
    168	} while (pc);
    169	pr_cont("\n");
    170}
    171
    172/*
    173 * This routine abuses get_user()/put_user() to reference pointers
    174 * with at least a bit of error checking ...
    175 */
    176static void show_stacktrace(struct task_struct *task,
    177	const struct pt_regs *regs, const char *loglvl, bool user)
    178{
    179	const int field = 2 * sizeof(unsigned long);
    180	unsigned long stackdata;
    181	int i;
    182	unsigned long *sp = (unsigned long *)regs->regs[29];
    183
    184	printk("%sStack :", loglvl);
    185	i = 0;
    186	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
    187		if (i && ((i % (64 / field)) == 0)) {
    188			pr_cont("\n");
    189			printk("%s       ", loglvl);
    190		}
    191		if (i > 39) {
    192			pr_cont(" ...");
    193			break;
    194		}
    195
    196		if (__get_addr(&stackdata, sp++, user)) {
    197			pr_cont(" (Bad stack address)");
    198			break;
    199		}
    200
    201		pr_cont(" %0*lx", field, stackdata);
    202		i++;
    203	}
    204	pr_cont("\n");
    205	show_backtrace(task, regs, loglvl, user);
    206}
    207
    208void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
    209{
    210	struct pt_regs regs;
    211
    212	regs.cp0_status = KSU_KERNEL;
    213	if (sp) {
    214		regs.regs[29] = (unsigned long)sp;
    215		regs.regs[31] = 0;
    216		regs.cp0_epc = 0;
    217	} else {
    218		if (task && task != current) {
    219			regs.regs[29] = task->thread.reg29;
    220			regs.regs[31] = 0;
    221			regs.cp0_epc = task->thread.reg31;
    222		} else {
    223			prepare_frametrace(&regs);
    224		}
    225	}
    226	show_stacktrace(task, &regs, loglvl, false);
    227}
    228
    229static void show_code(void *pc, bool user)
    230{
    231	long i;
    232	unsigned short *pc16 = NULL;
    233
    234	printk("Code:");
    235
    236	if ((unsigned long)pc & 1)
    237		pc16 = (u16 *)((unsigned long)pc & ~1);
    238
    239	for(i = -3 ; i < 6 ; i++) {
    240		if (pc16) {
    241			u16 insn16;
    242
    243			if (__get_inst16(&insn16, pc16 + i, user))
    244				goto bad_address;
    245
    246			pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
    247		} else {
    248			u32 insn32;
    249
    250			if (__get_inst32(&insn32, (u32 *)pc + i, user))
    251				goto bad_address;
    252
    253			pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
    254		}
    255	}
    256	pr_cont("\n");
    257	return;
    258
    259bad_address:
    260	pr_cont(" (Bad address in epc)\n\n");
    261}
    262
    263static void __show_regs(const struct pt_regs *regs)
    264{
    265	const int field = 2 * sizeof(unsigned long);
    266	unsigned int cause = regs->cp0_cause;
    267	unsigned int exccode;
    268	int i;
    269
    270	show_regs_print_info(KERN_DEFAULT);
    271
    272	/*
    273	 * Saved main processor registers
    274	 */
    275	for (i = 0; i < 32; ) {
    276		if ((i % 4) == 0)
    277			printk("$%2d   :", i);
    278		if (i == 0)
    279			pr_cont(" %0*lx", field, 0UL);
    280		else if (i == 26 || i == 27)
    281			pr_cont(" %*s", field, "");
    282		else
    283			pr_cont(" %0*lx", field, regs->regs[i]);
    284
    285		i++;
    286		if ((i % 4) == 0)
    287			pr_cont("\n");
    288	}
    289
    290#ifdef CONFIG_CPU_HAS_SMARTMIPS
    291	printk("Acx    : %0*lx\n", field, regs->acx);
    292#endif
    293	if (MIPS_ISA_REV < 6) {
    294		printk("Hi    : %0*lx\n", field, regs->hi);
    295		printk("Lo    : %0*lx\n", field, regs->lo);
    296	}
    297
    298	/*
    299	 * Saved cp0 registers
    300	 */
    301	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
    302	       (void *) regs->cp0_epc);
    303	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
    304	       (void *) regs->regs[31]);
    305
    306	printk("Status: %08x	", (uint32_t) regs->cp0_status);
    307
    308	if (cpu_has_3kex) {
    309		if (regs->cp0_status & ST0_KUO)
    310			pr_cont("KUo ");
    311		if (regs->cp0_status & ST0_IEO)
    312			pr_cont("IEo ");
    313		if (regs->cp0_status & ST0_KUP)
    314			pr_cont("KUp ");
    315		if (regs->cp0_status & ST0_IEP)
    316			pr_cont("IEp ");
    317		if (regs->cp0_status & ST0_KUC)
    318			pr_cont("KUc ");
    319		if (regs->cp0_status & ST0_IEC)
    320			pr_cont("IEc ");
    321	} else if (cpu_has_4kex) {
    322		if (regs->cp0_status & ST0_KX)
    323			pr_cont("KX ");
    324		if (regs->cp0_status & ST0_SX)
    325			pr_cont("SX ");
    326		if (regs->cp0_status & ST0_UX)
    327			pr_cont("UX ");
    328		switch (regs->cp0_status & ST0_KSU) {
    329		case KSU_USER:
    330			pr_cont("USER ");
    331			break;
    332		case KSU_SUPERVISOR:
    333			pr_cont("SUPERVISOR ");
    334			break;
    335		case KSU_KERNEL:
    336			pr_cont("KERNEL ");
    337			break;
    338		default:
    339			pr_cont("BAD_MODE ");
    340			break;
    341		}
    342		if (regs->cp0_status & ST0_ERL)
    343			pr_cont("ERL ");
    344		if (regs->cp0_status & ST0_EXL)
    345			pr_cont("EXL ");
    346		if (regs->cp0_status & ST0_IE)
    347			pr_cont("IE ");
    348	}
    349	pr_cont("\n");
    350
    351	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
    352	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
    353
    354	if (1 <= exccode && exccode <= 5)
    355		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
    356
    357	printk("PrId  : %08x (%s)\n", read_c0_prid(),
    358	       cpu_name_string());
    359}
    360
    361/*
    362 * FIXME: really the generic show_regs should take a const pointer argument.
    363 */
    364void show_regs(struct pt_regs *regs)
    365{
    366	__show_regs(regs);
    367	dump_stack();
    368}
    369
    370void show_registers(struct pt_regs *regs)
    371{
    372	const int field = 2 * sizeof(unsigned long);
    373
    374	__show_regs(regs);
    375	print_modules();
    376	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
    377	       current->comm, current->pid, current_thread_info(), current,
    378	      field, current_thread_info()->tp_value);
    379	if (cpu_has_userlocal) {
    380		unsigned long tls;
    381
    382		tls = read_c0_userlocal();
    383		if (tls != current_thread_info()->tp_value)
    384			printk("*HwTLS: %0*lx\n", field, tls);
    385	}
    386
    387	show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
    388	show_code((void *)regs->cp0_epc, user_mode(regs));
    389	printk("\n");
    390}
    391
    392static DEFINE_RAW_SPINLOCK(die_lock);
    393
    394void __noreturn die(const char *str, struct pt_regs *regs)
    395{
    396	static int die_counter;
    397	int sig = SIGSEGV;
    398
    399	oops_enter();
    400
    401	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
    402		       SIGSEGV) == NOTIFY_STOP)
    403		sig = 0;
    404
    405	console_verbose();
    406	raw_spin_lock_irq(&die_lock);
    407	bust_spinlocks(1);
    408
    409	printk("%s[#%d]:\n", str, ++die_counter);
    410	show_registers(regs);
    411	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
    412	raw_spin_unlock_irq(&die_lock);
    413
    414	oops_exit();
    415
    416	if (in_interrupt())
    417		panic("Fatal exception in interrupt");
    418
    419	if (panic_on_oops)
    420		panic("Fatal exception");
    421
    422	if (regs && kexec_should_crash(current))
    423		crash_kexec(regs);
    424
    425	make_task_dead(sig);
    426}
    427
    428extern struct exception_table_entry __start___dbe_table[];
    429extern struct exception_table_entry __stop___dbe_table[];
    430
    431__asm__(
    432"	.section	__dbe_table, \"a\"\n"
    433"	.previous			\n");
    434
    435/* Given an address, look for it in the exception tables. */
    436static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
    437{
    438	const struct exception_table_entry *e;
    439
    440	e = search_extable(__start___dbe_table,
    441			   __stop___dbe_table - __start___dbe_table, addr);
    442	if (!e)
    443		e = search_module_dbetables(addr);
    444	return e;
    445}
    446
    447asmlinkage void do_be(struct pt_regs *regs)
    448{
    449	const int field = 2 * sizeof(unsigned long);
    450	const struct exception_table_entry *fixup = NULL;
    451	int data = regs->cp0_cause & 4;
    452	int action = MIPS_BE_FATAL;
    453	enum ctx_state prev_state;
    454
    455	prev_state = exception_enter();
    456	/* XXX For now.	 Fixme, this searches the wrong table ...  */
    457	if (data && !user_mode(regs))
    458		fixup = search_dbe_tables(exception_epc(regs));
    459
    460	if (fixup)
    461		action = MIPS_BE_FIXUP;
    462
    463	if (board_be_handler)
    464		action = board_be_handler(regs, fixup != NULL);
    465	else
    466		mips_cm_error_report();
    467
    468	switch (action) {
    469	case MIPS_BE_DISCARD:
    470		goto out;
    471	case MIPS_BE_FIXUP:
    472		if (fixup) {
    473			regs->cp0_epc = fixup->nextinsn;
    474			goto out;
    475		}
    476		break;
    477	default:
    478		break;
    479	}
    480
    481	/*
    482	 * Assume it would be too dangerous to continue ...
    483	 */
    484	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
    485	       data ? "Data" : "Instruction",
    486	       field, regs->cp0_epc, field, regs->regs[31]);
    487	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
    488		       SIGBUS) == NOTIFY_STOP)
    489		goto out;
    490
    491	die_if_kernel("Oops", regs);
    492	force_sig(SIGBUS);
    493
    494out:
    495	exception_exit(prev_state);
    496}
    497
    498/*
    499 * ll/sc, rdhwr, sync emulation
    500 */
    501
    502#define OPCODE 0xfc000000
    503#define BASE   0x03e00000
    504#define RT     0x001f0000
    505#define OFFSET 0x0000ffff
    506#define LL     0xc0000000
    507#define SC     0xe0000000
    508#define SPEC0  0x00000000
    509#define SPEC3  0x7c000000
    510#define RD     0x0000f800
    511#define FUNC   0x0000003f
    512#define SYNC   0x0000000f
    513#define RDHWR  0x0000003b
    514
    515/*  microMIPS definitions   */
    516#define MM_POOL32A_FUNC 0xfc00ffff
    517#define MM_RDHWR        0x00006b3c
    518#define MM_RS           0x001f0000
    519#define MM_RT           0x03e00000
    520
    521/*
    522 * The ll_bit is cleared by r*_switch.S
    523 */
    524
    525unsigned int ll_bit;
    526struct task_struct *ll_task;
    527
    528static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
    529{
    530	unsigned long value, __user *vaddr;
    531	long offset;
    532
    533	/*
    534	 * analyse the ll instruction that just caused a ri exception
    535	 * and put the referenced address to addr.
    536	 */
    537
    538	/* sign extend offset */
    539	offset = opcode & OFFSET;
    540	offset <<= 16;
    541	offset >>= 16;
    542
    543	vaddr = (unsigned long __user *)
    544		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
    545
    546	if ((unsigned long)vaddr & 3)
    547		return SIGBUS;
    548	if (get_user(value, vaddr))
    549		return SIGSEGV;
    550
    551	preempt_disable();
    552
    553	if (ll_task == NULL || ll_task == current) {
    554		ll_bit = 1;
    555	} else {
    556		ll_bit = 0;
    557	}
    558	ll_task = current;
    559
    560	preempt_enable();
    561
    562	regs->regs[(opcode & RT) >> 16] = value;
    563
    564	return 0;
    565}
    566
    567static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
    568{
    569	unsigned long __user *vaddr;
    570	unsigned long reg;
    571	long offset;
    572
    573	/*
    574	 * analyse the sc instruction that just caused a ri exception
    575	 * and put the referenced address to addr.
    576	 */
    577
    578	/* sign extend offset */
    579	offset = opcode & OFFSET;
    580	offset <<= 16;
    581	offset >>= 16;
    582
    583	vaddr = (unsigned long __user *)
    584		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
    585	reg = (opcode & RT) >> 16;
    586
    587	if ((unsigned long)vaddr & 3)
    588		return SIGBUS;
    589
    590	preempt_disable();
    591
    592	if (ll_bit == 0 || ll_task != current) {
    593		regs->regs[reg] = 0;
    594		preempt_enable();
    595		return 0;
    596	}
    597
    598	preempt_enable();
    599
    600	if (put_user(regs->regs[reg], vaddr))
    601		return SIGSEGV;
    602
    603	regs->regs[reg] = 1;
    604
    605	return 0;
    606}
    607
    608/*
    609 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
    610 * opcodes are supposed to result in coprocessor unusable exceptions if
    611 * executed on ll/sc-less processors.  That's the theory.  In practice a
    612 * few processors such as NEC's VR4100 throw reserved instruction exceptions
    613 * instead, so we're doing the emulation thing in both exception handlers.
    614 */
    615static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
    616{
    617	if ((opcode & OPCODE) == LL) {
    618		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
    619				1, regs, 0);
    620		return simulate_ll(regs, opcode);
    621	}
    622	if ((opcode & OPCODE) == SC) {
    623		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
    624				1, regs, 0);
    625		return simulate_sc(regs, opcode);
    626	}
    627
    628	return -1;			/* Must be something else ... */
    629}
    630
    631/*
    632 * Simulate trapping 'rdhwr' instructions to provide user accessible
    633 * registers not implemented in hardware.
    634 */
    635static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
    636{
    637	struct thread_info *ti = task_thread_info(current);
    638
    639	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
    640			1, regs, 0);
    641	switch (rd) {
    642	case MIPS_HWR_CPUNUM:		/* CPU number */
    643		regs->regs[rt] = smp_processor_id();
    644		return 0;
    645	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
    646		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
    647				     current_cpu_data.icache.linesz);
    648		return 0;
    649	case MIPS_HWR_CC:		/* Read count register */
    650		regs->regs[rt] = read_c0_count();
    651		return 0;
    652	case MIPS_HWR_CCRES:		/* Count register resolution */
    653		switch (current_cpu_type()) {
    654		case CPU_20KC:
    655		case CPU_25KF:
    656			regs->regs[rt] = 1;
    657			break;
    658		default:
    659			regs->regs[rt] = 2;
    660		}
    661		return 0;
    662	case MIPS_HWR_ULR:		/* Read UserLocal register */
    663		regs->regs[rt] = ti->tp_value;
    664		return 0;
    665	default:
    666		return -1;
    667	}
    668}
    669
    670static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
    671{
    672	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
    673		int rd = (opcode & RD) >> 11;
    674		int rt = (opcode & RT) >> 16;
    675
    676		simulate_rdhwr(regs, rd, rt);
    677		return 0;
    678	}
    679
    680	/* Not ours.  */
    681	return -1;
    682}
    683
    684static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
    685{
    686	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
    687		int rd = (opcode & MM_RS) >> 16;
    688		int rt = (opcode & MM_RT) >> 21;
    689		simulate_rdhwr(regs, rd, rt);
    690		return 0;
    691	}
    692
    693	/* Not ours.  */
    694	return -1;
    695}
    696
    697static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
    698{
    699	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
    700		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
    701				1, regs, 0);
    702		return 0;
    703	}
    704
    705	return -1;			/* Must be something else ... */
    706}
    707
    708/*
    709 * Loongson-3 CSR instructions emulation
    710 */
    711
    712#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
    713
    714#define LWC2             0xc8000000
    715#define RS               BASE
    716#define CSR_OPCODE2      0x00000118
    717#define CSR_OPCODE2_MASK 0x000007ff
    718#define CSR_FUNC_MASK    RT
    719#define CSR_FUNC_CPUCFG  0x8
    720
    721static int simulate_loongson3_cpucfg(struct pt_regs *regs,
    722				     unsigned int opcode)
    723{
    724	int op = opcode & OPCODE;
    725	int op2 = opcode & CSR_OPCODE2_MASK;
    726	int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
    727
    728	if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
    729		int rd = (opcode & RD) >> 11;
    730		int rs = (opcode & RS) >> 21;
    731		__u64 sel = regs->regs[rs];
    732
    733		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
    734
    735		/* Do not emulate on unsupported core models. */
    736		preempt_disable();
    737		if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) {
    738			preempt_enable();
    739			return -1;
    740		}
    741		regs->regs[rd] = loongson3_cpucfg_read_synthesized(
    742			&current_cpu_data, sel);
    743		preempt_enable();
    744		return 0;
    745	}
    746
    747	/* Not ours.  */
    748	return -1;
    749}
    750#endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
    751
    752asmlinkage void do_ov(struct pt_regs *regs)
    753{
    754	enum ctx_state prev_state;
    755
    756	prev_state = exception_enter();
    757	die_if_kernel("Integer overflow", regs);
    758
    759	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
    760	exception_exit(prev_state);
    761}
    762
    763#ifdef CONFIG_MIPS_FP_SUPPORT
    764
    765/*
    766 * Send SIGFPE according to FCSR Cause bits, which must have already
    767 * been masked against Enable bits.  This is impotant as Inexact can
    768 * happen together with Overflow or Underflow, and `ptrace' can set
    769 * any bits.
    770 */
    771void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
    772		     struct task_struct *tsk)
    773{
    774	int si_code = FPE_FLTUNK;
    775
    776	if (fcr31 & FPU_CSR_INV_X)
    777		si_code = FPE_FLTINV;
    778	else if (fcr31 & FPU_CSR_DIV_X)
    779		si_code = FPE_FLTDIV;
    780	else if (fcr31 & FPU_CSR_OVF_X)
    781		si_code = FPE_FLTOVF;
    782	else if (fcr31 & FPU_CSR_UDF_X)
    783		si_code = FPE_FLTUND;
    784	else if (fcr31 & FPU_CSR_INE_X)
    785		si_code = FPE_FLTRES;
    786
    787	force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
    788}
    789
    790int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
    791{
    792	int si_code;
    793
    794	switch (sig) {
    795	case 0:
    796		return 0;
    797
    798	case SIGFPE:
    799		force_fcr31_sig(fcr31, fault_addr, current);
    800		return 1;
    801
    802	case SIGBUS:
    803		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
    804		return 1;
    805
    806	case SIGSEGV:
    807		mmap_read_lock(current->mm);
    808		if (vma_lookup(current->mm, (unsigned long)fault_addr))
    809			si_code = SEGV_ACCERR;
    810		else
    811			si_code = SEGV_MAPERR;
    812		mmap_read_unlock(current->mm);
    813		force_sig_fault(SIGSEGV, si_code, fault_addr);
    814		return 1;
    815
    816	default:
    817		force_sig(sig);
    818		return 1;
    819	}
    820}
    821
    822static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
    823		       unsigned long old_epc, unsigned long old_ra)
    824{
    825	union mips_instruction inst = { .word = opcode };
    826	void __user *fault_addr;
    827	unsigned long fcr31;
    828	int sig;
    829
    830	/* If it's obviously not an FP instruction, skip it */
    831	switch (inst.i_format.opcode) {
    832	case cop1_op:
    833	case cop1x_op:
    834	case lwc1_op:
    835	case ldc1_op:
    836	case swc1_op:
    837	case sdc1_op:
    838		break;
    839
    840	default:
    841		return -1;
    842	}
    843
    844	/*
    845	 * do_ri skipped over the instruction via compute_return_epc, undo
    846	 * that for the FPU emulator.
    847	 */
    848	regs->cp0_epc = old_epc;
    849	regs->regs[31] = old_ra;
    850
    851	/* Run the emulator */
    852	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
    853				       &fault_addr);
    854
    855	/*
    856	 * We can't allow the emulated instruction to leave any
    857	 * enabled Cause bits set in $fcr31.
    858	 */
    859	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
    860	current->thread.fpu.fcr31 &= ~fcr31;
    861
    862	/* Restore the hardware register state */
    863	own_fpu(1);
    864
    865	/* Send a signal if required.  */
    866	process_fpemu_return(sig, fault_addr, fcr31);
    867
    868	return 0;
    869}
    870
    871/*
    872 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
    873 */
    874asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
    875{
    876	enum ctx_state prev_state;
    877	void __user *fault_addr;
    878	int sig;
    879
    880	prev_state = exception_enter();
    881	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
    882		       SIGFPE) == NOTIFY_STOP)
    883		goto out;
    884
    885	/* Clear FCSR.Cause before enabling interrupts */
    886	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
    887	local_irq_enable();
    888
    889	die_if_kernel("FP exception in kernel code", regs);
    890
    891	if (fcr31 & FPU_CSR_UNI_X) {
    892		/*
    893		 * Unimplemented operation exception.  If we've got the full
    894		 * software emulator on-board, let's use it...
    895		 *
    896		 * Force FPU to dump state into task/thread context.  We're
    897		 * moving a lot of data here for what is probably a single
    898		 * instruction, but the alternative is to pre-decode the FP
    899		 * register operands before invoking the emulator, which seems
    900		 * a bit extreme for what should be an infrequent event.
    901		 */
    902
    903		/* Run the emulator */
    904		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
    905					       &fault_addr);
    906
    907		/*
    908		 * We can't allow the emulated instruction to leave any
    909		 * enabled Cause bits set in $fcr31.
    910		 */
    911		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
    912		current->thread.fpu.fcr31 &= ~fcr31;
    913
    914		/* Restore the hardware register state */
    915		own_fpu(1);	/* Using the FPU again.	 */
    916	} else {
    917		sig = SIGFPE;
    918		fault_addr = (void __user *) regs->cp0_epc;
    919	}
    920
    921	/* Send a signal if required.  */
    922	process_fpemu_return(sig, fault_addr, fcr31);
    923
    924out:
    925	exception_exit(prev_state);
    926}
    927
    928/*
    929 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
    930 * emulated more than some threshold number of instructions, force migration to
    931 * a "CPU" that has FP support.
    932 */
    933static void mt_ase_fp_affinity(void)
    934{
    935#ifdef CONFIG_MIPS_MT_FPAFF
    936	if (mt_fpemul_threshold > 0 &&
    937	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
    938		/*
    939		 * If there's no FPU present, or if the application has already
    940		 * restricted the allowed set to exclude any CPUs with FPUs,
    941		 * we'll skip the procedure.
    942		 */
    943		if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
    944			cpumask_t tmask;
    945
    946			current->thread.user_cpus_allowed
    947				= current->cpus_mask;
    948			cpumask_and(&tmask, &current->cpus_mask,
    949				    &mt_fpu_cpumask);
    950			set_cpus_allowed_ptr(current, &tmask);
    951			set_thread_flag(TIF_FPUBOUND);
    952		}
    953	}
    954#endif /* CONFIG_MIPS_MT_FPAFF */
    955}
    956
    957#else /* !CONFIG_MIPS_FP_SUPPORT */
    958
    959static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
    960		       unsigned long old_epc, unsigned long old_ra)
    961{
    962	return -1;
    963}
    964
    965#endif /* !CONFIG_MIPS_FP_SUPPORT */
    966
    967void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
    968	const char *str)
    969{
    970	char b[40];
    971
    972#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
    973	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
    974			 SIGTRAP) == NOTIFY_STOP)
    975		return;
    976#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
    977
    978	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
    979		       SIGTRAP) == NOTIFY_STOP)
    980		return;
    981
    982	/*
    983	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
    984	 * insns, even for trap and break codes that indicate arithmetic
    985	 * failures.  Weird ...
    986	 * But should we continue the brokenness???  --macro
    987	 */
    988	switch (code) {
    989	case BRK_OVERFLOW:
    990	case BRK_DIVZERO:
    991		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
    992		die_if_kernel(b, regs);
    993		force_sig_fault(SIGFPE,
    994				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
    995				(void __user *) regs->cp0_epc);
    996		break;
    997	case BRK_BUG:
    998		die_if_kernel("Kernel bug detected", regs);
    999		force_sig(SIGTRAP);
   1000		break;
   1001	case BRK_MEMU:
   1002		/*
   1003		 * This breakpoint code is used by the FPU emulator to retake
   1004		 * control of the CPU after executing the instruction from the
   1005		 * delay slot of an emulated branch.
   1006		 *
   1007		 * Terminate if exception was recognized as a delay slot return
   1008		 * otherwise handle as normal.
   1009		 */
   1010		if (do_dsemulret(regs))
   1011			return;
   1012
   1013		die_if_kernel("Math emu break/trap", regs);
   1014		force_sig(SIGTRAP);
   1015		break;
   1016	default:
   1017		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
   1018		die_if_kernel(b, regs);
   1019		if (si_code) {
   1020			force_sig_fault(SIGTRAP, si_code, NULL);
   1021		} else {
   1022			force_sig(SIGTRAP);
   1023		}
   1024	}
   1025}
   1026
   1027asmlinkage void do_bp(struct pt_regs *regs)
   1028{
   1029	unsigned long epc = msk_isa16_mode(exception_epc(regs));
   1030	unsigned int opcode, bcode;
   1031	enum ctx_state prev_state;
   1032	bool user = user_mode(regs);
   1033
   1034	prev_state = exception_enter();
   1035	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
   1036	if (get_isa16_mode(regs->cp0_epc)) {
   1037		u16 instr[2];
   1038
   1039		if (__get_inst16(&instr[0], (u16 *)epc, user))
   1040			goto out_sigsegv;
   1041
   1042		if (!cpu_has_mmips) {
   1043			/* MIPS16e mode */
   1044			bcode = (instr[0] >> 5) & 0x3f;
   1045		} else if (mm_insn_16bit(instr[0])) {
   1046			/* 16-bit microMIPS BREAK */
   1047			bcode = instr[0] & 0xf;
   1048		} else {
   1049			/* 32-bit microMIPS BREAK */
   1050			if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
   1051				goto out_sigsegv;
   1052			opcode = (instr[0] << 16) | instr[1];
   1053			bcode = (opcode >> 6) & ((1 << 20) - 1);
   1054		}
   1055	} else {
   1056		if (__get_inst32(&opcode, (u32 *)epc, user))
   1057			goto out_sigsegv;
   1058		bcode = (opcode >> 6) & ((1 << 20) - 1);
   1059	}
   1060
   1061	/*
   1062	 * There is the ancient bug in the MIPS assemblers that the break
   1063	 * code starts left to bit 16 instead to bit 6 in the opcode.
   1064	 * Gas is bug-compatible, but not always, grrr...
   1065	 * We handle both cases with a simple heuristics.  --macro
   1066	 */
   1067	if (bcode >= (1 << 10))
   1068		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
   1069
   1070	/*
   1071	 * notify the kprobe handlers, if instruction is likely to
   1072	 * pertain to them.
   1073	 */
   1074	switch (bcode) {
   1075	case BRK_UPROBE:
   1076		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
   1077			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
   1078			goto out;
   1079		else
   1080			break;
   1081	case BRK_UPROBE_XOL:
   1082		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
   1083			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
   1084			goto out;
   1085		else
   1086			break;
   1087	case BRK_KPROBE_BP:
   1088		if (notify_die(DIE_BREAK, "debug", regs, bcode,
   1089			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
   1090			goto out;
   1091		else
   1092			break;
   1093	case BRK_KPROBE_SSTEPBP:
   1094		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
   1095			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
   1096			goto out;
   1097		else
   1098			break;
   1099	default:
   1100		break;
   1101	}
   1102
   1103	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
   1104
   1105out:
   1106	exception_exit(prev_state);
   1107	return;
   1108
   1109out_sigsegv:
   1110	force_sig(SIGSEGV);
   1111	goto out;
   1112}
   1113
   1114asmlinkage void do_tr(struct pt_regs *regs)
   1115{
   1116	u32 opcode, tcode = 0;
   1117	enum ctx_state prev_state;
   1118	u16 instr[2];
   1119	bool user = user_mode(regs);
   1120	unsigned long epc = msk_isa16_mode(exception_epc(regs));
   1121
   1122	prev_state = exception_enter();
   1123	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
   1124	if (get_isa16_mode(regs->cp0_epc)) {
   1125		if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
   1126		    __get_inst16(&instr[1], (u16 *)(epc + 2), user))
   1127			goto out_sigsegv;
   1128		opcode = (instr[0] << 16) | instr[1];
   1129		/* Immediate versions don't provide a code.  */
   1130		if (!(opcode & OPCODE))
   1131			tcode = (opcode >> 12) & ((1 << 4) - 1);
   1132	} else {
   1133		if (__get_inst32(&opcode, (u32 *)epc, user))
   1134			goto out_sigsegv;
   1135		/* Immediate versions don't provide a code.  */
   1136		if (!(opcode & OPCODE))
   1137			tcode = (opcode >> 6) & ((1 << 10) - 1);
   1138	}
   1139
   1140	do_trap_or_bp(regs, tcode, 0, "Trap");
   1141
   1142out:
   1143	exception_exit(prev_state);
   1144	return;
   1145
   1146out_sigsegv:
   1147	force_sig(SIGSEGV);
   1148	goto out;
   1149}
   1150
   1151asmlinkage void do_ri(struct pt_regs *regs)
   1152{
   1153	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
   1154	unsigned long old_epc = regs->cp0_epc;
   1155	unsigned long old31 = regs->regs[31];
   1156	enum ctx_state prev_state;
   1157	unsigned int opcode = 0;
   1158	int status = -1;
   1159
   1160	/*
   1161	 * Avoid any kernel code. Just emulate the R2 instruction
   1162	 * as quickly as possible.
   1163	 */
   1164	if (mipsr2_emulation && cpu_has_mips_r6 &&
   1165	    likely(user_mode(regs)) &&
   1166	    likely(get_user(opcode, epc) >= 0)) {
   1167		unsigned long fcr31 = 0;
   1168
   1169		status = mipsr2_decoder(regs, opcode, &fcr31);
   1170		switch (status) {
   1171		case 0:
   1172		case SIGEMT:
   1173			return;
   1174		case SIGILL:
   1175			goto no_r2_instr;
   1176		default:
   1177			process_fpemu_return(status,
   1178					     &current->thread.cp0_baduaddr,
   1179					     fcr31);
   1180			return;
   1181		}
   1182	}
   1183
   1184no_r2_instr:
   1185
   1186	prev_state = exception_enter();
   1187	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
   1188
   1189	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
   1190		       SIGILL) == NOTIFY_STOP)
   1191		goto out;
   1192
   1193	die_if_kernel("Reserved instruction in kernel code", regs);
   1194
   1195	if (unlikely(compute_return_epc(regs) < 0))
   1196		goto out;
   1197
   1198	if (!get_isa16_mode(regs->cp0_epc)) {
   1199		if (unlikely(get_user(opcode, epc) < 0))
   1200			status = SIGSEGV;
   1201
   1202		if (!cpu_has_llsc && status < 0)
   1203			status = simulate_llsc(regs, opcode);
   1204
   1205		if (status < 0)
   1206			status = simulate_rdhwr_normal(regs, opcode);
   1207
   1208		if (status < 0)
   1209			status = simulate_sync(regs, opcode);
   1210
   1211		if (status < 0)
   1212			status = simulate_fp(regs, opcode, old_epc, old31);
   1213
   1214#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
   1215		if (status < 0)
   1216			status = simulate_loongson3_cpucfg(regs, opcode);
   1217#endif
   1218	} else if (cpu_has_mmips) {
   1219		unsigned short mmop[2] = { 0 };
   1220
   1221		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
   1222			status = SIGSEGV;
   1223		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
   1224			status = SIGSEGV;
   1225		opcode = mmop[0];
   1226		opcode = (opcode << 16) | mmop[1];
   1227
   1228		if (status < 0)
   1229			status = simulate_rdhwr_mm(regs, opcode);
   1230	}
   1231
   1232	if (status < 0)
   1233		status = SIGILL;
   1234
   1235	if (unlikely(status > 0)) {
   1236		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
   1237		regs->regs[31] = old31;
   1238		force_sig(status);
   1239	}
   1240
   1241out:
   1242	exception_exit(prev_state);
   1243}
   1244
   1245/*
   1246 * No lock; only written during early bootup by CPU 0.
   1247 */
   1248static RAW_NOTIFIER_HEAD(cu2_chain);
   1249
   1250int __ref register_cu2_notifier(struct notifier_block *nb)
   1251{
   1252	return raw_notifier_chain_register(&cu2_chain, nb);
   1253}
   1254
   1255int cu2_notifier_call_chain(unsigned long val, void *v)
   1256{
   1257	return raw_notifier_call_chain(&cu2_chain, val, v);
   1258}
   1259
   1260static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
   1261	void *data)
   1262{
   1263	struct pt_regs *regs = data;
   1264
   1265	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
   1266			      "instruction", regs);
   1267	force_sig(SIGILL);
   1268
   1269	return NOTIFY_OK;
   1270}
   1271
   1272#ifdef CONFIG_MIPS_FP_SUPPORT
   1273
   1274static int enable_restore_fp_context(int msa)
   1275{
   1276	int err, was_fpu_owner, prior_msa;
   1277	bool first_fp;
   1278
   1279	/* Initialize context if it hasn't been used already */
   1280	first_fp = init_fp_ctx(current);
   1281
   1282	if (first_fp) {
   1283		preempt_disable();
   1284		err = own_fpu_inatomic(1);
   1285		if (msa && !err) {
   1286			enable_msa();
   1287			/*
   1288			 * with MSA enabled, userspace can see MSACSR
   1289			 * and MSA regs, but the values in them are from
   1290			 * other task before current task, restore them
   1291			 * from saved fp/msa context
   1292			 */
   1293			write_msa_csr(current->thread.fpu.msacsr);
   1294			/*
   1295			 * own_fpu_inatomic(1) just restore low 64bit,
   1296			 * fix the high 64bit
   1297			 */
   1298			init_msa_upper();
   1299			set_thread_flag(TIF_USEDMSA);
   1300			set_thread_flag(TIF_MSA_CTX_LIVE);
   1301		}
   1302		preempt_enable();
   1303		return err;
   1304	}
   1305
   1306	/*
   1307	 * This task has formerly used the FP context.
   1308	 *
   1309	 * If this thread has no live MSA vector context then we can simply
   1310	 * restore the scalar FP context. If it has live MSA vector context
   1311	 * (that is, it has or may have used MSA since last performing a
   1312	 * function call) then we'll need to restore the vector context. This
   1313	 * applies even if we're currently only executing a scalar FP
   1314	 * instruction. This is because if we were to later execute an MSA
   1315	 * instruction then we'd either have to:
   1316	 *
   1317	 *  - Restore the vector context & clobber any registers modified by
   1318	 *    scalar FP instructions between now & then.
   1319	 *
   1320	 * or
   1321	 *
   1322	 *  - Not restore the vector context & lose the most significant bits
   1323	 *    of all vector registers.
   1324	 *
   1325	 * Neither of those options is acceptable. We cannot restore the least
   1326	 * significant bits of the registers now & only restore the most
   1327	 * significant bits later because the most significant bits of any
   1328	 * vector registers whose aliased FP register is modified now will have
   1329	 * been zeroed. We'd have no way to know that when restoring the vector
   1330	 * context & thus may load an outdated value for the most significant
   1331	 * bits of a vector register.
   1332	 */
   1333	if (!msa && !thread_msa_context_live())
   1334		return own_fpu(1);
   1335
   1336	/*
   1337	 * This task is using or has previously used MSA. Thus we require
   1338	 * that Status.FR == 1.
   1339	 */
   1340	preempt_disable();
   1341	was_fpu_owner = is_fpu_owner();
   1342	err = own_fpu_inatomic(0);
   1343	if (err)
   1344		goto out;
   1345
   1346	enable_msa();
   1347	write_msa_csr(current->thread.fpu.msacsr);
   1348	set_thread_flag(TIF_USEDMSA);
   1349
   1350	/*
   1351	 * If this is the first time that the task is using MSA and it has
   1352	 * previously used scalar FP in this time slice then we already nave
   1353	 * FP context which we shouldn't clobber. We do however need to clear
   1354	 * the upper 64b of each vector register so that this task has no
   1355	 * opportunity to see data left behind by another.
   1356	 */
   1357	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
   1358	if (!prior_msa && was_fpu_owner) {
   1359		init_msa_upper();
   1360
   1361		goto out;
   1362	}
   1363
   1364	if (!prior_msa) {
   1365		/*
   1366		 * Restore the least significant 64b of each vector register
   1367		 * from the existing scalar FP context.
   1368		 */
   1369		_restore_fp(current);
   1370
   1371		/*
   1372		 * The task has not formerly used MSA, so clear the upper 64b
   1373		 * of each vector register such that it cannot see data left
   1374		 * behind by another task.
   1375		 */
   1376		init_msa_upper();
   1377	} else {
   1378		/* We need to restore the vector context. */
   1379		restore_msa(current);
   1380
   1381		/* Restore the scalar FP control & status register */
   1382		if (!was_fpu_owner)
   1383			write_32bit_cp1_register(CP1_STATUS,
   1384						 current->thread.fpu.fcr31);
   1385	}
   1386
   1387out:
   1388	preempt_enable();
   1389
   1390	return 0;
   1391}
   1392
   1393#else /* !CONFIG_MIPS_FP_SUPPORT */
   1394
   1395static int enable_restore_fp_context(int msa)
   1396{
   1397	return SIGILL;
   1398}
   1399
   1400#endif /* CONFIG_MIPS_FP_SUPPORT */
   1401
   1402asmlinkage void do_cpu(struct pt_regs *regs)
   1403{
   1404	enum ctx_state prev_state;
   1405	unsigned int __user *epc;
   1406	unsigned long old_epc, old31;
   1407	unsigned int opcode;
   1408	unsigned int cpid;
   1409	int status;
   1410
   1411	prev_state = exception_enter();
   1412	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
   1413
   1414	if (cpid != 2)
   1415		die_if_kernel("do_cpu invoked from kernel context!", regs);
   1416
   1417	switch (cpid) {
   1418	case 0:
   1419		epc = (unsigned int __user *)exception_epc(regs);
   1420		old_epc = regs->cp0_epc;
   1421		old31 = regs->regs[31];
   1422		opcode = 0;
   1423		status = -1;
   1424
   1425		if (unlikely(compute_return_epc(regs) < 0))
   1426			break;
   1427
   1428		if (!get_isa16_mode(regs->cp0_epc)) {
   1429			if (unlikely(get_user(opcode, epc) < 0))
   1430				status = SIGSEGV;
   1431
   1432			if (!cpu_has_llsc && status < 0)
   1433				status = simulate_llsc(regs, opcode);
   1434		}
   1435
   1436		if (status < 0)
   1437			status = SIGILL;
   1438
   1439		if (unlikely(status > 0)) {
   1440			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
   1441			regs->regs[31] = old31;
   1442			force_sig(status);
   1443		}
   1444
   1445		break;
   1446
   1447#ifdef CONFIG_MIPS_FP_SUPPORT
   1448	case 3:
   1449		/*
   1450		 * The COP3 opcode space and consequently the CP0.Status.CU3
   1451		 * bit and the CP0.Cause.CE=3 encoding have been removed as
   1452		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
   1453		 * up the space has been reused for COP1X instructions, that
   1454		 * are enabled by the CP0.Status.CU1 bit and consequently
   1455		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
   1456		 * exceptions.  Some FPU-less processors that implement one
   1457		 * of these ISAs however use this code erroneously for COP1X
   1458		 * instructions.  Therefore we redirect this trap to the FP
   1459		 * emulator too.
   1460		 */
   1461		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
   1462			force_sig(SIGILL);
   1463			break;
   1464		}
   1465		fallthrough;
   1466	case 1: {
   1467		void __user *fault_addr;
   1468		unsigned long fcr31;
   1469		int err, sig;
   1470
   1471		err = enable_restore_fp_context(0);
   1472
   1473		if (raw_cpu_has_fpu && !err)
   1474			break;
   1475
   1476		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
   1477					       &fault_addr);
   1478
   1479		/*
   1480		 * We can't allow the emulated instruction to leave
   1481		 * any enabled Cause bits set in $fcr31.
   1482		 */
   1483		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
   1484		current->thread.fpu.fcr31 &= ~fcr31;
   1485
   1486		/* Send a signal if required.  */
   1487		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
   1488			mt_ase_fp_affinity();
   1489
   1490		break;
   1491	}
   1492#else /* CONFIG_MIPS_FP_SUPPORT */
   1493	case 1:
   1494	case 3:
   1495		force_sig(SIGILL);
   1496		break;
   1497#endif /* CONFIG_MIPS_FP_SUPPORT */
   1498
   1499	case 2:
   1500		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
   1501		break;
   1502	}
   1503
   1504	exception_exit(prev_state);
   1505}
   1506
   1507asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
   1508{
   1509	enum ctx_state prev_state;
   1510
   1511	prev_state = exception_enter();
   1512	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
   1513	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
   1514		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
   1515		goto out;
   1516
   1517	/* Clear MSACSR.Cause before enabling interrupts */
   1518	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
   1519	local_irq_enable();
   1520
   1521	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
   1522	force_sig(SIGFPE);
   1523out:
   1524	exception_exit(prev_state);
   1525}
   1526
   1527asmlinkage void do_msa(struct pt_regs *regs)
   1528{
   1529	enum ctx_state prev_state;
   1530	int err;
   1531
   1532	prev_state = exception_enter();
   1533
   1534	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
   1535		force_sig(SIGILL);
   1536		goto out;
   1537	}
   1538
   1539	die_if_kernel("do_msa invoked from kernel context!", regs);
   1540
   1541	err = enable_restore_fp_context(1);
   1542	if (err)
   1543		force_sig(SIGILL);
   1544out:
   1545	exception_exit(prev_state);
   1546}
   1547
   1548asmlinkage void do_mdmx(struct pt_regs *regs)
   1549{
   1550	enum ctx_state prev_state;
   1551
   1552	prev_state = exception_enter();
   1553	force_sig(SIGILL);
   1554	exception_exit(prev_state);
   1555}
   1556
   1557/*
   1558 * Called with interrupts disabled.
   1559 */
   1560asmlinkage void do_watch(struct pt_regs *regs)
   1561{
   1562	enum ctx_state prev_state;
   1563
   1564	prev_state = exception_enter();
   1565	/*
   1566	 * Clear WP (bit 22) bit of cause register so we don't loop
   1567	 * forever.
   1568	 */
   1569	clear_c0_cause(CAUSEF_WP);
   1570
   1571	/*
   1572	 * If the current thread has the watch registers loaded, save
   1573	 * their values and send SIGTRAP.  Otherwise another thread
   1574	 * left the registers set, clear them and continue.
   1575	 */
   1576	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
   1577		mips_read_watch_registers();
   1578		local_irq_enable();
   1579		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
   1580	} else {
   1581		mips_clear_watch_registers();
   1582		local_irq_enable();
   1583	}
   1584	exception_exit(prev_state);
   1585}
   1586
   1587asmlinkage void do_mcheck(struct pt_regs *regs)
   1588{
   1589	int multi_match = regs->cp0_status & ST0_TS;
   1590	enum ctx_state prev_state;
   1591
   1592	prev_state = exception_enter();
   1593	show_regs(regs);
   1594
   1595	if (multi_match) {
   1596		dump_tlb_regs();
   1597		pr_info("\n");
   1598		dump_tlb_all();
   1599	}
   1600
   1601	show_code((void *)regs->cp0_epc, user_mode(regs));
   1602
   1603	/*
   1604	 * Some chips may have other causes of machine check (e.g. SB1
   1605	 * graduation timer)
   1606	 */
   1607	panic("Caught Machine Check exception - %scaused by multiple "
   1608	      "matching entries in the TLB.",
   1609	      (multi_match) ? "" : "not ");
   1610}
   1611
   1612asmlinkage void do_mt(struct pt_regs *regs)
   1613{
   1614	int subcode;
   1615
   1616	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
   1617			>> VPECONTROL_EXCPT_SHIFT;
   1618	switch (subcode) {
   1619	case 0:
   1620		printk(KERN_DEBUG "Thread Underflow\n");
   1621		break;
   1622	case 1:
   1623		printk(KERN_DEBUG "Thread Overflow\n");
   1624		break;
   1625	case 2:
   1626		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
   1627		break;
   1628	case 3:
   1629		printk(KERN_DEBUG "Gating Storage Exception\n");
   1630		break;
   1631	case 4:
   1632		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
   1633		break;
   1634	case 5:
   1635		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
   1636		break;
   1637	default:
   1638		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
   1639			subcode);
   1640		break;
   1641	}
   1642	die_if_kernel("MIPS MT Thread exception in kernel", regs);
   1643
   1644	force_sig(SIGILL);
   1645}
   1646
   1647
   1648asmlinkage void do_dsp(struct pt_regs *regs)
   1649{
   1650	if (cpu_has_dsp)
   1651		panic("Unexpected DSP exception");
   1652
   1653	force_sig(SIGILL);
   1654}
   1655
   1656asmlinkage void do_reserved(struct pt_regs *regs)
   1657{
   1658	/*
   1659	 * Game over - no way to handle this if it ever occurs.	 Most probably
   1660	 * caused by a new unknown cpu type or after another deadly
   1661	 * hard/software error.
   1662	 */
   1663	show_regs(regs);
   1664	panic("Caught reserved exception %ld - should not happen.",
   1665	      (regs->cp0_cause & 0x7f) >> 2);
   1666}
   1667
   1668static int __initdata l1parity = 1;
   1669static int __init nol1parity(char *s)
   1670{
   1671	l1parity = 0;
   1672	return 1;
   1673}
   1674__setup("nol1par", nol1parity);
   1675static int __initdata l2parity = 1;
   1676static int __init nol2parity(char *s)
   1677{
   1678	l2parity = 0;
   1679	return 1;
   1680}
   1681__setup("nol2par", nol2parity);
   1682
   1683/*
   1684 * Some MIPS CPUs can enable/disable for cache parity detection, but do
   1685 * it different ways.
   1686 */
   1687static inline __init void parity_protection_init(void)
   1688{
   1689#define ERRCTL_PE	0x80000000
   1690#define ERRCTL_L2P	0x00800000
   1691
   1692	if (mips_cm_revision() >= CM_REV_CM3) {
   1693		ulong gcr_ectl, cp0_ectl;
   1694
   1695		/*
   1696		 * With CM3 systems we need to ensure that the L1 & L2
   1697		 * parity enables are set to the same value, since this
   1698		 * is presumed by the hardware engineers.
   1699		 *
   1700		 * If the user disabled either of L1 or L2 ECC checking,
   1701		 * disable both.
   1702		 */
   1703		l1parity &= l2parity;
   1704		l2parity &= l1parity;
   1705
   1706		/* Probe L1 ECC support */
   1707		cp0_ectl = read_c0_ecc();
   1708		write_c0_ecc(cp0_ectl | ERRCTL_PE);
   1709		back_to_back_c0_hazard();
   1710		cp0_ectl = read_c0_ecc();
   1711
   1712		/* Probe L2 ECC support */
   1713		gcr_ectl = read_gcr_err_control();
   1714
   1715		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
   1716		    !(cp0_ectl & ERRCTL_PE)) {
   1717			/*
   1718			 * One of L1 or L2 ECC checking isn't supported,
   1719			 * so we cannot enable either.
   1720			 */
   1721			l1parity = l2parity = 0;
   1722		}
   1723
   1724		/* Configure L1 ECC checking */
   1725		if (l1parity)
   1726			cp0_ectl |= ERRCTL_PE;
   1727		else
   1728			cp0_ectl &= ~ERRCTL_PE;
   1729		write_c0_ecc(cp0_ectl);
   1730		back_to_back_c0_hazard();
   1731		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
   1732
   1733		/* Configure L2 ECC checking */
   1734		if (l2parity)
   1735			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
   1736		else
   1737			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
   1738		write_gcr_err_control(gcr_ectl);
   1739		gcr_ectl = read_gcr_err_control();
   1740		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
   1741		WARN_ON(!!gcr_ectl != l2parity);
   1742
   1743		pr_info("Cache parity protection %sabled\n",
   1744			l1parity ? "en" : "dis");
   1745		return;
   1746	}
   1747
   1748	switch (current_cpu_type()) {
   1749	case CPU_24K:
   1750	case CPU_34K:
   1751	case CPU_74K:
   1752	case CPU_1004K:
   1753	case CPU_1074K:
   1754	case CPU_INTERAPTIV:
   1755	case CPU_PROAPTIV:
   1756	case CPU_P5600:
   1757	case CPU_QEMU_GENERIC:
   1758	case CPU_P6600:
   1759		{
   1760			unsigned long errctl;
   1761			unsigned int l1parity_present, l2parity_present;
   1762
   1763			errctl = read_c0_ecc();
   1764			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
   1765
   1766			/* probe L1 parity support */
   1767			write_c0_ecc(errctl | ERRCTL_PE);
   1768			back_to_back_c0_hazard();
   1769			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
   1770
   1771			/* probe L2 parity support */
   1772			write_c0_ecc(errctl|ERRCTL_L2P);
   1773			back_to_back_c0_hazard();
   1774			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
   1775
   1776			if (l1parity_present && l2parity_present) {
   1777				if (l1parity)
   1778					errctl |= ERRCTL_PE;
   1779				if (l1parity ^ l2parity)
   1780					errctl |= ERRCTL_L2P;
   1781			} else if (l1parity_present) {
   1782				if (l1parity)
   1783					errctl |= ERRCTL_PE;
   1784			} else if (l2parity_present) {
   1785				if (l2parity)
   1786					errctl |= ERRCTL_L2P;
   1787			} else {
   1788				/* No parity available */
   1789			}
   1790
   1791			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
   1792
   1793			write_c0_ecc(errctl);
   1794			back_to_back_c0_hazard();
   1795			errctl = read_c0_ecc();
   1796			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
   1797
   1798			if (l1parity_present)
   1799				printk(KERN_INFO "Cache parity protection %sabled\n",
   1800				       (errctl & ERRCTL_PE) ? "en" : "dis");
   1801
   1802			if (l2parity_present) {
   1803				if (l1parity_present && l1parity)
   1804					errctl ^= ERRCTL_L2P;
   1805				printk(KERN_INFO "L2 cache parity protection %sabled\n",
   1806				       (errctl & ERRCTL_L2P) ? "en" : "dis");
   1807			}
   1808		}
   1809		break;
   1810
   1811	case CPU_5KC:
   1812	case CPU_5KE:
   1813	case CPU_LOONGSON32:
   1814		write_c0_ecc(0x80000000);
   1815		back_to_back_c0_hazard();
   1816		/* Set the PE bit (bit 31) in the c0_errctl register. */
   1817		printk(KERN_INFO "Cache parity protection %sabled\n",
   1818		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
   1819		break;
   1820	case CPU_20KC:
   1821	case CPU_25KF:
   1822		/* Clear the DE bit (bit 16) in the c0_status register. */
   1823		printk(KERN_INFO "Enable cache parity protection for "
   1824		       "MIPS 20KC/25KF CPUs.\n");
   1825		clear_c0_status(ST0_DE);
   1826		break;
   1827	default:
   1828		break;
   1829	}
   1830}
   1831
   1832asmlinkage void cache_parity_error(void)
   1833{
   1834	const int field = 2 * sizeof(unsigned long);
   1835	unsigned int reg_val;
   1836
   1837	/* For the moment, report the problem and hang. */
   1838	printk("Cache error exception:\n");
   1839	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
   1840	reg_val = read_c0_cacheerr();
   1841	printk("c0_cacheerr == %08x\n", reg_val);
   1842
   1843	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
   1844	       reg_val & (1<<30) ? "secondary" : "primary",
   1845	       reg_val & (1<<31) ? "data" : "insn");
   1846	if ((cpu_has_mips_r2_r6) &&
   1847	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
   1848		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
   1849			reg_val & (1<<29) ? "ED " : "",
   1850			reg_val & (1<<28) ? "ET " : "",
   1851			reg_val & (1<<27) ? "ES " : "",
   1852			reg_val & (1<<26) ? "EE " : "",
   1853			reg_val & (1<<25) ? "EB " : "",
   1854			reg_val & (1<<24) ? "EI " : "",
   1855			reg_val & (1<<23) ? "E1 " : "",
   1856			reg_val & (1<<22) ? "E0 " : "");
   1857	} else {
   1858		pr_err("Error bits: %s%s%s%s%s%s%s\n",
   1859			reg_val & (1<<29) ? "ED " : "",
   1860			reg_val & (1<<28) ? "ET " : "",
   1861			reg_val & (1<<26) ? "EE " : "",
   1862			reg_val & (1<<25) ? "EB " : "",
   1863			reg_val & (1<<24) ? "EI " : "",
   1864			reg_val & (1<<23) ? "E1 " : "",
   1865			reg_val & (1<<22) ? "E0 " : "");
   1866	}
   1867	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
   1868
   1869#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
   1870	if (reg_val & (1<<22))
   1871		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
   1872
   1873	if (reg_val & (1<<23))
   1874		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
   1875#endif
   1876
   1877	panic("Can't handle the cache error!");
   1878}
   1879
   1880asmlinkage void do_ftlb(void)
   1881{
   1882	const int field = 2 * sizeof(unsigned long);
   1883	unsigned int reg_val;
   1884
   1885	/* For the moment, report the problem and hang. */
   1886	if ((cpu_has_mips_r2_r6) &&
   1887	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
   1888	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
   1889		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
   1890		       read_c0_ecc());
   1891		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
   1892		reg_val = read_c0_cacheerr();
   1893		pr_err("c0_cacheerr == %08x\n", reg_val);
   1894
   1895		if ((reg_val & 0xc0000000) == 0xc0000000) {
   1896			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
   1897		} else {
   1898			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
   1899			       reg_val & (1<<30) ? "secondary" : "primary",
   1900			       reg_val & (1<<31) ? "data" : "insn");
   1901		}
   1902	} else {
   1903		pr_err("FTLB error exception\n");
   1904	}
   1905	/* Just print the cacheerr bits for now */
   1906	cache_parity_error();
   1907}
   1908
   1909asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
   1910{
   1911	u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
   1912			LOONGSON_DIAG1_EXCCODE_SHIFT;
   1913	enum ctx_state prev_state;
   1914
   1915	prev_state = exception_enter();
   1916
   1917	switch (exccode) {
   1918	case 0x08:
   1919		/* Undocumented exception, will trigger on certain
   1920		 * also-undocumented instructions accessible from userspace.
   1921		 * Processor state is not otherwise corrupted, but currently
   1922		 * we don't know how to proceed. Maybe there is some
   1923		 * undocumented control flag to enable the instructions?
   1924		 */
   1925		force_sig(SIGILL);
   1926		break;
   1927
   1928	default:
   1929		/* None of the other exceptions, documented or not, have
   1930		 * further details given; none are encountered in the wild
   1931		 * either. Panic in case some of them turn out to be fatal.
   1932		 */
   1933		show_regs(regs);
   1934		panic("Unhandled Loongson exception - GSCause = %08x", diag1);
   1935	}
   1936
   1937	exception_exit(prev_state);
   1938}
   1939
   1940/*
   1941 * SDBBP EJTAG debug exception handler.
   1942 * We skip the instruction and return to the next instruction.
   1943 */
   1944void ejtag_exception_handler(struct pt_regs *regs)
   1945{
   1946	const int field = 2 * sizeof(unsigned long);
   1947	unsigned long depc, old_epc, old_ra;
   1948	unsigned int debug;
   1949
   1950	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
   1951	depc = read_c0_depc();
   1952	debug = read_c0_debug();
   1953	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
   1954	if (debug & 0x80000000) {
   1955		/*
   1956		 * In branch delay slot.
   1957		 * We cheat a little bit here and use EPC to calculate the
   1958		 * debug return address (DEPC). EPC is restored after the
   1959		 * calculation.
   1960		 */
   1961		old_epc = regs->cp0_epc;
   1962		old_ra = regs->regs[31];
   1963		regs->cp0_epc = depc;
   1964		compute_return_epc(regs);
   1965		depc = regs->cp0_epc;
   1966		regs->cp0_epc = old_epc;
   1967		regs->regs[31] = old_ra;
   1968	} else
   1969		depc += 4;
   1970	write_c0_depc(depc);
   1971
   1972#if 0
   1973	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
   1974	write_c0_debug(debug | 0x100);
   1975#endif
   1976}
   1977
   1978/*
   1979 * NMI exception handler.
   1980 * No lock; only written during early bootup by CPU 0.
   1981 */
   1982static RAW_NOTIFIER_HEAD(nmi_chain);
   1983
   1984int register_nmi_notifier(struct notifier_block *nb)
   1985{
   1986	return raw_notifier_chain_register(&nmi_chain, nb);
   1987}
   1988
   1989void __noreturn nmi_exception_handler(struct pt_regs *regs)
   1990{
   1991	char str[100];
   1992
   1993	nmi_enter();
   1994	raw_notifier_call_chain(&nmi_chain, 0, regs);
   1995	bust_spinlocks(1);
   1996	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
   1997		 smp_processor_id(), regs->cp0_epc);
   1998	regs->cp0_epc = read_c0_errorepc();
   1999	die(str, regs);
   2000	nmi_exit();
   2001}
   2002
   2003unsigned long ebase;
   2004EXPORT_SYMBOL_GPL(ebase);
   2005unsigned long exception_handlers[32];
   2006unsigned long vi_handlers[64];
   2007
   2008void reserve_exception_space(phys_addr_t addr, unsigned long size)
   2009{
   2010	memblock_reserve(addr, size);
   2011}
   2012
   2013void __init *set_except_vector(int n, void *addr)
   2014{
   2015	unsigned long handler = (unsigned long) addr;
   2016	unsigned long old_handler;
   2017
   2018#ifdef CONFIG_CPU_MICROMIPS
   2019	/*
   2020	 * Only the TLB handlers are cache aligned with an even
   2021	 * address. All other handlers are on an odd address and
   2022	 * require no modification. Otherwise, MIPS32 mode will
   2023	 * be entered when handling any TLB exceptions. That
   2024	 * would be bad...since we must stay in microMIPS mode.
   2025	 */
   2026	if (!(handler & 0x1))
   2027		handler |= 1;
   2028#endif
   2029	old_handler = xchg(&exception_handlers[n], handler);
   2030
   2031	if (n == 0 && cpu_has_divec) {
   2032#ifdef CONFIG_CPU_MICROMIPS
   2033		unsigned long jump_mask = ~((1 << 27) - 1);
   2034#else
   2035		unsigned long jump_mask = ~((1 << 28) - 1);
   2036#endif
   2037		u32 *buf = (u32 *)(ebase + 0x200);
   2038		unsigned int k0 = 26;
   2039		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
   2040			uasm_i_j(&buf, handler & ~jump_mask);
   2041			uasm_i_nop(&buf);
   2042		} else {
   2043			UASM_i_LA(&buf, k0, handler);
   2044			uasm_i_jr(&buf, k0);
   2045			uasm_i_nop(&buf);
   2046		}
   2047		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
   2048	}
   2049	return (void *)old_handler;
   2050}
   2051
   2052static void do_default_vi(void)
   2053{
   2054	show_regs(get_irq_regs());
   2055	panic("Caught unexpected vectored interrupt.");
   2056}
   2057
   2058static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
   2059{
   2060	unsigned long handler;
   2061	unsigned long old_handler = vi_handlers[n];
   2062	int srssets = current_cpu_data.srsets;
   2063	u16 *h;
   2064	unsigned char *b;
   2065
   2066	BUG_ON(!cpu_has_veic && !cpu_has_vint);
   2067
   2068	if (addr == NULL) {
   2069		handler = (unsigned long) do_default_vi;
   2070		srs = 0;
   2071	} else
   2072		handler = (unsigned long) addr;
   2073	vi_handlers[n] = handler;
   2074
   2075	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
   2076
   2077	if (srs >= srssets)
   2078		panic("Shadow register set %d not supported", srs);
   2079
   2080	if (cpu_has_veic) {
   2081		if (board_bind_eic_interrupt)
   2082			board_bind_eic_interrupt(n, srs);
   2083	} else if (cpu_has_vint) {
   2084		/* SRSMap is only defined if shadow sets are implemented */
   2085		if (srssets > 1)
   2086			change_c0_srsmap(0xf << n*4, srs << n*4);
   2087	}
   2088
   2089	if (srs == 0) {
   2090		/*
   2091		 * If no shadow set is selected then use the default handler
   2092		 * that does normal register saving and standard interrupt exit
   2093		 */
   2094		extern const u8 except_vec_vi[], except_vec_vi_lui[];
   2095		extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
   2096		extern const u8 rollback_except_vec_vi[];
   2097		const u8 *vec_start = using_rollback_handler() ?
   2098				      rollback_except_vec_vi : except_vec_vi;
   2099#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
   2100		const int lui_offset = except_vec_vi_lui - vec_start + 2;
   2101		const int ori_offset = except_vec_vi_ori - vec_start + 2;
   2102#else
   2103		const int lui_offset = except_vec_vi_lui - vec_start;
   2104		const int ori_offset = except_vec_vi_ori - vec_start;
   2105#endif
   2106		const int handler_len = except_vec_vi_end - vec_start;
   2107
   2108		if (handler_len > VECTORSPACING) {
   2109			/*
   2110			 * Sigh... panicing won't help as the console
   2111			 * is probably not configured :(
   2112			 */
   2113			panic("VECTORSPACING too small");
   2114		}
   2115
   2116		set_handler(((unsigned long)b - ebase), vec_start,
   2117#ifdef CONFIG_CPU_MICROMIPS
   2118				(handler_len - 1));
   2119#else
   2120				handler_len);
   2121#endif
   2122		h = (u16 *)(b + lui_offset);
   2123		*h = (handler >> 16) & 0xffff;
   2124		h = (u16 *)(b + ori_offset);
   2125		*h = (handler & 0xffff);
   2126		local_flush_icache_range((unsigned long)b,
   2127					 (unsigned long)(b+handler_len));
   2128	}
   2129	else {
   2130		/*
   2131		 * In other cases jump directly to the interrupt handler. It
   2132		 * is the handler's responsibility to save registers if required
   2133		 * (eg hi/lo) and return from the exception using "eret".
   2134		 */
   2135		u32 insn;
   2136
   2137		h = (u16 *)b;
   2138		/* j handler */
   2139#ifdef CONFIG_CPU_MICROMIPS
   2140		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
   2141#else
   2142		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
   2143#endif
   2144		h[0] = (insn >> 16) & 0xffff;
   2145		h[1] = insn & 0xffff;
   2146		h[2] = 0;
   2147		h[3] = 0;
   2148		local_flush_icache_range((unsigned long)b,
   2149					 (unsigned long)(b+8));
   2150	}
   2151
   2152	return (void *)old_handler;
   2153}
   2154
   2155void *set_vi_handler(int n, vi_handler_t addr)
   2156{
   2157	return set_vi_srs_handler(n, addr, 0);
   2158}
   2159
   2160extern void tlb_init(void);
   2161
   2162/*
   2163 * Timer interrupt
   2164 */
   2165int cp0_compare_irq;
   2166EXPORT_SYMBOL_GPL(cp0_compare_irq);
   2167int cp0_compare_irq_shift;
   2168
   2169/*
   2170 * Performance counter IRQ or -1 if shared with timer
   2171 */
   2172int cp0_perfcount_irq;
   2173EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
   2174
   2175/*
   2176 * Fast debug channel IRQ or -1 if not present
   2177 */
   2178int cp0_fdc_irq;
   2179EXPORT_SYMBOL_GPL(cp0_fdc_irq);
   2180
   2181static int noulri;
   2182
   2183static int __init ulri_disable(char *s)
   2184{
   2185	pr_info("Disabling ulri\n");
   2186	noulri = 1;
   2187
   2188	return 1;
   2189}
   2190__setup("noulri", ulri_disable);
   2191
   2192/* configure STATUS register */
   2193static void configure_status(void)
   2194{
   2195	/*
   2196	 * Disable coprocessors and select 32-bit or 64-bit addressing
   2197	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
   2198	 * flag that some firmware may have left set and the TS bit (for
   2199	 * IP27).  Set XX for ISA IV code to work.
   2200	 */
   2201	unsigned int status_set = ST0_KERNEL_CUMASK;
   2202#ifdef CONFIG_64BIT
   2203	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
   2204#endif
   2205	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
   2206		status_set |= ST0_XX;
   2207	if (cpu_has_dsp)
   2208		status_set |= ST0_MX;
   2209
   2210	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
   2211			 status_set);
   2212	back_to_back_c0_hazard();
   2213}
   2214
   2215unsigned int hwrena;
   2216EXPORT_SYMBOL_GPL(hwrena);
   2217
   2218/* configure HWRENA register */
   2219static void configure_hwrena(void)
   2220{
   2221	hwrena = cpu_hwrena_impl_bits;
   2222
   2223	if (cpu_has_mips_r2_r6)
   2224		hwrena |= MIPS_HWRENA_CPUNUM |
   2225			  MIPS_HWRENA_SYNCISTEP |
   2226			  MIPS_HWRENA_CC |
   2227			  MIPS_HWRENA_CCRES;
   2228
   2229	if (!noulri && cpu_has_userlocal)
   2230		hwrena |= MIPS_HWRENA_ULR;
   2231
   2232	if (hwrena)
   2233		write_c0_hwrena(hwrena);
   2234}
   2235
   2236static void configure_exception_vector(void)
   2237{
   2238	if (cpu_has_mips_r2_r6) {
   2239		unsigned long sr = set_c0_status(ST0_BEV);
   2240		/* If available, use WG to set top bits of EBASE */
   2241		if (cpu_has_ebase_wg) {
   2242#ifdef CONFIG_64BIT
   2243			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
   2244#else
   2245			write_c0_ebase(ebase | MIPS_EBASE_WG);
   2246#endif
   2247		}
   2248		write_c0_ebase(ebase);
   2249		write_c0_status(sr);
   2250	}
   2251	if (cpu_has_veic || cpu_has_vint) {
   2252		/* Setting vector spacing enables EI/VI mode  */
   2253		change_c0_intctl(0x3e0, VECTORSPACING);
   2254	}
   2255	if (cpu_has_divec) {
   2256		if (cpu_has_mipsmt) {
   2257			unsigned int vpflags = dvpe();
   2258			set_c0_cause(CAUSEF_IV);
   2259			evpe(vpflags);
   2260		} else
   2261			set_c0_cause(CAUSEF_IV);
   2262	}
   2263}
   2264
   2265void per_cpu_trap_init(bool is_boot_cpu)
   2266{
   2267	unsigned int cpu = smp_processor_id();
   2268
   2269	configure_status();
   2270	configure_hwrena();
   2271
   2272	configure_exception_vector();
   2273
   2274	/*
   2275	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
   2276	 *
   2277	 *  o read IntCtl.IPTI to determine the timer interrupt
   2278	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
   2279	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
   2280	 */
   2281	if (cpu_has_mips_r2_r6) {
   2282		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
   2283		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
   2284		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
   2285		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
   2286		if (!cp0_fdc_irq)
   2287			cp0_fdc_irq = -1;
   2288
   2289	} else {
   2290		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
   2291		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
   2292		cp0_perfcount_irq = -1;
   2293		cp0_fdc_irq = -1;
   2294	}
   2295
   2296	if (cpu_has_mmid)
   2297		cpu_data[cpu].asid_cache = 0;
   2298	else if (!cpu_data[cpu].asid_cache)
   2299		cpu_data[cpu].asid_cache = asid_first_version(cpu);
   2300
   2301	mmgrab(&init_mm);
   2302	current->active_mm = &init_mm;
   2303	BUG_ON(current->mm);
   2304	enter_lazy_tlb(&init_mm, current);
   2305
   2306	/* Boot CPU's cache setup in setup_arch(). */
   2307	if (!is_boot_cpu)
   2308		cpu_cache_init();
   2309	tlb_init();
   2310	TLBMISS_HANDLER_SETUP();
   2311}
   2312
   2313/* Install CPU exception handler */
   2314void set_handler(unsigned long offset, const void *addr, unsigned long size)
   2315{
   2316#ifdef CONFIG_CPU_MICROMIPS
   2317	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
   2318#else
   2319	memcpy((void *)(ebase + offset), addr, size);
   2320#endif
   2321	local_flush_icache_range(ebase + offset, ebase + offset + size);
   2322}
   2323
   2324static const char panic_null_cerr[] =
   2325	"Trying to set NULL cache error exception handler\n";
   2326
   2327/*
   2328 * Install uncached CPU exception handler.
   2329 * This is suitable only for the cache error exception which is the only
   2330 * exception handler that is being run uncached.
   2331 */
   2332void set_uncached_handler(unsigned long offset, void *addr,
   2333	unsigned long size)
   2334{
   2335	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
   2336
   2337	if (!addr)
   2338		panic(panic_null_cerr);
   2339
   2340	memcpy((void *)(uncached_ebase + offset), addr, size);
   2341}
   2342
   2343static int __initdata rdhwr_noopt;
   2344static int __init set_rdhwr_noopt(char *str)
   2345{
   2346	rdhwr_noopt = 1;
   2347	return 1;
   2348}
   2349
   2350__setup("rdhwr_noopt", set_rdhwr_noopt);
   2351
   2352void __init trap_init(void)
   2353{
   2354	extern char except_vec3_generic;
   2355	extern char except_vec4;
   2356	extern char except_vec3_r4000;
   2357	unsigned long i, vec_size;
   2358	phys_addr_t ebase_pa;
   2359
   2360	check_wait();
   2361
   2362	if (!cpu_has_mips_r2_r6) {
   2363		ebase = CAC_BASE;
   2364		vec_size = 0x400;
   2365	} else {
   2366		if (cpu_has_veic || cpu_has_vint)
   2367			vec_size = 0x200 + VECTORSPACING*64;
   2368		else
   2369			vec_size = PAGE_SIZE;
   2370
   2371		ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
   2372		if (!ebase_pa)
   2373			panic("%s: Failed to allocate %lu bytes align=0x%x\n",
   2374			      __func__, vec_size, 1 << fls(vec_size));
   2375
   2376		/*
   2377		 * Try to ensure ebase resides in KSeg0 if possible.
   2378		 *
   2379		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
   2380		 * hitting a poorly defined exception base for Cache Errors.
   2381		 * The allocation is likely to be in the low 512MB of physical,
   2382		 * in which case we should be able to convert to KSeg0.
   2383		 *
   2384		 * EVA is special though as it allows segments to be rearranged
   2385		 * and to become uncached during cache error handling.
   2386		 */
   2387		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
   2388			ebase = CKSEG0ADDR(ebase_pa);
   2389		else
   2390			ebase = (unsigned long)phys_to_virt(ebase_pa);
   2391	}
   2392
   2393	if (cpu_has_mmips) {
   2394		unsigned int config3 = read_c0_config3();
   2395
   2396		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
   2397			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
   2398		else
   2399			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
   2400	}
   2401
   2402	if (board_ebase_setup)
   2403		board_ebase_setup();
   2404	per_cpu_trap_init(true);
   2405	memblock_set_bottom_up(false);
   2406
   2407	/*
   2408	 * Copy the generic exception handlers to their final destination.
   2409	 * This will be overridden later as suitable for a particular
   2410	 * configuration.
   2411	 */
   2412	set_handler(0x180, &except_vec3_generic, 0x80);
   2413
   2414	/*
   2415	 * Setup default vectors
   2416	 */
   2417	for (i = 0; i <= 31; i++)
   2418		set_except_vector(i, handle_reserved);
   2419
   2420	/*
   2421	 * Copy the EJTAG debug exception vector handler code to it's final
   2422	 * destination.
   2423	 */
   2424	if (cpu_has_ejtag && board_ejtag_handler_setup)
   2425		board_ejtag_handler_setup();
   2426
   2427	/*
   2428	 * Only some CPUs have the watch exceptions.
   2429	 */
   2430	if (cpu_has_watch)
   2431		set_except_vector(EXCCODE_WATCH, handle_watch);
   2432
   2433	/*
   2434	 * Initialise interrupt handlers
   2435	 */
   2436	if (cpu_has_veic || cpu_has_vint) {
   2437		int nvec = cpu_has_veic ? 64 : 8;
   2438		for (i = 0; i < nvec; i++)
   2439			set_vi_handler(i, NULL);
   2440	}
   2441	else if (cpu_has_divec)
   2442		set_handler(0x200, &except_vec4, 0x8);
   2443
   2444	/*
   2445	 * Some CPUs can enable/disable for cache parity detection, but does
   2446	 * it different ways.
   2447	 */
   2448	parity_protection_init();
   2449
   2450	/*
   2451	 * The Data Bus Errors / Instruction Bus Errors are signaled
   2452	 * by external hardware.  Therefore these two exceptions
   2453	 * may have board specific handlers.
   2454	 */
   2455	if (board_be_init)
   2456		board_be_init();
   2457
   2458	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
   2459					rollback_handle_int : handle_int);
   2460	set_except_vector(EXCCODE_MOD, handle_tlbm);
   2461	set_except_vector(EXCCODE_TLBL, handle_tlbl);
   2462	set_except_vector(EXCCODE_TLBS, handle_tlbs);
   2463
   2464	set_except_vector(EXCCODE_ADEL, handle_adel);
   2465	set_except_vector(EXCCODE_ADES, handle_ades);
   2466
   2467	set_except_vector(EXCCODE_IBE, handle_ibe);
   2468	set_except_vector(EXCCODE_DBE, handle_dbe);
   2469
   2470	set_except_vector(EXCCODE_SYS, handle_sys);
   2471	set_except_vector(EXCCODE_BP, handle_bp);
   2472
   2473	if (rdhwr_noopt)
   2474		set_except_vector(EXCCODE_RI, handle_ri);
   2475	else {
   2476		if (cpu_has_vtag_icache)
   2477			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
   2478		else if (current_cpu_type() == CPU_LOONGSON64)
   2479			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
   2480		else
   2481			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
   2482	}
   2483
   2484	set_except_vector(EXCCODE_CPU, handle_cpu);
   2485	set_except_vector(EXCCODE_OV, handle_ov);
   2486	set_except_vector(EXCCODE_TR, handle_tr);
   2487	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
   2488
   2489	if (board_nmi_handler_setup)
   2490		board_nmi_handler_setup();
   2491
   2492	if (cpu_has_fpu && !cpu_has_nofpuex)
   2493		set_except_vector(EXCCODE_FPE, handle_fpe);
   2494
   2495	if (cpu_has_ftlbparex)
   2496		set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
   2497
   2498	if (cpu_has_gsexcex)
   2499		set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
   2500
   2501	if (cpu_has_rixiex) {
   2502		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
   2503		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
   2504	}
   2505
   2506	set_except_vector(EXCCODE_MSADIS, handle_msa);
   2507	set_except_vector(EXCCODE_MDMX, handle_mdmx);
   2508
   2509	if (cpu_has_mcheck)
   2510		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
   2511
   2512	if (cpu_has_mipsmt)
   2513		set_except_vector(EXCCODE_THREAD, handle_mt);
   2514
   2515	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
   2516
   2517	if (board_cache_error_setup)
   2518		board_cache_error_setup();
   2519
   2520	if (cpu_has_vce)
   2521		/* Special exception: R4[04]00 uses also the divec space. */
   2522		set_handler(0x180, &except_vec3_r4000, 0x100);
   2523	else if (cpu_has_4kex)
   2524		set_handler(0x180, &except_vec3_generic, 0x80);
   2525	else
   2526		set_handler(0x080, &except_vec3_generic, 0x80);
   2527
   2528	local_flush_icache_range(ebase, ebase + vec_size);
   2529
   2530	sort_extable(__start___dbe_table, __stop___dbe_table);
   2531
   2532	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
   2533}
   2534
   2535static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
   2536			    void *v)
   2537{
   2538	switch (cmd) {
   2539	case CPU_PM_ENTER_FAILED:
   2540	case CPU_PM_EXIT:
   2541		configure_status();
   2542		configure_hwrena();
   2543		configure_exception_vector();
   2544
   2545		/* Restore register with CPU number for TLB handlers */
   2546		TLBMISS_HANDLER_RESTORE();
   2547
   2548		break;
   2549	}
   2550
   2551	return NOTIFY_OK;
   2552}
   2553
   2554static struct notifier_block trap_pm_notifier_block = {
   2555	.notifier_call = trap_pm_notifier,
   2556};
   2557
   2558static int __init trap_pm_init(void)
   2559{
   2560	return cpu_pm_register_notifier(&trap_pm_notifier_block);
   2561}
   2562arch_initcall(trap_pm_init);