cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mips.c (41390B)


      1/*
      2 * This file is subject to the terms and conditions of the GNU General Public
      3 * License.  See the file "COPYING" in the main directory of this archive
      4 * for more details.
      5 *
      6 * KVM/MIPS: MIPS specific KVM APIs
      7 *
      8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
      9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
     10 */
     11
     12#include <linux/bitops.h>
     13#include <linux/errno.h>
     14#include <linux/err.h>
     15#include <linux/kdebug.h>
     16#include <linux/module.h>
     17#include <linux/uaccess.h>
     18#include <linux/vmalloc.h>
     19#include <linux/sched/signal.h>
     20#include <linux/fs.h>
     21#include <linux/memblock.h>
     22#include <linux/pgtable.h>
     23
     24#include <asm/fpu.h>
     25#include <asm/page.h>
     26#include <asm/cacheflush.h>
     27#include <asm/mmu_context.h>
     28#include <asm/pgalloc.h>
     29
     30#include <linux/kvm_host.h>
     31
     32#include "interrupt.h"
     33
     34#define CREATE_TRACE_POINTS
     35#include "trace.h"
     36
     37#ifndef VECTORSPACING
     38#define VECTORSPACING 0x100	/* for EI/VI mode */
     39#endif
     40
     41const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
     42	KVM_GENERIC_VM_STATS()
     43};
     44
     45const struct kvm_stats_header kvm_vm_stats_header = {
     46	.name_size = KVM_STATS_NAME_SIZE,
     47	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
     48	.id_offset = sizeof(struct kvm_stats_header),
     49	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
     50	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
     51		       sizeof(kvm_vm_stats_desc),
     52};
     53
     54const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
     55	KVM_GENERIC_VCPU_STATS(),
     56	STATS_DESC_COUNTER(VCPU, wait_exits),
     57	STATS_DESC_COUNTER(VCPU, cache_exits),
     58	STATS_DESC_COUNTER(VCPU, signal_exits),
     59	STATS_DESC_COUNTER(VCPU, int_exits),
     60	STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
     61	STATS_DESC_COUNTER(VCPU, tlbmod_exits),
     62	STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
     63	STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
     64	STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
     65	STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
     66	STATS_DESC_COUNTER(VCPU, syscall_exits),
     67	STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
     68	STATS_DESC_COUNTER(VCPU, break_inst_exits),
     69	STATS_DESC_COUNTER(VCPU, trap_inst_exits),
     70	STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
     71	STATS_DESC_COUNTER(VCPU, fpe_exits),
     72	STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
     73	STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
     74	STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
     75	STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
     76	STATS_DESC_COUNTER(VCPU, vz_hc_exits),
     77	STATS_DESC_COUNTER(VCPU, vz_grr_exits),
     78	STATS_DESC_COUNTER(VCPU, vz_gva_exits),
     79	STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
     80	STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
     81	STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
     82#ifdef CONFIG_CPU_LOONGSON64
     83	STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
     84#endif
     85};
     86
     87const struct kvm_stats_header kvm_vcpu_stats_header = {
     88	.name_size = KVM_STATS_NAME_SIZE,
     89	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
     90	.id_offset = sizeof(struct kvm_stats_header),
     91	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
     92	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
     93		       sizeof(kvm_vcpu_stats_desc),
     94};
     95
     96bool kvm_trace_guest_mode_change;
     97
     98int kvm_guest_mode_change_trace_reg(void)
     99{
    100	kvm_trace_guest_mode_change = true;
    101	return 0;
    102}
    103
    104void kvm_guest_mode_change_trace_unreg(void)
    105{
    106	kvm_trace_guest_mode_change = false;
    107}
    108
    109/*
    110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
    111 * Config7, so we are "runnable" if interrupts are pending
    112 */
    113int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
    114{
    115	return !!(vcpu->arch.pending_exceptions);
    116}
    117
    118bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
    119{
    120	return false;
    121}
    122
    123int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
    124{
    125	return 1;
    126}
    127
    128int kvm_arch_hardware_enable(void)
    129{
    130	return kvm_mips_callbacks->hardware_enable();
    131}
    132
    133void kvm_arch_hardware_disable(void)
    134{
    135	kvm_mips_callbacks->hardware_disable();
    136}
    137
    138int kvm_arch_hardware_setup(void *opaque)
    139{
    140	return 0;
    141}
    142
    143int kvm_arch_check_processor_compat(void *opaque)
    144{
    145	return 0;
    146}
    147
    148extern void kvm_init_loongson_ipi(struct kvm *kvm);
    149
    150int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
    151{
    152	switch (type) {
    153	case KVM_VM_MIPS_AUTO:
    154		break;
    155	case KVM_VM_MIPS_VZ:
    156		break;
    157	default:
    158		/* Unsupported KVM type */
    159		return -EINVAL;
    160	}
    161
    162	/* Allocate page table to map GPA -> RPA */
    163	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
    164	if (!kvm->arch.gpa_mm.pgd)
    165		return -ENOMEM;
    166
    167#ifdef CONFIG_CPU_LOONGSON64
    168	kvm_init_loongson_ipi(kvm);
    169#endif
    170
    171	return 0;
    172}
    173
    174static void kvm_mips_free_gpa_pt(struct kvm *kvm)
    175{
    176	/* It should always be safe to remove after flushing the whole range */
    177	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
    178	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
    179}
    180
    181void kvm_arch_destroy_vm(struct kvm *kvm)
    182{
    183	kvm_destroy_vcpus(kvm);
    184	kvm_mips_free_gpa_pt(kvm);
    185}
    186
    187long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
    188			unsigned long arg)
    189{
    190	return -ENOIOCTLCMD;
    191}
    192
    193void kvm_arch_flush_shadow_all(struct kvm *kvm)
    194{
    195	/* Flush whole GPA */
    196	kvm_mips_flush_gpa_pt(kvm, 0, ~0);
    197	kvm_flush_remote_tlbs(kvm);
    198}
    199
    200void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
    201				   struct kvm_memory_slot *slot)
    202{
    203	/*
    204	 * The slot has been made invalid (ready for moving or deletion), so we
    205	 * need to ensure that it can no longer be accessed by any guest VCPUs.
    206	 */
    207
    208	spin_lock(&kvm->mmu_lock);
    209	/* Flush slot from GPA */
    210	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
    211			      slot->base_gfn + slot->npages - 1);
    212	kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
    213	spin_unlock(&kvm->mmu_lock);
    214}
    215
    216int kvm_arch_prepare_memory_region(struct kvm *kvm,
    217				   const struct kvm_memory_slot *old,
    218				   struct kvm_memory_slot *new,
    219				   enum kvm_mr_change change)
    220{
    221	return 0;
    222}
    223
    224void kvm_arch_commit_memory_region(struct kvm *kvm,
    225				   struct kvm_memory_slot *old,
    226				   const struct kvm_memory_slot *new,
    227				   enum kvm_mr_change change)
    228{
    229	int needs_flush;
    230
    231	/*
    232	 * If dirty page logging is enabled, write protect all pages in the slot
    233	 * ready for dirty logging.
    234	 *
    235	 * There is no need to do this in any of the following cases:
    236	 * CREATE:	No dirty mappings will already exist.
    237	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
    238	 *		kvm_arch_flush_shadow_memslot()
    239	 */
    240	if (change == KVM_MR_FLAGS_ONLY &&
    241	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
    242	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
    243		spin_lock(&kvm->mmu_lock);
    244		/* Write protect GPA page table entries */
    245		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
    246					new->base_gfn + new->npages - 1);
    247		if (needs_flush)
    248			kvm_arch_flush_remote_tlbs_memslot(kvm, new);
    249		spin_unlock(&kvm->mmu_lock);
    250	}
    251}
    252
    253static inline void dump_handler(const char *symbol, void *start, void *end)
    254{
    255	u32 *p;
    256
    257	pr_debug("LEAF(%s)\n", symbol);
    258
    259	pr_debug("\t.set push\n");
    260	pr_debug("\t.set noreorder\n");
    261
    262	for (p = start; p < (u32 *)end; ++p)
    263		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
    264
    265	pr_debug("\t.set\tpop\n");
    266
    267	pr_debug("\tEND(%s)\n", symbol);
    268}
    269
    270/* low level hrtimer wake routine */
    271static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
    272{
    273	struct kvm_vcpu *vcpu;
    274
    275	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
    276
    277	kvm_mips_callbacks->queue_timer_int(vcpu);
    278
    279	vcpu->arch.wait = 0;
    280	rcuwait_wake_up(&vcpu->wait);
    281
    282	return kvm_mips_count_timeout(vcpu);
    283}
    284
    285int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
    286{
    287	return 0;
    288}
    289
    290int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
    291{
    292	int err, size;
    293	void *gebase, *p, *handler, *refill_start, *refill_end;
    294	int i;
    295
    296	kvm_debug("kvm @ %p: create cpu %d at %p\n",
    297		  vcpu->kvm, vcpu->vcpu_id, vcpu);
    298
    299	err = kvm_mips_callbacks->vcpu_init(vcpu);
    300	if (err)
    301		return err;
    302
    303	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
    304		     HRTIMER_MODE_REL);
    305	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
    306
    307	/*
    308	 * Allocate space for host mode exception handlers that handle
    309	 * guest mode exits
    310	 */
    311	if (cpu_has_veic || cpu_has_vint)
    312		size = 0x200 + VECTORSPACING * 64;
    313	else
    314		size = 0x4000;
    315
    316	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
    317
    318	if (!gebase) {
    319		err = -ENOMEM;
    320		goto out_uninit_vcpu;
    321	}
    322	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
    323		  ALIGN(size, PAGE_SIZE), gebase);
    324
    325	/*
    326	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
    327	 * limits us to the low 512MB of physical address space. If the memory
    328	 * we allocate is out of range, just give up now.
    329	 */
    330	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
    331		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
    332			gebase);
    333		err = -ENOMEM;
    334		goto out_free_gebase;
    335	}
    336
    337	/* Save new ebase */
    338	vcpu->arch.guest_ebase = gebase;
    339
    340	/* Build guest exception vectors dynamically in unmapped memory */
    341	handler = gebase + 0x2000;
    342
    343	/* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
    344	refill_start = gebase;
    345	if (IS_ENABLED(CONFIG_64BIT))
    346		refill_start += 0x080;
    347	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
    348
    349	/* General Exception Entry point */
    350	kvm_mips_build_exception(gebase + 0x180, handler);
    351
    352	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
    353	for (i = 0; i < 8; i++) {
    354		kvm_debug("L1 Vectored handler @ %p\n",
    355			  gebase + 0x200 + (i * VECTORSPACING));
    356		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
    357					 handler);
    358	}
    359
    360	/* General exit handler */
    361	p = handler;
    362	p = kvm_mips_build_exit(p);
    363
    364	/* Guest entry routine */
    365	vcpu->arch.vcpu_run = p;
    366	p = kvm_mips_build_vcpu_run(p);
    367
    368	/* Dump the generated code */
    369	pr_debug("#include <asm/asm.h>\n");
    370	pr_debug("#include <asm/regdef.h>\n");
    371	pr_debug("\n");
    372	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
    373	dump_handler("kvm_tlb_refill", refill_start, refill_end);
    374	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
    375	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
    376
    377	/* Invalidate the icache for these ranges */
    378	flush_icache_range((unsigned long)gebase,
    379			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
    380
    381	/* Init */
    382	vcpu->arch.last_sched_cpu = -1;
    383	vcpu->arch.last_exec_cpu = -1;
    384
    385	/* Initial guest state */
    386	err = kvm_mips_callbacks->vcpu_setup(vcpu);
    387	if (err)
    388		goto out_free_gebase;
    389
    390	return 0;
    391
    392out_free_gebase:
    393	kfree(gebase);
    394out_uninit_vcpu:
    395	kvm_mips_callbacks->vcpu_uninit(vcpu);
    396	return err;
    397}
    398
    399void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
    400{
    401	hrtimer_cancel(&vcpu->arch.comparecount_timer);
    402
    403	kvm_mips_dump_stats(vcpu);
    404
    405	kvm_mmu_free_memory_caches(vcpu);
    406	kfree(vcpu->arch.guest_ebase);
    407
    408	kvm_mips_callbacks->vcpu_uninit(vcpu);
    409}
    410
    411int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
    412					struct kvm_guest_debug *dbg)
    413{
    414	return -ENOIOCTLCMD;
    415}
    416
    417/*
    418 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
    419 * the vCPU is running.
    420 *
    421 * This must be noinstr as instrumentation may make use of RCU, and this is not
    422 * safe during the EQS.
    423 */
    424static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
    425{
    426	int ret;
    427
    428	guest_state_enter_irqoff();
    429	ret = kvm_mips_callbacks->vcpu_run(vcpu);
    430	guest_state_exit_irqoff();
    431
    432	return ret;
    433}
    434
    435int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
    436{
    437	int r = -EINTR;
    438
    439	vcpu_load(vcpu);
    440
    441	kvm_sigset_activate(vcpu);
    442
    443	if (vcpu->mmio_needed) {
    444		if (!vcpu->mmio_is_write)
    445			kvm_mips_complete_mmio_load(vcpu);
    446		vcpu->mmio_needed = 0;
    447	}
    448
    449	if (vcpu->run->immediate_exit)
    450		goto out;
    451
    452	lose_fpu(1);
    453
    454	local_irq_disable();
    455	guest_timing_enter_irqoff();
    456	trace_kvm_enter(vcpu);
    457
    458	/*
    459	 * Make sure the read of VCPU requests in vcpu_run() callback is not
    460	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
    461	 * flush request while the requester sees the VCPU as outside of guest
    462	 * mode and not needing an IPI.
    463	 */
    464	smp_store_mb(vcpu->mode, IN_GUEST_MODE);
    465
    466	r = kvm_mips_vcpu_enter_exit(vcpu);
    467
    468	/*
    469	 * We must ensure that any pending interrupts are taken before
    470	 * we exit guest timing so that timer ticks are accounted as
    471	 * guest time. Transiently unmask interrupts so that any
    472	 * pending interrupts are taken.
    473	 *
    474	 * TODO: is there a barrier which ensures that pending interrupts are
    475	 * recognised? Currently this just hopes that the CPU takes any pending
    476	 * interrupts between the enable and disable.
    477	 */
    478	local_irq_enable();
    479	local_irq_disable();
    480
    481	trace_kvm_out(vcpu);
    482	guest_timing_exit_irqoff();
    483	local_irq_enable();
    484
    485out:
    486	kvm_sigset_deactivate(vcpu);
    487
    488	vcpu_put(vcpu);
    489	return r;
    490}
    491
    492int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
    493			     struct kvm_mips_interrupt *irq)
    494{
    495	int intr = (int)irq->irq;
    496	struct kvm_vcpu *dvcpu = NULL;
    497
    498	if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
    499	    intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
    500	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
    501	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
    502		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
    503			  (int)intr);
    504
    505	if (irq->cpu == -1)
    506		dvcpu = vcpu;
    507	else
    508		dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
    509
    510	if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
    511		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
    512
    513	} else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
    514		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
    515	} else {
    516		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
    517			irq->cpu, irq->irq);
    518		return -EINVAL;
    519	}
    520
    521	dvcpu->arch.wait = 0;
    522
    523	rcuwait_wake_up(&dvcpu->wait);
    524
    525	return 0;
    526}
    527
    528int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
    529				    struct kvm_mp_state *mp_state)
    530{
    531	return -ENOIOCTLCMD;
    532}
    533
    534int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
    535				    struct kvm_mp_state *mp_state)
    536{
    537	return -ENOIOCTLCMD;
    538}
    539
    540static u64 kvm_mips_get_one_regs[] = {
    541	KVM_REG_MIPS_R0,
    542	KVM_REG_MIPS_R1,
    543	KVM_REG_MIPS_R2,
    544	KVM_REG_MIPS_R3,
    545	KVM_REG_MIPS_R4,
    546	KVM_REG_MIPS_R5,
    547	KVM_REG_MIPS_R6,
    548	KVM_REG_MIPS_R7,
    549	KVM_REG_MIPS_R8,
    550	KVM_REG_MIPS_R9,
    551	KVM_REG_MIPS_R10,
    552	KVM_REG_MIPS_R11,
    553	KVM_REG_MIPS_R12,
    554	KVM_REG_MIPS_R13,
    555	KVM_REG_MIPS_R14,
    556	KVM_REG_MIPS_R15,
    557	KVM_REG_MIPS_R16,
    558	KVM_REG_MIPS_R17,
    559	KVM_REG_MIPS_R18,
    560	KVM_REG_MIPS_R19,
    561	KVM_REG_MIPS_R20,
    562	KVM_REG_MIPS_R21,
    563	KVM_REG_MIPS_R22,
    564	KVM_REG_MIPS_R23,
    565	KVM_REG_MIPS_R24,
    566	KVM_REG_MIPS_R25,
    567	KVM_REG_MIPS_R26,
    568	KVM_REG_MIPS_R27,
    569	KVM_REG_MIPS_R28,
    570	KVM_REG_MIPS_R29,
    571	KVM_REG_MIPS_R30,
    572	KVM_REG_MIPS_R31,
    573
    574#ifndef CONFIG_CPU_MIPSR6
    575	KVM_REG_MIPS_HI,
    576	KVM_REG_MIPS_LO,
    577#endif
    578	KVM_REG_MIPS_PC,
    579};
    580
    581static u64 kvm_mips_get_one_regs_fpu[] = {
    582	KVM_REG_MIPS_FCR_IR,
    583	KVM_REG_MIPS_FCR_CSR,
    584};
    585
    586static u64 kvm_mips_get_one_regs_msa[] = {
    587	KVM_REG_MIPS_MSA_IR,
    588	KVM_REG_MIPS_MSA_CSR,
    589};
    590
    591static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
    592{
    593	unsigned long ret;
    594
    595	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
    596	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
    597		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
    598		/* odd doubles */
    599		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
    600			ret += 16;
    601	}
    602	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
    603		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
    604	ret += kvm_mips_callbacks->num_regs(vcpu);
    605
    606	return ret;
    607}
    608
    609static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
    610{
    611	u64 index;
    612	unsigned int i;
    613
    614	if (copy_to_user(indices, kvm_mips_get_one_regs,
    615			 sizeof(kvm_mips_get_one_regs)))
    616		return -EFAULT;
    617	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
    618
    619	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
    620		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
    621				 sizeof(kvm_mips_get_one_regs_fpu)))
    622			return -EFAULT;
    623		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
    624
    625		for (i = 0; i < 32; ++i) {
    626			index = KVM_REG_MIPS_FPR_32(i);
    627			if (copy_to_user(indices, &index, sizeof(index)))
    628				return -EFAULT;
    629			++indices;
    630
    631			/* skip odd doubles if no F64 */
    632			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
    633				continue;
    634
    635			index = KVM_REG_MIPS_FPR_64(i);
    636			if (copy_to_user(indices, &index, sizeof(index)))
    637				return -EFAULT;
    638			++indices;
    639		}
    640	}
    641
    642	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
    643		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
    644				 sizeof(kvm_mips_get_one_regs_msa)))
    645			return -EFAULT;
    646		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
    647
    648		for (i = 0; i < 32; ++i) {
    649			index = KVM_REG_MIPS_VEC_128(i);
    650			if (copy_to_user(indices, &index, sizeof(index)))
    651				return -EFAULT;
    652			++indices;
    653		}
    654	}
    655
    656	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
    657}
    658
    659static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
    660			    const struct kvm_one_reg *reg)
    661{
    662	struct mips_coproc *cop0 = vcpu->arch.cop0;
    663	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
    664	int ret;
    665	s64 v;
    666	s64 vs[2];
    667	unsigned int idx;
    668
    669	switch (reg->id) {
    670	/* General purpose registers */
    671	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
    672		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
    673		break;
    674#ifndef CONFIG_CPU_MIPSR6
    675	case KVM_REG_MIPS_HI:
    676		v = (long)vcpu->arch.hi;
    677		break;
    678	case KVM_REG_MIPS_LO:
    679		v = (long)vcpu->arch.lo;
    680		break;
    681#endif
    682	case KVM_REG_MIPS_PC:
    683		v = (long)vcpu->arch.pc;
    684		break;
    685
    686	/* Floating point registers */
    687	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
    688		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    689			return -EINVAL;
    690		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
    691		/* Odd singles in top of even double when FR=0 */
    692		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
    693			v = get_fpr32(&fpu->fpr[idx], 0);
    694		else
    695			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
    696		break;
    697	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
    698		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    699			return -EINVAL;
    700		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
    701		/* Can't access odd doubles in FR=0 mode */
    702		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
    703			return -EINVAL;
    704		v = get_fpr64(&fpu->fpr[idx], 0);
    705		break;
    706	case KVM_REG_MIPS_FCR_IR:
    707		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    708			return -EINVAL;
    709		v = boot_cpu_data.fpu_id;
    710		break;
    711	case KVM_REG_MIPS_FCR_CSR:
    712		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    713			return -EINVAL;
    714		v = fpu->fcr31;
    715		break;
    716
    717	/* MIPS SIMD Architecture (MSA) registers */
    718	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
    719		if (!kvm_mips_guest_has_msa(&vcpu->arch))
    720			return -EINVAL;
    721		/* Can't access MSA registers in FR=0 mode */
    722		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
    723			return -EINVAL;
    724		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
    725#ifdef CONFIG_CPU_LITTLE_ENDIAN
    726		/* least significant byte first */
    727		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
    728		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
    729#else
    730		/* most significant byte first */
    731		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
    732		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
    733#endif
    734		break;
    735	case KVM_REG_MIPS_MSA_IR:
    736		if (!kvm_mips_guest_has_msa(&vcpu->arch))
    737			return -EINVAL;
    738		v = boot_cpu_data.msa_id;
    739		break;
    740	case KVM_REG_MIPS_MSA_CSR:
    741		if (!kvm_mips_guest_has_msa(&vcpu->arch))
    742			return -EINVAL;
    743		v = fpu->msacsr;
    744		break;
    745
    746	/* registers to be handled specially */
    747	default:
    748		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
    749		if (ret)
    750			return ret;
    751		break;
    752	}
    753	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
    754		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
    755
    756		return put_user(v, uaddr64);
    757	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
    758		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
    759		u32 v32 = (u32)v;
    760
    761		return put_user(v32, uaddr32);
    762	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
    763		void __user *uaddr = (void __user *)(long)reg->addr;
    764
    765		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
    766	} else {
    767		return -EINVAL;
    768	}
    769}
    770
    771static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
    772			    const struct kvm_one_reg *reg)
    773{
    774	struct mips_coproc *cop0 = vcpu->arch.cop0;
    775	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
    776	s64 v;
    777	s64 vs[2];
    778	unsigned int idx;
    779
    780	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
    781		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
    782
    783		if (get_user(v, uaddr64) != 0)
    784			return -EFAULT;
    785	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
    786		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
    787		s32 v32;
    788
    789		if (get_user(v32, uaddr32) != 0)
    790			return -EFAULT;
    791		v = (s64)v32;
    792	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
    793		void __user *uaddr = (void __user *)(long)reg->addr;
    794
    795		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
    796	} else {
    797		return -EINVAL;
    798	}
    799
    800	switch (reg->id) {
    801	/* General purpose registers */
    802	case KVM_REG_MIPS_R0:
    803		/* Silently ignore requests to set $0 */
    804		break;
    805	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
    806		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
    807		break;
    808#ifndef CONFIG_CPU_MIPSR6
    809	case KVM_REG_MIPS_HI:
    810		vcpu->arch.hi = v;
    811		break;
    812	case KVM_REG_MIPS_LO:
    813		vcpu->arch.lo = v;
    814		break;
    815#endif
    816	case KVM_REG_MIPS_PC:
    817		vcpu->arch.pc = v;
    818		break;
    819
    820	/* Floating point registers */
    821	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
    822		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    823			return -EINVAL;
    824		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
    825		/* Odd singles in top of even double when FR=0 */
    826		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
    827			set_fpr32(&fpu->fpr[idx], 0, v);
    828		else
    829			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
    830		break;
    831	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
    832		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    833			return -EINVAL;
    834		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
    835		/* Can't access odd doubles in FR=0 mode */
    836		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
    837			return -EINVAL;
    838		set_fpr64(&fpu->fpr[idx], 0, v);
    839		break;
    840	case KVM_REG_MIPS_FCR_IR:
    841		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    842			return -EINVAL;
    843		/* Read-only */
    844		break;
    845	case KVM_REG_MIPS_FCR_CSR:
    846		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
    847			return -EINVAL;
    848		fpu->fcr31 = v;
    849		break;
    850
    851	/* MIPS SIMD Architecture (MSA) registers */
    852	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
    853		if (!kvm_mips_guest_has_msa(&vcpu->arch))
    854			return -EINVAL;
    855		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
    856#ifdef CONFIG_CPU_LITTLE_ENDIAN
    857		/* least significant byte first */
    858		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
    859		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
    860#else
    861		/* most significant byte first */
    862		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
    863		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
    864#endif
    865		break;
    866	case KVM_REG_MIPS_MSA_IR:
    867		if (!kvm_mips_guest_has_msa(&vcpu->arch))
    868			return -EINVAL;
    869		/* Read-only */
    870		break;
    871	case KVM_REG_MIPS_MSA_CSR:
    872		if (!kvm_mips_guest_has_msa(&vcpu->arch))
    873			return -EINVAL;
    874		fpu->msacsr = v;
    875		break;
    876
    877	/* registers to be handled specially */
    878	default:
    879		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
    880	}
    881	return 0;
    882}
    883
    884static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
    885				     struct kvm_enable_cap *cap)
    886{
    887	int r = 0;
    888
    889	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
    890		return -EINVAL;
    891	if (cap->flags)
    892		return -EINVAL;
    893	if (cap->args[0])
    894		return -EINVAL;
    895
    896	switch (cap->cap) {
    897	case KVM_CAP_MIPS_FPU:
    898		vcpu->arch.fpu_enabled = true;
    899		break;
    900	case KVM_CAP_MIPS_MSA:
    901		vcpu->arch.msa_enabled = true;
    902		break;
    903	default:
    904		r = -EINVAL;
    905		break;
    906	}
    907
    908	return r;
    909}
    910
    911long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
    912			       unsigned long arg)
    913{
    914	struct kvm_vcpu *vcpu = filp->private_data;
    915	void __user *argp = (void __user *)arg;
    916
    917	if (ioctl == KVM_INTERRUPT) {
    918		struct kvm_mips_interrupt irq;
    919
    920		if (copy_from_user(&irq, argp, sizeof(irq)))
    921			return -EFAULT;
    922		kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
    923			  irq.irq);
    924
    925		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
    926	}
    927
    928	return -ENOIOCTLCMD;
    929}
    930
    931long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
    932			 unsigned long arg)
    933{
    934	struct kvm_vcpu *vcpu = filp->private_data;
    935	void __user *argp = (void __user *)arg;
    936	long r;
    937
    938	vcpu_load(vcpu);
    939
    940	switch (ioctl) {
    941	case KVM_SET_ONE_REG:
    942	case KVM_GET_ONE_REG: {
    943		struct kvm_one_reg reg;
    944
    945		r = -EFAULT;
    946		if (copy_from_user(&reg, argp, sizeof(reg)))
    947			break;
    948		if (ioctl == KVM_SET_ONE_REG)
    949			r = kvm_mips_set_reg(vcpu, &reg);
    950		else
    951			r = kvm_mips_get_reg(vcpu, &reg);
    952		break;
    953	}
    954	case KVM_GET_REG_LIST: {
    955		struct kvm_reg_list __user *user_list = argp;
    956		struct kvm_reg_list reg_list;
    957		unsigned n;
    958
    959		r = -EFAULT;
    960		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
    961			break;
    962		n = reg_list.n;
    963		reg_list.n = kvm_mips_num_regs(vcpu);
    964		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
    965			break;
    966		r = -E2BIG;
    967		if (n < reg_list.n)
    968			break;
    969		r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
    970		break;
    971	}
    972	case KVM_ENABLE_CAP: {
    973		struct kvm_enable_cap cap;
    974
    975		r = -EFAULT;
    976		if (copy_from_user(&cap, argp, sizeof(cap)))
    977			break;
    978		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
    979		break;
    980	}
    981	default:
    982		r = -ENOIOCTLCMD;
    983	}
    984
    985	vcpu_put(vcpu);
    986	return r;
    987}
    988
    989void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
    990{
    991
    992}
    993
    994int kvm_arch_flush_remote_tlb(struct kvm *kvm)
    995{
    996	kvm_mips_callbacks->prepare_flush_shadow(kvm);
    997	return 1;
    998}
    999
   1000void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
   1001					const struct kvm_memory_slot *memslot)
   1002{
   1003	kvm_flush_remote_tlbs(kvm);
   1004}
   1005
   1006long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
   1007{
   1008	long r;
   1009
   1010	switch (ioctl) {
   1011	default:
   1012		r = -ENOIOCTLCMD;
   1013	}
   1014
   1015	return r;
   1016}
   1017
   1018int kvm_arch_init(void *opaque)
   1019{
   1020	if (kvm_mips_callbacks) {
   1021		kvm_err("kvm: module already exists\n");
   1022		return -EEXIST;
   1023	}
   1024
   1025	return kvm_mips_emulation_init(&kvm_mips_callbacks);
   1026}
   1027
   1028void kvm_arch_exit(void)
   1029{
   1030	kvm_mips_callbacks = NULL;
   1031}
   1032
   1033int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
   1034				  struct kvm_sregs *sregs)
   1035{
   1036	return -ENOIOCTLCMD;
   1037}
   1038
   1039int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
   1040				  struct kvm_sregs *sregs)
   1041{
   1042	return -ENOIOCTLCMD;
   1043}
   1044
   1045void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
   1046{
   1047}
   1048
   1049int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
   1050{
   1051	return -ENOIOCTLCMD;
   1052}
   1053
   1054int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
   1055{
   1056	return -ENOIOCTLCMD;
   1057}
   1058
   1059vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
   1060{
   1061	return VM_FAULT_SIGBUS;
   1062}
   1063
   1064int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
   1065{
   1066	int r;
   1067
   1068	switch (ext) {
   1069	case KVM_CAP_ONE_REG:
   1070	case KVM_CAP_ENABLE_CAP:
   1071	case KVM_CAP_READONLY_MEM:
   1072	case KVM_CAP_SYNC_MMU:
   1073	case KVM_CAP_IMMEDIATE_EXIT:
   1074		r = 1;
   1075		break;
   1076	case KVM_CAP_NR_VCPUS:
   1077		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
   1078		break;
   1079	case KVM_CAP_MAX_VCPUS:
   1080		r = KVM_MAX_VCPUS;
   1081		break;
   1082	case KVM_CAP_MAX_VCPU_ID:
   1083		r = KVM_MAX_VCPU_IDS;
   1084		break;
   1085	case KVM_CAP_MIPS_FPU:
   1086		/* We don't handle systems with inconsistent cpu_has_fpu */
   1087		r = !!raw_cpu_has_fpu;
   1088		break;
   1089	case KVM_CAP_MIPS_MSA:
   1090		/*
   1091		 * We don't support MSA vector partitioning yet:
   1092		 * 1) It would require explicit support which can't be tested
   1093		 *    yet due to lack of support in current hardware.
   1094		 * 2) It extends the state that would need to be saved/restored
   1095		 *    by e.g. QEMU for migration.
   1096		 *
   1097		 * When vector partitioning hardware becomes available, support
   1098		 * could be added by requiring a flag when enabling
   1099		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
   1100		 * to save/restore the appropriate extra state.
   1101		 */
   1102		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
   1103		break;
   1104	default:
   1105		r = kvm_mips_callbacks->check_extension(kvm, ext);
   1106		break;
   1107	}
   1108	return r;
   1109}
   1110
   1111int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
   1112{
   1113	return kvm_mips_pending_timer(vcpu) ||
   1114		kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
   1115}
   1116
   1117int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
   1118{
   1119	int i;
   1120	struct mips_coproc *cop0;
   1121
   1122	if (!vcpu)
   1123		return -1;
   1124
   1125	kvm_debug("VCPU Register Dump:\n");
   1126	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
   1127	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
   1128
   1129	for (i = 0; i < 32; i += 4) {
   1130		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
   1131		       vcpu->arch.gprs[i],
   1132		       vcpu->arch.gprs[i + 1],
   1133		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
   1134	}
   1135	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
   1136	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
   1137
   1138	cop0 = vcpu->arch.cop0;
   1139	kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
   1140		  kvm_read_c0_guest_status(cop0),
   1141		  kvm_read_c0_guest_cause(cop0));
   1142
   1143	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
   1144
   1145	return 0;
   1146}
   1147
   1148int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
   1149{
   1150	int i;
   1151
   1152	vcpu_load(vcpu);
   1153
   1154	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
   1155		vcpu->arch.gprs[i] = regs->gpr[i];
   1156	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
   1157	vcpu->arch.hi = regs->hi;
   1158	vcpu->arch.lo = regs->lo;
   1159	vcpu->arch.pc = regs->pc;
   1160
   1161	vcpu_put(vcpu);
   1162	return 0;
   1163}
   1164
   1165int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
   1166{
   1167	int i;
   1168
   1169	vcpu_load(vcpu);
   1170
   1171	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
   1172		regs->gpr[i] = vcpu->arch.gprs[i];
   1173
   1174	regs->hi = vcpu->arch.hi;
   1175	regs->lo = vcpu->arch.lo;
   1176	regs->pc = vcpu->arch.pc;
   1177
   1178	vcpu_put(vcpu);
   1179	return 0;
   1180}
   1181
   1182int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
   1183				  struct kvm_translation *tr)
   1184{
   1185	return 0;
   1186}
   1187
   1188static void kvm_mips_set_c0_status(void)
   1189{
   1190	u32 status = read_c0_status();
   1191
   1192	if (cpu_has_dsp)
   1193		status |= (ST0_MX);
   1194
   1195	write_c0_status(status);
   1196	ehb();
   1197}
   1198
   1199/*
   1200 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
   1201 */
   1202static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
   1203{
   1204	struct kvm_run *run = vcpu->run;
   1205	u32 cause = vcpu->arch.host_cp0_cause;
   1206	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
   1207	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
   1208	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
   1209	enum emulation_result er = EMULATE_DONE;
   1210	u32 inst;
   1211	int ret = RESUME_GUEST;
   1212
   1213	vcpu->mode = OUTSIDE_GUEST_MODE;
   1214
   1215	/* Set a default exit reason */
   1216	run->exit_reason = KVM_EXIT_UNKNOWN;
   1217	run->ready_for_interrupt_injection = 1;
   1218
   1219	/*
   1220	 * Set the appropriate status bits based on host CPU features,
   1221	 * before we hit the scheduler
   1222	 */
   1223	kvm_mips_set_c0_status();
   1224
   1225	local_irq_enable();
   1226
   1227	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
   1228			cause, opc, run, vcpu);
   1229	trace_kvm_exit(vcpu, exccode);
   1230
   1231	switch (exccode) {
   1232	case EXCCODE_INT:
   1233		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
   1234
   1235		++vcpu->stat.int_exits;
   1236
   1237		if (need_resched())
   1238			cond_resched();
   1239
   1240		ret = RESUME_GUEST;
   1241		break;
   1242
   1243	case EXCCODE_CPU:
   1244		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
   1245
   1246		++vcpu->stat.cop_unusable_exits;
   1247		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
   1248		/* XXXKYMA: Might need to return to user space */
   1249		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
   1250			ret = RESUME_HOST;
   1251		break;
   1252
   1253	case EXCCODE_MOD:
   1254		++vcpu->stat.tlbmod_exits;
   1255		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
   1256		break;
   1257
   1258	case EXCCODE_TLBS:
   1259		kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
   1260			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
   1261			  badvaddr);
   1262
   1263		++vcpu->stat.tlbmiss_st_exits;
   1264		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
   1265		break;
   1266
   1267	case EXCCODE_TLBL:
   1268		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
   1269			  cause, opc, badvaddr);
   1270
   1271		++vcpu->stat.tlbmiss_ld_exits;
   1272		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
   1273		break;
   1274
   1275	case EXCCODE_ADES:
   1276		++vcpu->stat.addrerr_st_exits;
   1277		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
   1278		break;
   1279
   1280	case EXCCODE_ADEL:
   1281		++vcpu->stat.addrerr_ld_exits;
   1282		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
   1283		break;
   1284
   1285	case EXCCODE_SYS:
   1286		++vcpu->stat.syscall_exits;
   1287		ret = kvm_mips_callbacks->handle_syscall(vcpu);
   1288		break;
   1289
   1290	case EXCCODE_RI:
   1291		++vcpu->stat.resvd_inst_exits;
   1292		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
   1293		break;
   1294
   1295	case EXCCODE_BP:
   1296		++vcpu->stat.break_inst_exits;
   1297		ret = kvm_mips_callbacks->handle_break(vcpu);
   1298		break;
   1299
   1300	case EXCCODE_TR:
   1301		++vcpu->stat.trap_inst_exits;
   1302		ret = kvm_mips_callbacks->handle_trap(vcpu);
   1303		break;
   1304
   1305	case EXCCODE_MSAFPE:
   1306		++vcpu->stat.msa_fpe_exits;
   1307		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
   1308		break;
   1309
   1310	case EXCCODE_FPE:
   1311		++vcpu->stat.fpe_exits;
   1312		ret = kvm_mips_callbacks->handle_fpe(vcpu);
   1313		break;
   1314
   1315	case EXCCODE_MSADIS:
   1316		++vcpu->stat.msa_disabled_exits;
   1317		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
   1318		break;
   1319
   1320	case EXCCODE_GE:
   1321		/* defer exit accounting to handler */
   1322		ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
   1323		break;
   1324
   1325	default:
   1326		if (cause & CAUSEF_BD)
   1327			opc += 1;
   1328		inst = 0;
   1329		kvm_get_badinstr(opc, vcpu, &inst);
   1330		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
   1331			exccode, opc, inst, badvaddr,
   1332			kvm_read_c0_guest_status(vcpu->arch.cop0));
   1333		kvm_arch_vcpu_dump_regs(vcpu);
   1334		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
   1335		ret = RESUME_HOST;
   1336		break;
   1337
   1338	}
   1339
   1340	local_irq_disable();
   1341
   1342	if (ret == RESUME_GUEST)
   1343		kvm_vz_acquire_htimer(vcpu);
   1344
   1345	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
   1346		kvm_mips_deliver_interrupts(vcpu, cause);
   1347
   1348	if (!(ret & RESUME_HOST)) {
   1349		/* Only check for signals if not already exiting to userspace */
   1350		if (signal_pending(current)) {
   1351			run->exit_reason = KVM_EXIT_INTR;
   1352			ret = (-EINTR << 2) | RESUME_HOST;
   1353			++vcpu->stat.signal_exits;
   1354			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
   1355		}
   1356	}
   1357
   1358	if (ret == RESUME_GUEST) {
   1359		trace_kvm_reenter(vcpu);
   1360
   1361		/*
   1362		 * Make sure the read of VCPU requests in vcpu_reenter()
   1363		 * callback is not reordered ahead of the write to vcpu->mode,
   1364		 * or we could miss a TLB flush request while the requester sees
   1365		 * the VCPU as outside of guest mode and not needing an IPI.
   1366		 */
   1367		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
   1368
   1369		kvm_mips_callbacks->vcpu_reenter(vcpu);
   1370
   1371		/*
   1372		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
   1373		 * is live), restore FCR31 / MSACSR.
   1374		 *
   1375		 * This should be before returning to the guest exception
   1376		 * vector, as it may well cause an [MSA] FP exception if there
   1377		 * are pending exception bits unmasked. (see
   1378		 * kvm_mips_csr_die_notifier() for how that is handled).
   1379		 */
   1380		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
   1381		    read_c0_status() & ST0_CU1)
   1382			__kvm_restore_fcsr(&vcpu->arch);
   1383
   1384		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
   1385		    read_c0_config5() & MIPS_CONF5_MSAEN)
   1386			__kvm_restore_msacsr(&vcpu->arch);
   1387	}
   1388	return ret;
   1389}
   1390
   1391int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
   1392{
   1393	int ret;
   1394
   1395	guest_state_exit_irqoff();
   1396	ret = __kvm_mips_handle_exit(vcpu);
   1397	guest_state_enter_irqoff();
   1398
   1399	return ret;
   1400}
   1401
   1402/* Enable FPU for guest and restore context */
   1403void kvm_own_fpu(struct kvm_vcpu *vcpu)
   1404{
   1405	struct mips_coproc *cop0 = vcpu->arch.cop0;
   1406	unsigned int sr, cfg5;
   1407
   1408	preempt_disable();
   1409
   1410	sr = kvm_read_c0_guest_status(cop0);
   1411
   1412	/*
   1413	 * If MSA state is already live, it is undefined how it interacts with
   1414	 * FR=0 FPU state, and we don't want to hit reserved instruction
   1415	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
   1416	 * play it safe and save it first.
   1417	 */
   1418	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
   1419	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
   1420		kvm_lose_fpu(vcpu);
   1421
   1422	/*
   1423	 * Enable FPU for guest
   1424	 * We set FR and FRE according to guest context
   1425	 */
   1426	change_c0_status(ST0_CU1 | ST0_FR, sr);
   1427	if (cpu_has_fre) {
   1428		cfg5 = kvm_read_c0_guest_config5(cop0);
   1429		change_c0_config5(MIPS_CONF5_FRE, cfg5);
   1430	}
   1431	enable_fpu_hazard();
   1432
   1433	/* If guest FPU state not active, restore it now */
   1434	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
   1435		__kvm_restore_fpu(&vcpu->arch);
   1436		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
   1437		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
   1438	} else {
   1439		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
   1440	}
   1441
   1442	preempt_enable();
   1443}
   1444
   1445#ifdef CONFIG_CPU_HAS_MSA
   1446/* Enable MSA for guest and restore context */
   1447void kvm_own_msa(struct kvm_vcpu *vcpu)
   1448{
   1449	struct mips_coproc *cop0 = vcpu->arch.cop0;
   1450	unsigned int sr, cfg5;
   1451
   1452	preempt_disable();
   1453
   1454	/*
   1455	 * Enable FPU if enabled in guest, since we're restoring FPU context
   1456	 * anyway. We set FR and FRE according to guest context.
   1457	 */
   1458	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
   1459		sr = kvm_read_c0_guest_status(cop0);
   1460
   1461		/*
   1462		 * If FR=0 FPU state is already live, it is undefined how it
   1463		 * interacts with MSA state, so play it safe and save it first.
   1464		 */
   1465		if (!(sr & ST0_FR) &&
   1466		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
   1467				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
   1468			kvm_lose_fpu(vcpu);
   1469
   1470		change_c0_status(ST0_CU1 | ST0_FR, sr);
   1471		if (sr & ST0_CU1 && cpu_has_fre) {
   1472			cfg5 = kvm_read_c0_guest_config5(cop0);
   1473			change_c0_config5(MIPS_CONF5_FRE, cfg5);
   1474		}
   1475	}
   1476
   1477	/* Enable MSA for guest */
   1478	set_c0_config5(MIPS_CONF5_MSAEN);
   1479	enable_fpu_hazard();
   1480
   1481	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
   1482	case KVM_MIPS_AUX_FPU:
   1483		/*
   1484		 * Guest FPU state already loaded, only restore upper MSA state
   1485		 */
   1486		__kvm_restore_msa_upper(&vcpu->arch);
   1487		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
   1488		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
   1489		break;
   1490	case 0:
   1491		/* Neither FPU or MSA already active, restore full MSA state */
   1492		__kvm_restore_msa(&vcpu->arch);
   1493		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
   1494		if (kvm_mips_guest_has_fpu(&vcpu->arch))
   1495			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
   1496		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
   1497			      KVM_TRACE_AUX_FPU_MSA);
   1498		break;
   1499	default:
   1500		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
   1501		break;
   1502	}
   1503
   1504	preempt_enable();
   1505}
   1506#endif
   1507
   1508/* Drop FPU & MSA without saving it */
   1509void kvm_drop_fpu(struct kvm_vcpu *vcpu)
   1510{
   1511	preempt_disable();
   1512	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
   1513		disable_msa();
   1514		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
   1515		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
   1516	}
   1517	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
   1518		clear_c0_status(ST0_CU1 | ST0_FR);
   1519		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
   1520		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
   1521	}
   1522	preempt_enable();
   1523}
   1524
   1525/* Save and disable FPU & MSA */
   1526void kvm_lose_fpu(struct kvm_vcpu *vcpu)
   1527{
   1528	/*
   1529	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
   1530	 * is disabled in guest context (software), but the register state in
   1531	 * the hardware may still be in use.
   1532	 * This is why we explicitly re-enable the hardware before saving.
   1533	 */
   1534
   1535	preempt_disable();
   1536	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
   1537		__kvm_save_msa(&vcpu->arch);
   1538		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
   1539
   1540		/* Disable MSA & FPU */
   1541		disable_msa();
   1542		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
   1543			clear_c0_status(ST0_CU1 | ST0_FR);
   1544			disable_fpu_hazard();
   1545		}
   1546		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
   1547	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
   1548		__kvm_save_fpu(&vcpu->arch);
   1549		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
   1550		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
   1551
   1552		/* Disable FPU */
   1553		clear_c0_status(ST0_CU1 | ST0_FR);
   1554		disable_fpu_hazard();
   1555	}
   1556	preempt_enable();
   1557}
   1558
   1559/*
   1560 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
   1561 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
   1562 * exception if cause bits are set in the value being written.
   1563 */
   1564static int kvm_mips_csr_die_notify(struct notifier_block *self,
   1565				   unsigned long cmd, void *ptr)
   1566{
   1567	struct die_args *args = (struct die_args *)ptr;
   1568	struct pt_regs *regs = args->regs;
   1569	unsigned long pc;
   1570
   1571	/* Only interested in FPE and MSAFPE */
   1572	if (cmd != DIE_FP && cmd != DIE_MSAFP)
   1573		return NOTIFY_DONE;
   1574
   1575	/* Return immediately if guest context isn't active */
   1576	if (!(current->flags & PF_VCPU))
   1577		return NOTIFY_DONE;
   1578
   1579	/* Should never get here from user mode */
   1580	BUG_ON(user_mode(regs));
   1581
   1582	pc = instruction_pointer(regs);
   1583	switch (cmd) {
   1584	case DIE_FP:
   1585		/* match 2nd instruction in __kvm_restore_fcsr */
   1586		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
   1587			return NOTIFY_DONE;
   1588		break;
   1589	case DIE_MSAFP:
   1590		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
   1591		if (!cpu_has_msa ||
   1592		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
   1593		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
   1594			return NOTIFY_DONE;
   1595		break;
   1596	}
   1597
   1598	/* Move PC forward a little and continue executing */
   1599	instruction_pointer(regs) += 4;
   1600
   1601	return NOTIFY_STOP;
   1602}
   1603
   1604static struct notifier_block kvm_mips_csr_die_notifier = {
   1605	.notifier_call = kvm_mips_csr_die_notify,
   1606};
   1607
   1608static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
   1609	[MIPS_EXC_INT_TIMER] = C_IRQ5,
   1610	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
   1611	[MIPS_EXC_INT_IPI_1] = C_IRQ1,
   1612	[MIPS_EXC_INT_IPI_2] = C_IRQ2,
   1613};
   1614
   1615static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
   1616	[MIPS_EXC_INT_TIMER] = C_IRQ5,
   1617	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
   1618	[MIPS_EXC_INT_IO_2]  = C_IRQ1,
   1619	[MIPS_EXC_INT_IPI_1] = C_IRQ4,
   1620};
   1621
   1622u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
   1623
   1624u32 kvm_irq_to_priority(u32 irq)
   1625{
   1626	int i;
   1627
   1628	for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
   1629		if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
   1630			return i;
   1631	}
   1632
   1633	return MIPS_EXC_MAX;
   1634}
   1635
   1636static int __init kvm_mips_init(void)
   1637{
   1638	int ret;
   1639
   1640	if (cpu_has_mmid) {
   1641		pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
   1642		return -EOPNOTSUPP;
   1643	}
   1644
   1645	ret = kvm_mips_entry_setup();
   1646	if (ret)
   1647		return ret;
   1648
   1649	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
   1650
   1651	if (ret)
   1652		return ret;
   1653
   1654	if (boot_cpu_type() == CPU_LOONGSON64)
   1655		kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
   1656
   1657	register_die_notifier(&kvm_mips_csr_die_notifier);
   1658
   1659	return 0;
   1660}
   1661
   1662static void __exit kvm_mips_exit(void)
   1663{
   1664	kvm_exit();
   1665
   1666	unregister_die_notifier(&kvm_mips_csr_die_notifier);
   1667}
   1668
   1669module_init(kvm_mips_init);
   1670module_exit(kvm_mips_exit);
   1671
   1672EXPORT_TRACEPOINT_SYMBOL(kvm_exit);