cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vz.c (87378B)


      1/*
      2 * This file is subject to the terms and conditions of the GNU General Public
      3 * License.  See the file "COPYING" in the main directory of this archive
      4 * for more details.
      5 *
      6 * KVM/MIPS: Support for hardware virtualization extensions
      7 *
      8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
      9 * Authors: Yann Le Du <ledu@kymasys.com>
     10 */
     11
     12#include <linux/errno.h>
     13#include <linux/err.h>
     14#include <linux/module.h>
     15#include <linux/preempt.h>
     16#include <linux/vmalloc.h>
     17#include <asm/cacheflush.h>
     18#include <asm/cacheops.h>
     19#include <asm/cmpxchg.h>
     20#include <asm/fpu.h>
     21#include <asm/hazards.h>
     22#include <asm/inst.h>
     23#include <asm/mmu_context.h>
     24#include <asm/r4kcache.h>
     25#include <asm/time.h>
     26#include <asm/tlb.h>
     27#include <asm/tlbex.h>
     28
     29#include <linux/kvm_host.h>
     30
     31#include "interrupt.h"
     32#ifdef CONFIG_CPU_LOONGSON64
     33#include "loongson_regs.h"
     34#endif
     35
     36#include "trace.h"
     37
     38/* Pointers to last VCPU loaded on each physical CPU */
     39static struct kvm_vcpu *last_vcpu[NR_CPUS];
     40/* Pointers to last VCPU executed on each physical CPU */
     41static struct kvm_vcpu *last_exec_vcpu[NR_CPUS];
     42
     43/*
     44 * Number of guest VTLB entries to use, so we can catch inconsistency between
     45 * CPUs.
     46 */
     47static unsigned int kvm_vz_guest_vtlb_size;
     48
     49static inline long kvm_vz_read_gc0_ebase(void)
     50{
     51	if (sizeof(long) == 8 && cpu_has_ebase_wg)
     52		return read_gc0_ebase_64();
     53	else
     54		return read_gc0_ebase();
     55}
     56
     57static inline void kvm_vz_write_gc0_ebase(long v)
     58{
     59	/*
     60	 * First write with WG=1 to write upper bits, then write again in case
     61	 * WG should be left at 0.
     62	 * write_gc0_ebase_64() is no longer UNDEFINED since R6.
     63	 */
     64	if (sizeof(long) == 8 &&
     65	    (cpu_has_mips64r6 || cpu_has_ebase_wg)) {
     66		write_gc0_ebase_64(v | MIPS_EBASE_WG);
     67		write_gc0_ebase_64(v);
     68	} else {
     69		write_gc0_ebase(v | MIPS_EBASE_WG);
     70		write_gc0_ebase(v);
     71	}
     72}
     73
     74/*
     75 * These Config bits may be writable by the guest:
     76 * Config:	[K23, KU] (!TLB), K0
     77 * Config1:	(none)
     78 * Config2:	[TU, SU] (impl)
     79 * Config3:	ISAOnExc
     80 * Config4:	FTLBPageSize
     81 * Config5:	K, CV, MSAEn, UFE, FRE, SBRI, UFR
     82 */
     83
     84static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu)
     85{
     86	return CONF_CM_CMASK;
     87}
     88
     89static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu)
     90{
     91	return 0;
     92}
     93
     94static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu)
     95{
     96	return 0;
     97}
     98
     99static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu)
    100{
    101	return MIPS_CONF3_ISA_OE;
    102}
    103
    104static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu)
    105{
    106	/* no need to be exact */
    107	return MIPS_CONF4_VFTLBPAGESIZE;
    108}
    109
    110static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu)
    111{
    112	unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI;
    113
    114	/* Permit MSAEn changes if MSA supported and enabled */
    115	if (kvm_mips_guest_has_msa(&vcpu->arch))
    116		mask |= MIPS_CONF5_MSAEN;
    117
    118	/*
    119	 * Permit guest FPU mode changes if FPU is enabled and the relevant
    120	 * feature exists according to FIR register.
    121	 */
    122	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
    123		if (cpu_has_ufr)
    124			mask |= MIPS_CONF5_UFR;
    125		if (cpu_has_fre)
    126			mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE;
    127	}
    128
    129	return mask;
    130}
    131
    132static inline unsigned int kvm_vz_config6_guest_wrmask(struct kvm_vcpu *vcpu)
    133{
    134	return LOONGSON_CONF6_INTIMER | LOONGSON_CONF6_EXTIMER;
    135}
    136
    137/*
    138 * VZ optionally allows these additional Config bits to be written by root:
    139 * Config:	M, [MT]
    140 * Config1:	M, [MMUSize-1, C2, MD, PC, WR, CA], FP
    141 * Config2:	M
    142 * Config3:	M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
    143 *		VInt, SP, CDMM, MT, SM, TL]
    144 * Config4:	M, [VTLBSizeExt, MMUSizeExt]
    145 * Config5:	MRP
    146 */
    147
    148static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu)
    149{
    150	return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M;
    151}
    152
    153static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu)
    154{
    155	unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M;
    156
    157	/* Permit FPU to be present if FPU is supported */
    158	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
    159		mask |= MIPS_CONF1_FP;
    160
    161	return mask;
    162}
    163
    164static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu)
    165{
    166	return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M;
    167}
    168
    169static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu)
    170{
    171	unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M |
    172		MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC;
    173
    174	/* Permit MSA to be present if MSA is supported */
    175	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
    176		mask |= MIPS_CONF3_MSA;
    177
    178	return mask;
    179}
    180
    181static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu)
    182{
    183	return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M;
    184}
    185
    186static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu)
    187{
    188	return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP;
    189}
    190
    191static inline unsigned int kvm_vz_config6_user_wrmask(struct kvm_vcpu *vcpu)
    192{
    193	return kvm_vz_config6_guest_wrmask(vcpu) |
    194		LOONGSON_CONF6_SFBEN | LOONGSON_CONF6_FTLBDIS;
    195}
    196
    197static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva)
    198{
    199	/* VZ guest has already converted gva to gpa */
    200	return gva;
    201}
    202
    203static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
    204{
    205	set_bit(priority, &vcpu->arch.pending_exceptions);
    206	clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
    207}
    208
    209static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
    210{
    211	clear_bit(priority, &vcpu->arch.pending_exceptions);
    212	set_bit(priority, &vcpu->arch.pending_exceptions_clr);
    213}
    214
    215static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu)
    216{
    217	/*
    218	 * timer expiry is asynchronous to vcpu execution therefore defer guest
    219	 * cp0 accesses
    220	 */
    221	kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
    222}
    223
    224static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu)
    225{
    226	/*
    227	 * timer expiry is asynchronous to vcpu execution therefore defer guest
    228	 * cp0 accesses
    229	 */
    230	kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER);
    231}
    232
    233static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu,
    234				   struct kvm_mips_interrupt *irq)
    235{
    236	int intr = (int)irq->irq;
    237
    238	/*
    239	 * interrupts are asynchronous to vcpu execution therefore defer guest
    240	 * cp0 accesses
    241	 */
    242	kvm_vz_queue_irq(vcpu, kvm_irq_to_priority(intr));
    243}
    244
    245static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu,
    246				     struct kvm_mips_interrupt *irq)
    247{
    248	int intr = (int)irq->irq;
    249
    250	/*
    251	 * interrupts are asynchronous to vcpu execution therefore defer guest
    252	 * cp0 accesses
    253	 */
    254	kvm_vz_dequeue_irq(vcpu, kvm_irq_to_priority(-intr));
    255}
    256
    257static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority,
    258				 u32 cause)
    259{
    260	u32 irq = (priority < MIPS_EXC_MAX) ?
    261		kvm_priority_to_irq[priority] : 0;
    262
    263	switch (priority) {
    264	case MIPS_EXC_INT_TIMER:
    265		set_gc0_cause(C_TI);
    266		break;
    267
    268	case MIPS_EXC_INT_IO_1:
    269	case MIPS_EXC_INT_IO_2:
    270	case MIPS_EXC_INT_IPI_1:
    271	case MIPS_EXC_INT_IPI_2:
    272		if (cpu_has_guestctl2)
    273			set_c0_guestctl2(irq);
    274		else
    275			set_gc0_cause(irq);
    276		break;
    277
    278	default:
    279		break;
    280	}
    281
    282	clear_bit(priority, &vcpu->arch.pending_exceptions);
    283	return 1;
    284}
    285
    286static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority,
    287			       u32 cause)
    288{
    289	u32 irq = (priority < MIPS_EXC_MAX) ?
    290		kvm_priority_to_irq[priority] : 0;
    291
    292	switch (priority) {
    293	case MIPS_EXC_INT_TIMER:
    294		/*
    295		 * Explicitly clear irq associated with Cause.IP[IPTI]
    296		 * if GuestCtl2 virtual interrupt register not
    297		 * supported or if not using GuestCtl2 Hardware Clear.
    298		 */
    299		if (cpu_has_guestctl2) {
    300			if (!(read_c0_guestctl2() & (irq << 14)))
    301				clear_c0_guestctl2(irq);
    302		} else {
    303			clear_gc0_cause(irq);
    304		}
    305		break;
    306
    307	case MIPS_EXC_INT_IO_1:
    308	case MIPS_EXC_INT_IO_2:
    309	case MIPS_EXC_INT_IPI_1:
    310	case MIPS_EXC_INT_IPI_2:
    311		/* Clear GuestCtl2.VIP irq if not using Hardware Clear */
    312		if (cpu_has_guestctl2) {
    313			if (!(read_c0_guestctl2() & (irq << 14)))
    314				clear_c0_guestctl2(irq);
    315		} else {
    316			clear_gc0_cause(irq);
    317		}
    318		break;
    319
    320	default:
    321		break;
    322	}
    323
    324	clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
    325	return 1;
    326}
    327
    328/*
    329 * VZ guest timer handling.
    330 */
    331
    332/**
    333 * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer.
    334 * @vcpu:	Virtual CPU.
    335 *
    336 * Returns:	true if the VZ GTOffset & real guest CP0_Count should be used
    337 *		instead of software emulation of guest timer.
    338 *		false otherwise.
    339 */
    340static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu)
    341{
    342	if (kvm_mips_count_disabled(vcpu))
    343		return false;
    344
    345	/* Chosen frequency must match real frequency */
    346	if (mips_hpt_frequency != vcpu->arch.count_hz)
    347		return false;
    348
    349	/* We don't support a CP0_GTOffset with fewer bits than CP0_Count */
    350	if (current_cpu_data.gtoffset_mask != 0xffffffff)
    351		return false;
    352
    353	return true;
    354}
    355
    356/**
    357 * _kvm_vz_restore_stimer() - Restore soft timer state.
    358 * @vcpu:	Virtual CPU.
    359 * @compare:	CP0_Compare register value, restored by caller.
    360 * @cause:	CP0_Cause register to restore.
    361 *
    362 * Restore VZ state relating to the soft timer. The hard timer can be enabled
    363 * later.
    364 */
    365static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare,
    366				   u32 cause)
    367{
    368	/*
    369	 * Avoid spurious counter interrupts by setting Guest CP0_Count to just
    370	 * after Guest CP0_Compare.
    371	 */
    372	write_c0_gtoffset(compare - read_c0_count());
    373
    374	back_to_back_c0_hazard();
    375	write_gc0_cause(cause);
    376}
    377
    378/**
    379 * _kvm_vz_restore_htimer() - Restore hard timer state.
    380 * @vcpu:	Virtual CPU.
    381 * @compare:	CP0_Compare register value, restored by caller.
    382 * @cause:	CP0_Cause register to restore.
    383 *
    384 * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the
    385 * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause.
    386 */
    387static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu,
    388				   u32 compare, u32 cause)
    389{
    390	u32 start_count, after_count;
    391	unsigned long flags;
    392
    393	/*
    394	 * Freeze the soft-timer and sync the guest CP0_Count with it. We do
    395	 * this with interrupts disabled to avoid latency.
    396	 */
    397	local_irq_save(flags);
    398	kvm_mips_freeze_hrtimer(vcpu, &start_count);
    399	write_c0_gtoffset(start_count - read_c0_count());
    400	local_irq_restore(flags);
    401
    402	/* restore guest CP0_Cause, as TI may already be set */
    403	back_to_back_c0_hazard();
    404	write_gc0_cause(cause);
    405
    406	/*
    407	 * The above sequence isn't atomic and would result in lost timer
    408	 * interrupts if we're not careful. Detect if a timer interrupt is due
    409	 * and assert it.
    410	 */
    411	back_to_back_c0_hazard();
    412	after_count = read_gc0_count();
    413	if (after_count - start_count > compare - start_count - 1)
    414		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
    415}
    416
    417/**
    418 * kvm_vz_restore_timer() - Restore timer state.
    419 * @vcpu:	Virtual CPU.
    420 *
    421 * Restore soft timer state from saved context.
    422 */
    423static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu)
    424{
    425	struct mips_coproc *cop0 = vcpu->arch.cop0;
    426	u32 cause, compare;
    427
    428	compare = kvm_read_sw_gc0_compare(cop0);
    429	cause = kvm_read_sw_gc0_cause(cop0);
    430
    431	write_gc0_compare(compare);
    432	_kvm_vz_restore_stimer(vcpu, compare, cause);
    433}
    434
    435/**
    436 * kvm_vz_acquire_htimer() - Switch to hard timer state.
    437 * @vcpu:	Virtual CPU.
    438 *
    439 * Restore hard timer state on top of existing soft timer state if possible.
    440 *
    441 * Since hard timer won't remain active over preemption, preemption should be
    442 * disabled by the caller.
    443 */
    444void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu)
    445{
    446	u32 gctl0;
    447
    448	gctl0 = read_c0_guestctl0();
    449	if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) {
    450		/* enable guest access to hard timer */
    451		write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT);
    452
    453		_kvm_vz_restore_htimer(vcpu, read_gc0_compare(),
    454				       read_gc0_cause());
    455	}
    456}
    457
    458/**
    459 * _kvm_vz_save_htimer() - Switch to software emulation of guest timer.
    460 * @vcpu:	Virtual CPU.
    461 * @out_compare: Pointer to write compare value to.
    462 * @out_cause:	Pointer to write cause value to.
    463 *
    464 * Save VZ guest timer state and switch to software emulation of guest CP0
    465 * timer. The hard timer must already be in use, so preemption should be
    466 * disabled.
    467 */
    468static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu,
    469				u32 *out_compare, u32 *out_cause)
    470{
    471	u32 cause, compare, before_count, end_count;
    472	ktime_t before_time;
    473
    474	compare = read_gc0_compare();
    475	*out_compare = compare;
    476
    477	before_time = ktime_get();
    478
    479	/*
    480	 * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time
    481	 * at which no pending timer interrupt is missing.
    482	 */
    483	before_count = read_gc0_count();
    484	back_to_back_c0_hazard();
    485	cause = read_gc0_cause();
    486	*out_cause = cause;
    487
    488	/*
    489	 * Record a final CP0_Count which we will transfer to the soft-timer.
    490	 * This is recorded *after* saving CP0_Cause, so we don't get any timer
    491	 * interrupts from just after the final CP0_Count point.
    492	 */
    493	back_to_back_c0_hazard();
    494	end_count = read_gc0_count();
    495
    496	/*
    497	 * The above sequence isn't atomic, so we could miss a timer interrupt
    498	 * between reading CP0_Cause and end_count. Detect and record any timer
    499	 * interrupt due between before_count and end_count.
    500	 */
    501	if (end_count - before_count > compare - before_count - 1)
    502		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
    503
    504	/*
    505	 * Restore soft-timer, ignoring a small amount of negative drift due to
    506	 * delay between freeze_hrtimer and setting CP0_GTOffset.
    507	 */
    508	kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000);
    509}
    510
    511/**
    512 * kvm_vz_save_timer() - Save guest timer state.
    513 * @vcpu:	Virtual CPU.
    514 *
    515 * Save VZ guest timer state and switch to soft guest timer if hard timer was in
    516 * use.
    517 */
    518static void kvm_vz_save_timer(struct kvm_vcpu *vcpu)
    519{
    520	struct mips_coproc *cop0 = vcpu->arch.cop0;
    521	u32 gctl0, compare, cause;
    522
    523	gctl0 = read_c0_guestctl0();
    524	if (gctl0 & MIPS_GCTL0_GT) {
    525		/* disable guest use of hard timer */
    526		write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
    527
    528		/* save hard timer state */
    529		_kvm_vz_save_htimer(vcpu, &compare, &cause);
    530	} else {
    531		compare = read_gc0_compare();
    532		cause = read_gc0_cause();
    533	}
    534
    535	/* save timer-related state to VCPU context */
    536	kvm_write_sw_gc0_cause(cop0, cause);
    537	kvm_write_sw_gc0_compare(cop0, compare);
    538}
    539
    540/**
    541 * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use.
    542 * @vcpu:	Virtual CPU.
    543 *
    544 * Transfers the state of the hard guest timer to the soft guest timer, leaving
    545 * guest state intact so it can continue to be used with the soft timer.
    546 */
    547void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu)
    548{
    549	u32 gctl0, compare, cause;
    550
    551	preempt_disable();
    552	gctl0 = read_c0_guestctl0();
    553	if (gctl0 & MIPS_GCTL0_GT) {
    554		/* disable guest use of timer */
    555		write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
    556
    557		/* switch to soft timer */
    558		_kvm_vz_save_htimer(vcpu, &compare, &cause);
    559
    560		/* leave soft timer in usable state */
    561		_kvm_vz_restore_stimer(vcpu, compare, cause);
    562	}
    563	preempt_enable();
    564}
    565
    566/**
    567 * is_eva_access() - Find whether an instruction is an EVA memory accessor.
    568 * @inst:	32-bit instruction encoding.
    569 *
    570 * Finds whether @inst encodes an EVA memory access instruction, which would
    571 * indicate that emulation of it should access the user mode address space
    572 * instead of the kernel mode address space. This matters for MUSUK segments
    573 * which are TLB mapped for user mode but unmapped for kernel mode.
    574 *
    575 * Returns:	Whether @inst encodes an EVA accessor instruction.
    576 */
    577static bool is_eva_access(union mips_instruction inst)
    578{
    579	if (inst.spec3_format.opcode != spec3_op)
    580		return false;
    581
    582	switch (inst.spec3_format.func) {
    583	case lwle_op:
    584	case lwre_op:
    585	case cachee_op:
    586	case sbe_op:
    587	case she_op:
    588	case sce_op:
    589	case swe_op:
    590	case swle_op:
    591	case swre_op:
    592	case prefe_op:
    593	case lbue_op:
    594	case lhue_op:
    595	case lbe_op:
    596	case lhe_op:
    597	case lle_op:
    598	case lwe_op:
    599		return true;
    600	default:
    601		return false;
    602	}
    603}
    604
    605/**
    606 * is_eva_am_mapped() - Find whether an access mode is mapped.
    607 * @vcpu:	KVM VCPU state.
    608 * @am:		3-bit encoded access mode.
    609 * @eu:		Segment becomes unmapped and uncached when Status.ERL=1.
    610 *
    611 * Decode @am to find whether it encodes a mapped segment for the current VCPU
    612 * state. Where necessary @eu and the actual instruction causing the fault are
    613 * taken into account to make the decision.
    614 *
    615 * Returns:	Whether the VCPU faulted on a TLB mapped address.
    616 */
    617static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu)
    618{
    619	u32 am_lookup;
    620	int err;
    621
    622	/*
    623	 * Interpret access control mode. We assume address errors will already
    624	 * have been caught by the guest, leaving us with:
    625	 *      AM      UM  SM  KM  31..24 23..16
    626	 * UK    0 000          Unm   0      0
    627	 * MK    1 001          TLB   1
    628	 * MSK   2 010      TLB TLB   1
    629	 * MUSK  3 011  TLB TLB TLB   1
    630	 * MUSUK 4 100  TLB TLB Unm   0      1
    631	 * USK   5 101      Unm Unm   0      0
    632	 * -     6 110                0      0
    633	 * UUSK  7 111  Unm Unm Unm   0      0
    634	 *
    635	 * We shift a magic value by AM across the sign bit to find if always
    636	 * TLB mapped, and if not shift by 8 again to find if it depends on KM.
    637	 */
    638	am_lookup = 0x70080000 << am;
    639	if ((s32)am_lookup < 0) {
    640		/*
    641		 * MK, MSK, MUSK
    642		 * Always TLB mapped, unless SegCtl.EU && ERL
    643		 */
    644		if (!eu || !(read_gc0_status() & ST0_ERL))
    645			return true;
    646	} else {
    647		am_lookup <<= 8;
    648		if ((s32)am_lookup < 0) {
    649			union mips_instruction inst;
    650			unsigned int status;
    651			u32 *opc;
    652
    653			/*
    654			 * MUSUK
    655			 * TLB mapped if not in kernel mode
    656			 */
    657			status = read_gc0_status();
    658			if (!(status & (ST0_EXL | ST0_ERL)) &&
    659			    (status & ST0_KSU))
    660				return true;
    661			/*
    662			 * EVA access instructions in kernel
    663			 * mode access user address space.
    664			 */
    665			opc = (u32 *)vcpu->arch.pc;
    666			if (vcpu->arch.host_cp0_cause & CAUSEF_BD)
    667				opc += 1;
    668			err = kvm_get_badinstr(opc, vcpu, &inst.word);
    669			if (!err && is_eva_access(inst))
    670				return true;
    671		}
    672	}
    673
    674	return false;
    675}
    676
    677/**
    678 * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
    679 * @vcpu:	KVM VCPU state.
    680 * @gva:	Guest virtual address to convert.
    681 * @gpa:	Output guest physical address.
    682 *
    683 * Convert a guest virtual address (GVA) which is valid according to the guest
    684 * context, to a guest physical address (GPA).
    685 *
    686 * Returns:	0 on success.
    687 *		-errno on failure.
    688 */
    689static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
    690			     unsigned long *gpa)
    691{
    692	u32 gva32 = gva;
    693	unsigned long segctl;
    694
    695	if ((long)gva == (s32)gva32) {
    696		/* Handle canonical 32-bit virtual address */
    697		if (cpu_guest_has_segments) {
    698			unsigned long mask, pa;
    699
    700			switch (gva32 >> 29) {
    701			case 0:
    702			case 1: /* CFG5 (1GB) */
    703				segctl = read_gc0_segctl2() >> 16;
    704				mask = (unsigned long)0xfc0000000ull;
    705				break;
    706			case 2:
    707			case 3: /* CFG4 (1GB) */
    708				segctl = read_gc0_segctl2();
    709				mask = (unsigned long)0xfc0000000ull;
    710				break;
    711			case 4: /* CFG3 (512MB) */
    712				segctl = read_gc0_segctl1() >> 16;
    713				mask = (unsigned long)0xfe0000000ull;
    714				break;
    715			case 5: /* CFG2 (512MB) */
    716				segctl = read_gc0_segctl1();
    717				mask = (unsigned long)0xfe0000000ull;
    718				break;
    719			case 6: /* CFG1 (512MB) */
    720				segctl = read_gc0_segctl0() >> 16;
    721				mask = (unsigned long)0xfe0000000ull;
    722				break;
    723			case 7: /* CFG0 (512MB) */
    724				segctl = read_gc0_segctl0();
    725				mask = (unsigned long)0xfe0000000ull;
    726				break;
    727			default:
    728				/*
    729				 * GCC 4.9 isn't smart enough to figure out that
    730				 * segctl and mask are always initialised.
    731				 */
    732				unreachable();
    733			}
    734
    735			if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7,
    736					     segctl & 0x0008))
    737				goto tlb_mapped;
    738
    739			/* Unmapped, find guest physical address */
    740			pa = (segctl << 20) & mask;
    741			pa |= gva32 & ~mask;
    742			*gpa = pa;
    743			return 0;
    744		} else if ((s32)gva32 < (s32)0xc0000000) {
    745			/* legacy unmapped KSeg0 or KSeg1 */
    746			*gpa = gva32 & 0x1fffffff;
    747			return 0;
    748		}
    749#ifdef CONFIG_64BIT
    750	} else if ((gva & 0xc000000000000000) == 0x8000000000000000) {
    751		/* XKPHYS */
    752		if (cpu_guest_has_segments) {
    753			/*
    754			 * Each of the 8 regions can be overridden by SegCtl2.XR
    755			 * to use SegCtl1.XAM.
    756			 */
    757			segctl = read_gc0_segctl2();
    758			if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) {
    759				segctl = read_gc0_segctl1();
    760				if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7,
    761						     0))
    762					goto tlb_mapped;
    763			}
    764
    765		}
    766		/*
    767		 * Traditionally fully unmapped.
    768		 * Bits 61:59 specify the CCA, which we can just mask off here.
    769		 * Bits 58:PABITS should be zero, but we shouldn't have got here
    770		 * if it wasn't.
    771		 */
    772		*gpa = gva & 0x07ffffffffffffff;
    773		return 0;
    774#endif
    775	}
    776
    777tlb_mapped:
    778	return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa);
    779}
    780
    781/**
    782 * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
    783 * @vcpu:	KVM VCPU state.
    784 * @badvaddr:	Root BadVAddr.
    785 * @gpa:	Output guest physical address.
    786 *
    787 * VZ implementations are permitted to report guest virtual addresses (GVA) in
    788 * BadVAddr on a root exception during guest execution, instead of the more
    789 * convenient guest physical addresses (GPA). When we get a GVA, this function
    790 * converts it to a GPA, taking into account guest segmentation and guest TLB
    791 * state.
    792 *
    793 * Returns:	0 on success.
    794 *		-errno on failure.
    795 */
    796static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr,
    797				  unsigned long *gpa)
    798{
    799	unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 &
    800				 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
    801
    802	/* If BadVAddr is GPA, then all is well in the world */
    803	if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) {
    804		*gpa = badvaddr;
    805		return 0;
    806	}
    807
    808	/* Otherwise we'd expect it to be GVA ... */
    809	if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA,
    810		 "Unexpected gexccode %#x\n", gexccode))
    811		return -EINVAL;
    812
    813	/* ... and we need to perform the GVA->GPA translation in software */
    814	return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa);
    815}
    816
    817static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu)
    818{
    819	u32 *opc = (u32 *) vcpu->arch.pc;
    820	u32 cause = vcpu->arch.host_cp0_cause;
    821	u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
    822	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
    823	u32 inst = 0;
    824
    825	/*
    826	 *  Fetch the instruction.
    827	 */
    828	if (cause & CAUSEF_BD)
    829		opc += 1;
    830	kvm_get_badinstr(opc, vcpu, &inst);
    831
    832	kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
    833		exccode, opc, inst, badvaddr,
    834		read_gc0_status());
    835	kvm_arch_vcpu_dump_regs(vcpu);
    836	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
    837	return RESUME_HOST;
    838}
    839
    840static unsigned long mips_process_maar(unsigned int op, unsigned long val)
    841{
    842	/* Mask off unused bits */
    843	unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL;
    844
    845	if (read_gc0_pagegrain() & PG_ELPA)
    846		mask |= 0x00ffffff00000000ull;
    847	if (cpu_guest_has_mvh)
    848		mask |= MIPS_MAAR_VH;
    849
    850	/* Set or clear VH */
    851	if (op == mtc_op) {
    852		/* clear VH */
    853		val &= ~MIPS_MAAR_VH;
    854	} else if (op == dmtc_op) {
    855		/* set VH to match VL */
    856		val &= ~MIPS_MAAR_VH;
    857		if (val & MIPS_MAAR_VL)
    858			val |= MIPS_MAAR_VH;
    859	}
    860
    861	return val & mask;
    862}
    863
    864static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val)
    865{
    866	struct mips_coproc *cop0 = vcpu->arch.cop0;
    867
    868	val &= MIPS_MAARI_INDEX;
    869	if (val == MIPS_MAARI_INDEX)
    870		kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1);
    871	else if (val < ARRAY_SIZE(vcpu->arch.maar))
    872		kvm_write_sw_gc0_maari(cop0, val);
    873}
    874
    875static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst,
    876					      u32 *opc, u32 cause,
    877					      struct kvm_vcpu *vcpu)
    878{
    879	struct mips_coproc *cop0 = vcpu->arch.cop0;
    880	enum emulation_result er = EMULATE_DONE;
    881	u32 rt, rd, sel;
    882	unsigned long curr_pc;
    883	unsigned long val;
    884
    885	/*
    886	 * Update PC and hold onto current PC in case there is
    887	 * an error and we want to rollback the PC
    888	 */
    889	curr_pc = vcpu->arch.pc;
    890	er = update_pc(vcpu, cause);
    891	if (er == EMULATE_FAIL)
    892		return er;
    893
    894	if (inst.co_format.co) {
    895		switch (inst.co_format.func) {
    896		case wait_op:
    897			er = kvm_mips_emul_wait(vcpu);
    898			break;
    899		default:
    900			er = EMULATE_FAIL;
    901		}
    902	} else {
    903		rt = inst.c0r_format.rt;
    904		rd = inst.c0r_format.rd;
    905		sel = inst.c0r_format.sel;
    906
    907		switch (inst.c0r_format.rs) {
    908		case dmfc_op:
    909		case mfc_op:
    910#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
    911			cop0->stat[rd][sel]++;
    912#endif
    913			if (rd == MIPS_CP0_COUNT &&
    914			    sel == 0) {			/* Count */
    915				val = kvm_mips_read_count(vcpu);
    916			} else if (rd == MIPS_CP0_COMPARE &&
    917				   sel == 0) {		/* Compare */
    918				val = read_gc0_compare();
    919			} else if (rd == MIPS_CP0_LLADDR &&
    920				   sel == 0) {		/* LLAddr */
    921				if (cpu_guest_has_rw_llb)
    922					val = read_gc0_lladdr() &
    923						MIPS_LLADDR_LLB;
    924				else
    925					val = 0;
    926			} else if (rd == MIPS_CP0_LLADDR &&
    927				   sel == 1 &&		/* MAAR */
    928				   cpu_guest_has_maar &&
    929				   !cpu_guest_has_dyn_maar) {
    930				/* MAARI must be in range */
    931				BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
    932						ARRAY_SIZE(vcpu->arch.maar));
    933				val = vcpu->arch.maar[
    934					kvm_read_sw_gc0_maari(cop0)];
    935			} else if ((rd == MIPS_CP0_PRID &&
    936				    (sel == 0 ||	/* PRid */
    937				     sel == 2 ||	/* CDMMBase */
    938				     sel == 3)) ||	/* CMGCRBase */
    939				   (rd == MIPS_CP0_STATUS &&
    940				    (sel == 2 ||	/* SRSCtl */
    941				     sel == 3)) ||	/* SRSMap */
    942				   (rd == MIPS_CP0_CONFIG &&
    943				    (sel == 6 ||	/* Config6 */
    944				     sel == 7)) ||	/* Config7 */
    945				   (rd == MIPS_CP0_LLADDR &&
    946				    (sel == 2) &&	/* MAARI */
    947				    cpu_guest_has_maar &&
    948				    !cpu_guest_has_dyn_maar) ||
    949				   (rd == MIPS_CP0_ERRCTL &&
    950				    (sel == 0))) {	/* ErrCtl */
    951				val = cop0->reg[rd][sel];
    952#ifdef CONFIG_CPU_LOONGSON64
    953			} else if (rd == MIPS_CP0_DIAG &&
    954				   (sel == 0)) {	/* Diag */
    955				val = cop0->reg[rd][sel];
    956#endif
    957			} else {
    958				val = 0;
    959				er = EMULATE_FAIL;
    960			}
    961
    962			if (er != EMULATE_FAIL) {
    963				/* Sign extend */
    964				if (inst.c0r_format.rs == mfc_op)
    965					val = (int)val;
    966				vcpu->arch.gprs[rt] = val;
    967			}
    968
    969			trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ?
    970					KVM_TRACE_MFC0 : KVM_TRACE_DMFC0,
    971				      KVM_TRACE_COP0(rd, sel), val);
    972			break;
    973
    974		case dmtc_op:
    975		case mtc_op:
    976#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
    977			cop0->stat[rd][sel]++;
    978#endif
    979			val = vcpu->arch.gprs[rt];
    980			trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ?
    981					KVM_TRACE_MTC0 : KVM_TRACE_DMTC0,
    982				      KVM_TRACE_COP0(rd, sel), val);
    983
    984			if (rd == MIPS_CP0_COUNT &&
    985			    sel == 0) {			/* Count */
    986				kvm_vz_lose_htimer(vcpu);
    987				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
    988			} else if (rd == MIPS_CP0_COMPARE &&
    989				   sel == 0) {		/* Compare */
    990				kvm_mips_write_compare(vcpu,
    991						       vcpu->arch.gprs[rt],
    992						       true);
    993			} else if (rd == MIPS_CP0_LLADDR &&
    994				   sel == 0) {		/* LLAddr */
    995				/*
    996				 * P5600 generates GPSI on guest MTC0 LLAddr.
    997				 * Only allow the guest to clear LLB.
    998				 */
    999				if (cpu_guest_has_rw_llb &&
   1000				    !(val & MIPS_LLADDR_LLB))
   1001					write_gc0_lladdr(0);
   1002			} else if (rd == MIPS_CP0_LLADDR &&
   1003				   sel == 1 &&		/* MAAR */
   1004				   cpu_guest_has_maar &&
   1005				   !cpu_guest_has_dyn_maar) {
   1006				val = mips_process_maar(inst.c0r_format.rs,
   1007							val);
   1008
   1009				/* MAARI must be in range */
   1010				BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
   1011						ARRAY_SIZE(vcpu->arch.maar));
   1012				vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] =
   1013									val;
   1014			} else if (rd == MIPS_CP0_LLADDR &&
   1015				   (sel == 2) &&	/* MAARI */
   1016				   cpu_guest_has_maar &&
   1017				   !cpu_guest_has_dyn_maar) {
   1018				kvm_write_maari(vcpu, val);
   1019			} else if (rd == MIPS_CP0_CONFIG &&
   1020				   (sel == 6)) {
   1021				cop0->reg[rd][sel] = (int)val;
   1022			} else if (rd == MIPS_CP0_ERRCTL &&
   1023				   (sel == 0)) {	/* ErrCtl */
   1024				/* ignore the written value */
   1025#ifdef CONFIG_CPU_LOONGSON64
   1026			} else if (rd == MIPS_CP0_DIAG &&
   1027				   (sel == 0)) {	/* Diag */
   1028				unsigned long flags;
   1029
   1030				local_irq_save(flags);
   1031				if (val & LOONGSON_DIAG_BTB) {
   1032					/* Flush BTB */
   1033					set_c0_diag(LOONGSON_DIAG_BTB);
   1034				}
   1035				if (val & LOONGSON_DIAG_ITLB) {
   1036					/* Flush ITLB */
   1037					set_c0_diag(LOONGSON_DIAG_ITLB);
   1038				}
   1039				if (val & LOONGSON_DIAG_DTLB) {
   1040					/* Flush DTLB */
   1041					set_c0_diag(LOONGSON_DIAG_DTLB);
   1042				}
   1043				if (val & LOONGSON_DIAG_VTLB) {
   1044					/* Flush VTLB */
   1045					kvm_loongson_clear_guest_vtlb();
   1046				}
   1047				if (val & LOONGSON_DIAG_FTLB) {
   1048					/* Flush FTLB */
   1049					kvm_loongson_clear_guest_ftlb();
   1050				}
   1051				local_irq_restore(flags);
   1052#endif
   1053			} else {
   1054				er = EMULATE_FAIL;
   1055			}
   1056			break;
   1057
   1058		default:
   1059			er = EMULATE_FAIL;
   1060			break;
   1061		}
   1062	}
   1063	/* Rollback PC only if emulation was unsuccessful */
   1064	if (er == EMULATE_FAIL) {
   1065		kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
   1066			curr_pc, __func__, inst.word);
   1067
   1068		vcpu->arch.pc = curr_pc;
   1069	}
   1070
   1071	return er;
   1072}
   1073
   1074static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst,
   1075					       u32 *opc, u32 cause,
   1076					       struct kvm_vcpu *vcpu)
   1077{
   1078	enum emulation_result er = EMULATE_DONE;
   1079	u32 cache, op_inst, op, base;
   1080	s16 offset;
   1081	struct kvm_vcpu_arch *arch = &vcpu->arch;
   1082	unsigned long va, curr_pc;
   1083
   1084	/*
   1085	 * Update PC and hold onto current PC in case there is
   1086	 * an error and we want to rollback the PC
   1087	 */
   1088	curr_pc = vcpu->arch.pc;
   1089	er = update_pc(vcpu, cause);
   1090	if (er == EMULATE_FAIL)
   1091		return er;
   1092
   1093	base = inst.i_format.rs;
   1094	op_inst = inst.i_format.rt;
   1095	if (cpu_has_mips_r6)
   1096		offset = inst.spec3_format.simmediate;
   1097	else
   1098		offset = inst.i_format.simmediate;
   1099	cache = op_inst & CacheOp_Cache;
   1100	op = op_inst & CacheOp_Op;
   1101
   1102	va = arch->gprs[base] + offset;
   1103
   1104	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
   1105		  cache, op, base, arch->gprs[base], offset);
   1106
   1107	/* Secondary or tirtiary cache ops ignored */
   1108	if (cache != Cache_I && cache != Cache_D)
   1109		return EMULATE_DONE;
   1110
   1111	switch (op_inst) {
   1112	case Index_Invalidate_I:
   1113		flush_icache_line_indexed(va);
   1114		return EMULATE_DONE;
   1115	case Index_Writeback_Inv_D:
   1116		flush_dcache_line_indexed(va);
   1117		return EMULATE_DONE;
   1118	case Hit_Invalidate_I:
   1119	case Hit_Invalidate_D:
   1120	case Hit_Writeback_Inv_D:
   1121		if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) {
   1122			/* We can just flush entire icache */
   1123			local_flush_icache_range(0, 0);
   1124			return EMULATE_DONE;
   1125		}
   1126
   1127		/* So far, other platforms support guest hit cache ops */
   1128		break;
   1129	default:
   1130		break;
   1131	}
   1132
   1133	kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
   1134		curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base],
   1135		offset);
   1136	/* Rollback PC */
   1137	vcpu->arch.pc = curr_pc;
   1138
   1139	return EMULATE_FAIL;
   1140}
   1141
   1142#ifdef CONFIG_CPU_LOONGSON64
   1143static enum emulation_result kvm_vz_gpsi_lwc2(union mips_instruction inst,
   1144					      u32 *opc, u32 cause,
   1145					      struct kvm_vcpu *vcpu)
   1146{
   1147	unsigned int rs, rd;
   1148	unsigned int hostcfg;
   1149	unsigned long curr_pc;
   1150	enum emulation_result er = EMULATE_DONE;
   1151
   1152	/*
   1153	 * Update PC and hold onto current PC in case there is
   1154	 * an error and we want to rollback the PC
   1155	 */
   1156	curr_pc = vcpu->arch.pc;
   1157	er = update_pc(vcpu, cause);
   1158	if (er == EMULATE_FAIL)
   1159		return er;
   1160
   1161	rs = inst.loongson3_lscsr_format.rs;
   1162	rd = inst.loongson3_lscsr_format.rd;
   1163	switch (inst.loongson3_lscsr_format.fr) {
   1164	case 0x8:  /* Read CPUCFG */
   1165		++vcpu->stat.vz_cpucfg_exits;
   1166		hostcfg = read_cpucfg(vcpu->arch.gprs[rs]);
   1167
   1168		switch (vcpu->arch.gprs[rs]) {
   1169		case LOONGSON_CFG0:
   1170			vcpu->arch.gprs[rd] = 0x14c000;
   1171			break;
   1172		case LOONGSON_CFG1:
   1173			hostcfg &= (LOONGSON_CFG1_FP | LOONGSON_CFG1_MMI |
   1174				    LOONGSON_CFG1_MSA1 | LOONGSON_CFG1_MSA2 |
   1175				    LOONGSON_CFG1_SFBP);
   1176			vcpu->arch.gprs[rd] = hostcfg;
   1177			break;
   1178		case LOONGSON_CFG2:
   1179			hostcfg &= (LOONGSON_CFG2_LEXT1 | LOONGSON_CFG2_LEXT2 |
   1180				    LOONGSON_CFG2_LEXT3 | LOONGSON_CFG2_LSPW);
   1181			vcpu->arch.gprs[rd] = hostcfg;
   1182			break;
   1183		case LOONGSON_CFG3:
   1184			vcpu->arch.gprs[rd] = hostcfg;
   1185			break;
   1186		default:
   1187			/* Don't export any other advanced features to guest */
   1188			vcpu->arch.gprs[rd] = 0;
   1189			break;
   1190		}
   1191		break;
   1192
   1193	default:
   1194		kvm_err("lwc2 emulate not impl %d rs %lx @%lx\n",
   1195			inst.loongson3_lscsr_format.fr, vcpu->arch.gprs[rs], curr_pc);
   1196		er = EMULATE_FAIL;
   1197		break;
   1198	}
   1199
   1200	/* Rollback PC only if emulation was unsuccessful */
   1201	if (er == EMULATE_FAIL) {
   1202		kvm_err("[%#lx]%s: unsupported lwc2 instruction 0x%08x 0x%08x\n",
   1203			curr_pc, __func__, inst.word, inst.loongson3_lscsr_format.fr);
   1204
   1205		vcpu->arch.pc = curr_pc;
   1206	}
   1207
   1208	return er;
   1209}
   1210#endif
   1211
   1212static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc,
   1213						     struct kvm_vcpu *vcpu)
   1214{
   1215	enum emulation_result er = EMULATE_DONE;
   1216	struct kvm_vcpu_arch *arch = &vcpu->arch;
   1217	union mips_instruction inst;
   1218	int rd, rt, sel;
   1219	int err;
   1220
   1221	/*
   1222	 *  Fetch the instruction.
   1223	 */
   1224	if (cause & CAUSEF_BD)
   1225		opc += 1;
   1226	err = kvm_get_badinstr(opc, vcpu, &inst.word);
   1227	if (err)
   1228		return EMULATE_FAIL;
   1229
   1230	switch (inst.r_format.opcode) {
   1231	case cop0_op:
   1232		er = kvm_vz_gpsi_cop0(inst, opc, cause, vcpu);
   1233		break;
   1234#ifndef CONFIG_CPU_MIPSR6
   1235	case cache_op:
   1236		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
   1237		er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
   1238		break;
   1239#endif
   1240#ifdef CONFIG_CPU_LOONGSON64
   1241	case lwc2_op:
   1242		er = kvm_vz_gpsi_lwc2(inst, opc, cause, vcpu);
   1243		break;
   1244#endif
   1245	case spec3_op:
   1246		switch (inst.spec3_format.func) {
   1247#ifdef CONFIG_CPU_MIPSR6
   1248		case cache6_op:
   1249			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
   1250			er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
   1251			break;
   1252#endif
   1253		case rdhwr_op:
   1254			if (inst.r_format.rs || (inst.r_format.re >> 3))
   1255				goto unknown;
   1256
   1257			rd = inst.r_format.rd;
   1258			rt = inst.r_format.rt;
   1259			sel = inst.r_format.re & 0x7;
   1260
   1261			switch (rd) {
   1262			case MIPS_HWR_CC:	/* Read count register */
   1263				arch->gprs[rt] =
   1264					(long)(int)kvm_mips_read_count(vcpu);
   1265				break;
   1266			default:
   1267				trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
   1268					      KVM_TRACE_HWR(rd, sel), 0);
   1269				goto unknown;
   1270			}
   1271
   1272			trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
   1273				      KVM_TRACE_HWR(rd, sel), arch->gprs[rt]);
   1274
   1275			er = update_pc(vcpu, cause);
   1276			break;
   1277		default:
   1278			goto unknown;
   1279		}
   1280		break;
   1281unknown:
   1282
   1283	default:
   1284		kvm_err("GPSI exception not supported (%p/%#x)\n",
   1285				opc, inst.word);
   1286		kvm_arch_vcpu_dump_regs(vcpu);
   1287		er = EMULATE_FAIL;
   1288		break;
   1289	}
   1290
   1291	return er;
   1292}
   1293
   1294static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc,
   1295						     struct kvm_vcpu *vcpu)
   1296{
   1297	enum emulation_result er = EMULATE_DONE;
   1298	struct kvm_vcpu_arch *arch = &vcpu->arch;
   1299	union mips_instruction inst;
   1300	int err;
   1301
   1302	/*
   1303	 *  Fetch the instruction.
   1304	 */
   1305	if (cause & CAUSEF_BD)
   1306		opc += 1;
   1307	err = kvm_get_badinstr(opc, vcpu, &inst.word);
   1308	if (err)
   1309		return EMULATE_FAIL;
   1310
   1311	/* complete MTC0 on behalf of guest and advance EPC */
   1312	if (inst.c0r_format.opcode == cop0_op &&
   1313	    inst.c0r_format.rs == mtc_op &&
   1314	    inst.c0r_format.z == 0) {
   1315		int rt = inst.c0r_format.rt;
   1316		int rd = inst.c0r_format.rd;
   1317		int sel = inst.c0r_format.sel;
   1318		unsigned int val = arch->gprs[rt];
   1319		unsigned int old_val, change;
   1320
   1321		trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel),
   1322			      val);
   1323
   1324		if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
   1325			/* FR bit should read as zero if no FPU */
   1326			if (!kvm_mips_guest_has_fpu(&vcpu->arch))
   1327				val &= ~(ST0_CU1 | ST0_FR);
   1328
   1329			/*
   1330			 * Also don't allow FR to be set if host doesn't support
   1331			 * it.
   1332			 */
   1333			if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
   1334				val &= ~ST0_FR;
   1335
   1336			old_val = read_gc0_status();
   1337			change = val ^ old_val;
   1338
   1339			if (change & ST0_FR) {
   1340				/*
   1341				 * FPU and Vector register state is made
   1342				 * UNPREDICTABLE by a change of FR, so don't
   1343				 * even bother saving it.
   1344				 */
   1345				kvm_drop_fpu(vcpu);
   1346			}
   1347
   1348			/*
   1349			 * If MSA state is already live, it is undefined how it
   1350			 * interacts with FR=0 FPU state, and we don't want to
   1351			 * hit reserved instruction exceptions trying to save
   1352			 * the MSA state later when CU=1 && FR=1, so play it
   1353			 * safe and save it first.
   1354			 */
   1355			if (change & ST0_CU1 && !(val & ST0_FR) &&
   1356			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
   1357				kvm_lose_fpu(vcpu);
   1358
   1359			write_gc0_status(val);
   1360		} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
   1361			u32 old_cause = read_gc0_cause();
   1362			u32 change = old_cause ^ val;
   1363
   1364			/* DC bit enabling/disabling timer? */
   1365			if (change & CAUSEF_DC) {
   1366				if (val & CAUSEF_DC) {
   1367					kvm_vz_lose_htimer(vcpu);
   1368					kvm_mips_count_disable_cause(vcpu);
   1369				} else {
   1370					kvm_mips_count_enable_cause(vcpu);
   1371				}
   1372			}
   1373
   1374			/* Only certain bits are RW to the guest */
   1375			change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP |
   1376				   CAUSEF_IP0 | CAUSEF_IP1);
   1377
   1378			/* WP can only be cleared */
   1379			change &= ~CAUSEF_WP | old_cause;
   1380
   1381			write_gc0_cause(old_cause ^ change);
   1382		} else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */
   1383			write_gc0_intctl(val);
   1384		} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
   1385			old_val = read_gc0_config5();
   1386			change = val ^ old_val;
   1387			/* Handle changes in FPU/MSA modes */
   1388			preempt_disable();
   1389
   1390			/*
   1391			 * Propagate FRE changes immediately if the FPU
   1392			 * context is already loaded.
   1393			 */
   1394			if (change & MIPS_CONF5_FRE &&
   1395			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
   1396				change_c0_config5(MIPS_CONF5_FRE, val);
   1397
   1398			preempt_enable();
   1399
   1400			val = old_val ^
   1401				(change & kvm_vz_config5_guest_wrmask(vcpu));
   1402			write_gc0_config5(val);
   1403		} else {
   1404			kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
   1405			    opc, inst.word);
   1406			er = EMULATE_FAIL;
   1407		}
   1408
   1409		if (er != EMULATE_FAIL)
   1410			er = update_pc(vcpu, cause);
   1411	} else {
   1412		kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
   1413			opc, inst.word);
   1414		er = EMULATE_FAIL;
   1415	}
   1416
   1417	return er;
   1418}
   1419
   1420static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc,
   1421						     struct kvm_vcpu *vcpu)
   1422{
   1423	/*
   1424	 * Presumably this is due to MC (guest mode change), so lets trace some
   1425	 * relevant info.
   1426	 */
   1427	trace_kvm_guest_mode_change(vcpu);
   1428
   1429	return EMULATE_DONE;
   1430}
   1431
   1432static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc,
   1433						   struct kvm_vcpu *vcpu)
   1434{
   1435	enum emulation_result er;
   1436	union mips_instruction inst;
   1437	unsigned long curr_pc;
   1438	int err;
   1439
   1440	if (cause & CAUSEF_BD)
   1441		opc += 1;
   1442	err = kvm_get_badinstr(opc, vcpu, &inst.word);
   1443	if (err)
   1444		return EMULATE_FAIL;
   1445
   1446	/*
   1447	 * Update PC and hold onto current PC in case there is
   1448	 * an error and we want to rollback the PC
   1449	 */
   1450	curr_pc = vcpu->arch.pc;
   1451	er = update_pc(vcpu, cause);
   1452	if (er == EMULATE_FAIL)
   1453		return er;
   1454
   1455	er = kvm_mips_emul_hypcall(vcpu, inst);
   1456	if (er == EMULATE_FAIL)
   1457		vcpu->arch.pc = curr_pc;
   1458
   1459	return er;
   1460}
   1461
   1462static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode,
   1463							u32 cause,
   1464							u32 *opc,
   1465							struct kvm_vcpu *vcpu)
   1466{
   1467	u32 inst;
   1468
   1469	/*
   1470	 *  Fetch the instruction.
   1471	 */
   1472	if (cause & CAUSEF_BD)
   1473		opc += 1;
   1474	kvm_get_badinstr(opc, vcpu, &inst);
   1475
   1476	kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x  Status: %#x\n",
   1477		gexccode, opc, inst, read_gc0_status());
   1478
   1479	return EMULATE_FAIL;
   1480}
   1481
   1482static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu)
   1483{
   1484	u32 *opc = (u32 *) vcpu->arch.pc;
   1485	u32 cause = vcpu->arch.host_cp0_cause;
   1486	enum emulation_result er = EMULATE_DONE;
   1487	u32 gexccode = (vcpu->arch.host_cp0_guestctl0 &
   1488			MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
   1489	int ret = RESUME_GUEST;
   1490
   1491	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode);
   1492	switch (gexccode) {
   1493	case MIPS_GCTL0_GEXC_GPSI:
   1494		++vcpu->stat.vz_gpsi_exits;
   1495		er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu);
   1496		break;
   1497	case MIPS_GCTL0_GEXC_GSFC:
   1498		++vcpu->stat.vz_gsfc_exits;
   1499		er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu);
   1500		break;
   1501	case MIPS_GCTL0_GEXC_HC:
   1502		++vcpu->stat.vz_hc_exits;
   1503		er = kvm_trap_vz_handle_hc(cause, opc, vcpu);
   1504		break;
   1505	case MIPS_GCTL0_GEXC_GRR:
   1506		++vcpu->stat.vz_grr_exits;
   1507		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
   1508						       vcpu);
   1509		break;
   1510	case MIPS_GCTL0_GEXC_GVA:
   1511		++vcpu->stat.vz_gva_exits;
   1512		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
   1513						       vcpu);
   1514		break;
   1515	case MIPS_GCTL0_GEXC_GHFC:
   1516		++vcpu->stat.vz_ghfc_exits;
   1517		er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu);
   1518		break;
   1519	case MIPS_GCTL0_GEXC_GPA:
   1520		++vcpu->stat.vz_gpa_exits;
   1521		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
   1522						       vcpu);
   1523		break;
   1524	default:
   1525		++vcpu->stat.vz_resvd_exits;
   1526		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
   1527						       vcpu);
   1528		break;
   1529
   1530	}
   1531
   1532	if (er == EMULATE_DONE) {
   1533		ret = RESUME_GUEST;
   1534	} else if (er == EMULATE_HYPERCALL) {
   1535		ret = kvm_mips_handle_hypcall(vcpu);
   1536	} else {
   1537		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
   1538		ret = RESUME_HOST;
   1539	}
   1540	return ret;
   1541}
   1542
   1543/**
   1544 * kvm_trap_vz_handle_cop_unusable() - Guest used unusable coprocessor.
   1545 * @vcpu:	Virtual CPU context.
   1546 *
   1547 * Handle when the guest attempts to use a coprocessor which hasn't been allowed
   1548 * by the root context.
   1549 *
   1550 * Return: value indicating whether to resume the host or the guest
   1551 * 	   (RESUME_HOST or RESUME_GUEST)
   1552 */
   1553static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu)
   1554{
   1555	u32 cause = vcpu->arch.host_cp0_cause;
   1556	enum emulation_result er = EMULATE_FAIL;
   1557	int ret = RESUME_GUEST;
   1558
   1559	if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
   1560		/*
   1561		 * If guest FPU not present, the FPU operation should have been
   1562		 * treated as a reserved instruction!
   1563		 * If FPU already in use, we shouldn't get this at all.
   1564		 */
   1565		if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) ||
   1566			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
   1567			preempt_enable();
   1568			return EMULATE_FAIL;
   1569		}
   1570
   1571		kvm_own_fpu(vcpu);
   1572		er = EMULATE_DONE;
   1573	}
   1574	/* other coprocessors not handled */
   1575
   1576	switch (er) {
   1577	case EMULATE_DONE:
   1578		ret = RESUME_GUEST;
   1579		break;
   1580
   1581	case EMULATE_FAIL:
   1582		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
   1583		ret = RESUME_HOST;
   1584		break;
   1585
   1586	default:
   1587		BUG();
   1588	}
   1589	return ret;
   1590}
   1591
   1592/**
   1593 * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
   1594 * @vcpu:	Virtual CPU context.
   1595 *
   1596 * Handle when the guest attempts to use MSA when it is disabled in the root
   1597 * context.
   1598 *
   1599 * Return: value indicating whether to resume the host or the guest
   1600 * 	   (RESUME_HOST or RESUME_GUEST)
   1601 */
   1602static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu)
   1603{
   1604	/*
   1605	 * If MSA not present or not exposed to guest or FR=0, the MSA operation
   1606	 * should have been treated as a reserved instruction!
   1607	 * Same if CU1=1, FR=0.
   1608	 * If MSA already in use, we shouldn't get this at all.
   1609	 */
   1610	if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
   1611	    (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 ||
   1612	    !(read_gc0_config5() & MIPS_CONF5_MSAEN) ||
   1613	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
   1614		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
   1615		return RESUME_HOST;
   1616	}
   1617
   1618	kvm_own_msa(vcpu);
   1619
   1620	return RESUME_GUEST;
   1621}
   1622
   1623static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
   1624{
   1625	struct kvm_run *run = vcpu->run;
   1626	u32 *opc = (u32 *) vcpu->arch.pc;
   1627	u32 cause = vcpu->arch.host_cp0_cause;
   1628	ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
   1629	union mips_instruction inst;
   1630	enum emulation_result er = EMULATE_DONE;
   1631	int err, ret = RESUME_GUEST;
   1632
   1633	if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) {
   1634		/* A code fetch fault doesn't count as an MMIO */
   1635		if (kvm_is_ifetch_fault(&vcpu->arch)) {
   1636			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
   1637			return RESUME_HOST;
   1638		}
   1639
   1640		/* Fetch the instruction */
   1641		if (cause & CAUSEF_BD)
   1642			opc += 1;
   1643		err = kvm_get_badinstr(opc, vcpu, &inst.word);
   1644		if (err) {
   1645			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
   1646			return RESUME_HOST;
   1647		}
   1648
   1649		/* Treat as MMIO */
   1650		er = kvm_mips_emulate_load(inst, cause, vcpu);
   1651		if (er == EMULATE_FAIL) {
   1652			kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
   1653				opc, badvaddr);
   1654			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
   1655		}
   1656	}
   1657
   1658	if (er == EMULATE_DONE) {
   1659		ret = RESUME_GUEST;
   1660	} else if (er == EMULATE_DO_MMIO) {
   1661		run->exit_reason = KVM_EXIT_MMIO;
   1662		ret = RESUME_HOST;
   1663	} else {
   1664		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
   1665		ret = RESUME_HOST;
   1666	}
   1667	return ret;
   1668}
   1669
   1670static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
   1671{
   1672	struct kvm_run *run = vcpu->run;
   1673	u32 *opc = (u32 *) vcpu->arch.pc;
   1674	u32 cause = vcpu->arch.host_cp0_cause;
   1675	ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
   1676	union mips_instruction inst;
   1677	enum emulation_result er = EMULATE_DONE;
   1678	int err;
   1679	int ret = RESUME_GUEST;
   1680
   1681	/* Just try the access again if we couldn't do the translation */
   1682	if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr))
   1683		return RESUME_GUEST;
   1684	vcpu->arch.host_cp0_badvaddr = badvaddr;
   1685
   1686	if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) {
   1687		/* Fetch the instruction */
   1688		if (cause & CAUSEF_BD)
   1689			opc += 1;
   1690		err = kvm_get_badinstr(opc, vcpu, &inst.word);
   1691		if (err) {
   1692			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
   1693			return RESUME_HOST;
   1694		}
   1695
   1696		/* Treat as MMIO */
   1697		er = kvm_mips_emulate_store(inst, cause, vcpu);
   1698		if (er == EMULATE_FAIL) {
   1699			kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
   1700				opc, badvaddr);
   1701			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
   1702		}
   1703	}
   1704
   1705	if (er == EMULATE_DONE) {
   1706		ret = RESUME_GUEST;
   1707	} else if (er == EMULATE_DO_MMIO) {
   1708		run->exit_reason = KVM_EXIT_MMIO;
   1709		ret = RESUME_HOST;
   1710	} else {
   1711		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
   1712		ret = RESUME_HOST;
   1713	}
   1714	return ret;
   1715}
   1716
   1717static u64 kvm_vz_get_one_regs[] = {
   1718	KVM_REG_MIPS_CP0_INDEX,
   1719	KVM_REG_MIPS_CP0_ENTRYLO0,
   1720	KVM_REG_MIPS_CP0_ENTRYLO1,
   1721	KVM_REG_MIPS_CP0_CONTEXT,
   1722	KVM_REG_MIPS_CP0_PAGEMASK,
   1723	KVM_REG_MIPS_CP0_PAGEGRAIN,
   1724	KVM_REG_MIPS_CP0_WIRED,
   1725	KVM_REG_MIPS_CP0_HWRENA,
   1726	KVM_REG_MIPS_CP0_BADVADDR,
   1727	KVM_REG_MIPS_CP0_COUNT,
   1728	KVM_REG_MIPS_CP0_ENTRYHI,
   1729	KVM_REG_MIPS_CP0_COMPARE,
   1730	KVM_REG_MIPS_CP0_STATUS,
   1731	KVM_REG_MIPS_CP0_INTCTL,
   1732	KVM_REG_MIPS_CP0_CAUSE,
   1733	KVM_REG_MIPS_CP0_EPC,
   1734	KVM_REG_MIPS_CP0_PRID,
   1735	KVM_REG_MIPS_CP0_EBASE,
   1736	KVM_REG_MIPS_CP0_CONFIG,
   1737	KVM_REG_MIPS_CP0_CONFIG1,
   1738	KVM_REG_MIPS_CP0_CONFIG2,
   1739	KVM_REG_MIPS_CP0_CONFIG3,
   1740	KVM_REG_MIPS_CP0_CONFIG4,
   1741	KVM_REG_MIPS_CP0_CONFIG5,
   1742	KVM_REG_MIPS_CP0_CONFIG6,
   1743#ifdef CONFIG_64BIT
   1744	KVM_REG_MIPS_CP0_XCONTEXT,
   1745#endif
   1746	KVM_REG_MIPS_CP0_ERROREPC,
   1747
   1748	KVM_REG_MIPS_COUNT_CTL,
   1749	KVM_REG_MIPS_COUNT_RESUME,
   1750	KVM_REG_MIPS_COUNT_HZ,
   1751};
   1752
   1753static u64 kvm_vz_get_one_regs_contextconfig[] = {
   1754	KVM_REG_MIPS_CP0_CONTEXTCONFIG,
   1755#ifdef CONFIG_64BIT
   1756	KVM_REG_MIPS_CP0_XCONTEXTCONFIG,
   1757#endif
   1758};
   1759
   1760static u64 kvm_vz_get_one_regs_segments[] = {
   1761	KVM_REG_MIPS_CP0_SEGCTL0,
   1762	KVM_REG_MIPS_CP0_SEGCTL1,
   1763	KVM_REG_MIPS_CP0_SEGCTL2,
   1764};
   1765
   1766static u64 kvm_vz_get_one_regs_htw[] = {
   1767	KVM_REG_MIPS_CP0_PWBASE,
   1768	KVM_REG_MIPS_CP0_PWFIELD,
   1769	KVM_REG_MIPS_CP0_PWSIZE,
   1770	KVM_REG_MIPS_CP0_PWCTL,
   1771};
   1772
   1773static u64 kvm_vz_get_one_regs_kscratch[] = {
   1774	KVM_REG_MIPS_CP0_KSCRATCH1,
   1775	KVM_REG_MIPS_CP0_KSCRATCH2,
   1776	KVM_REG_MIPS_CP0_KSCRATCH3,
   1777	KVM_REG_MIPS_CP0_KSCRATCH4,
   1778	KVM_REG_MIPS_CP0_KSCRATCH5,
   1779	KVM_REG_MIPS_CP0_KSCRATCH6,
   1780};
   1781
   1782static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu)
   1783{
   1784	unsigned long ret;
   1785
   1786	ret = ARRAY_SIZE(kvm_vz_get_one_regs);
   1787	if (cpu_guest_has_userlocal)
   1788		++ret;
   1789	if (cpu_guest_has_badinstr)
   1790		++ret;
   1791	if (cpu_guest_has_badinstrp)
   1792		++ret;
   1793	if (cpu_guest_has_contextconfig)
   1794		ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
   1795	if (cpu_guest_has_segments)
   1796		ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
   1797	if (cpu_guest_has_htw || cpu_guest_has_ldpte)
   1798		ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
   1799	if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar)
   1800		ret += 1 + ARRAY_SIZE(vcpu->arch.maar);
   1801	ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask);
   1802
   1803	return ret;
   1804}
   1805
   1806static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
   1807{
   1808	u64 index;
   1809	unsigned int i;
   1810
   1811	if (copy_to_user(indices, kvm_vz_get_one_regs,
   1812			 sizeof(kvm_vz_get_one_regs)))
   1813		return -EFAULT;
   1814	indices += ARRAY_SIZE(kvm_vz_get_one_regs);
   1815
   1816	if (cpu_guest_has_userlocal) {
   1817		index = KVM_REG_MIPS_CP0_USERLOCAL;
   1818		if (copy_to_user(indices, &index, sizeof(index)))
   1819			return -EFAULT;
   1820		++indices;
   1821	}
   1822	if (cpu_guest_has_badinstr) {
   1823		index = KVM_REG_MIPS_CP0_BADINSTR;
   1824		if (copy_to_user(indices, &index, sizeof(index)))
   1825			return -EFAULT;
   1826		++indices;
   1827	}
   1828	if (cpu_guest_has_badinstrp) {
   1829		index = KVM_REG_MIPS_CP0_BADINSTRP;
   1830		if (copy_to_user(indices, &index, sizeof(index)))
   1831			return -EFAULT;
   1832		++indices;
   1833	}
   1834	if (cpu_guest_has_contextconfig) {
   1835		if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig,
   1836				 sizeof(kvm_vz_get_one_regs_contextconfig)))
   1837			return -EFAULT;
   1838		indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
   1839	}
   1840	if (cpu_guest_has_segments) {
   1841		if (copy_to_user(indices, kvm_vz_get_one_regs_segments,
   1842				 sizeof(kvm_vz_get_one_regs_segments)))
   1843			return -EFAULT;
   1844		indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
   1845	}
   1846	if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
   1847		if (copy_to_user(indices, kvm_vz_get_one_regs_htw,
   1848				 sizeof(kvm_vz_get_one_regs_htw)))
   1849			return -EFAULT;
   1850		indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
   1851	}
   1852	if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) {
   1853		for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) {
   1854			index = KVM_REG_MIPS_CP0_MAAR(i);
   1855			if (copy_to_user(indices, &index, sizeof(index)))
   1856				return -EFAULT;
   1857			++indices;
   1858		}
   1859
   1860		index = KVM_REG_MIPS_CP0_MAARI;
   1861		if (copy_to_user(indices, &index, sizeof(index)))
   1862			return -EFAULT;
   1863		++indices;
   1864	}
   1865	for (i = 0; i < 6; ++i) {
   1866		if (!cpu_guest_has_kscr(i + 2))
   1867			continue;
   1868
   1869		if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i],
   1870				 sizeof(kvm_vz_get_one_regs_kscratch[i])))
   1871			return -EFAULT;
   1872		++indices;
   1873	}
   1874
   1875	return 0;
   1876}
   1877
   1878static inline s64 entrylo_kvm_to_user(unsigned long v)
   1879{
   1880	s64 mask, ret = v;
   1881
   1882	if (BITS_PER_LONG == 32) {
   1883		/*
   1884		 * KVM API exposes 64-bit version of the register, so move the
   1885		 * RI/XI bits up into place.
   1886		 */
   1887		mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
   1888		ret &= ~mask;
   1889		ret |= ((s64)v & mask) << 32;
   1890	}
   1891	return ret;
   1892}
   1893
   1894static inline unsigned long entrylo_user_to_kvm(s64 v)
   1895{
   1896	unsigned long mask, ret = v;
   1897
   1898	if (BITS_PER_LONG == 32) {
   1899		/*
   1900		 * KVM API exposes 64-bit versiono of the register, so move the
   1901		 * RI/XI bits down into place.
   1902		 */
   1903		mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
   1904		ret &= ~mask;
   1905		ret |= (v >> 32) & mask;
   1906	}
   1907	return ret;
   1908}
   1909
   1910static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu,
   1911			      const struct kvm_one_reg *reg,
   1912			      s64 *v)
   1913{
   1914	struct mips_coproc *cop0 = vcpu->arch.cop0;
   1915	unsigned int idx;
   1916
   1917	switch (reg->id) {
   1918	case KVM_REG_MIPS_CP0_INDEX:
   1919		*v = (long)read_gc0_index();
   1920		break;
   1921	case KVM_REG_MIPS_CP0_ENTRYLO0:
   1922		*v = entrylo_kvm_to_user(read_gc0_entrylo0());
   1923		break;
   1924	case KVM_REG_MIPS_CP0_ENTRYLO1:
   1925		*v = entrylo_kvm_to_user(read_gc0_entrylo1());
   1926		break;
   1927	case KVM_REG_MIPS_CP0_CONTEXT:
   1928		*v = (long)read_gc0_context();
   1929		break;
   1930	case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
   1931		if (!cpu_guest_has_contextconfig)
   1932			return -EINVAL;
   1933		*v = read_gc0_contextconfig();
   1934		break;
   1935	case KVM_REG_MIPS_CP0_USERLOCAL:
   1936		if (!cpu_guest_has_userlocal)
   1937			return -EINVAL;
   1938		*v = read_gc0_userlocal();
   1939		break;
   1940#ifdef CONFIG_64BIT
   1941	case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
   1942		if (!cpu_guest_has_contextconfig)
   1943			return -EINVAL;
   1944		*v = read_gc0_xcontextconfig();
   1945		break;
   1946#endif
   1947	case KVM_REG_MIPS_CP0_PAGEMASK:
   1948		*v = (long)read_gc0_pagemask();
   1949		break;
   1950	case KVM_REG_MIPS_CP0_PAGEGRAIN:
   1951		*v = (long)read_gc0_pagegrain();
   1952		break;
   1953	case KVM_REG_MIPS_CP0_SEGCTL0:
   1954		if (!cpu_guest_has_segments)
   1955			return -EINVAL;
   1956		*v = read_gc0_segctl0();
   1957		break;
   1958	case KVM_REG_MIPS_CP0_SEGCTL1:
   1959		if (!cpu_guest_has_segments)
   1960			return -EINVAL;
   1961		*v = read_gc0_segctl1();
   1962		break;
   1963	case KVM_REG_MIPS_CP0_SEGCTL2:
   1964		if (!cpu_guest_has_segments)
   1965			return -EINVAL;
   1966		*v = read_gc0_segctl2();
   1967		break;
   1968	case KVM_REG_MIPS_CP0_PWBASE:
   1969		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
   1970			return -EINVAL;
   1971		*v = read_gc0_pwbase();
   1972		break;
   1973	case KVM_REG_MIPS_CP0_PWFIELD:
   1974		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
   1975			return -EINVAL;
   1976		*v = read_gc0_pwfield();
   1977		break;
   1978	case KVM_REG_MIPS_CP0_PWSIZE:
   1979		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
   1980			return -EINVAL;
   1981		*v = read_gc0_pwsize();
   1982		break;
   1983	case KVM_REG_MIPS_CP0_WIRED:
   1984		*v = (long)read_gc0_wired();
   1985		break;
   1986	case KVM_REG_MIPS_CP0_PWCTL:
   1987		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
   1988			return -EINVAL;
   1989		*v = read_gc0_pwctl();
   1990		break;
   1991	case KVM_REG_MIPS_CP0_HWRENA:
   1992		*v = (long)read_gc0_hwrena();
   1993		break;
   1994	case KVM_REG_MIPS_CP0_BADVADDR:
   1995		*v = (long)read_gc0_badvaddr();
   1996		break;
   1997	case KVM_REG_MIPS_CP0_BADINSTR:
   1998		if (!cpu_guest_has_badinstr)
   1999			return -EINVAL;
   2000		*v = read_gc0_badinstr();
   2001		break;
   2002	case KVM_REG_MIPS_CP0_BADINSTRP:
   2003		if (!cpu_guest_has_badinstrp)
   2004			return -EINVAL;
   2005		*v = read_gc0_badinstrp();
   2006		break;
   2007	case KVM_REG_MIPS_CP0_COUNT:
   2008		*v = kvm_mips_read_count(vcpu);
   2009		break;
   2010	case KVM_REG_MIPS_CP0_ENTRYHI:
   2011		*v = (long)read_gc0_entryhi();
   2012		break;
   2013	case KVM_REG_MIPS_CP0_COMPARE:
   2014		*v = (long)read_gc0_compare();
   2015		break;
   2016	case KVM_REG_MIPS_CP0_STATUS:
   2017		*v = (long)read_gc0_status();
   2018		break;
   2019	case KVM_REG_MIPS_CP0_INTCTL:
   2020		*v = read_gc0_intctl();
   2021		break;
   2022	case KVM_REG_MIPS_CP0_CAUSE:
   2023		*v = (long)read_gc0_cause();
   2024		break;
   2025	case KVM_REG_MIPS_CP0_EPC:
   2026		*v = (long)read_gc0_epc();
   2027		break;
   2028	case KVM_REG_MIPS_CP0_PRID:
   2029		switch (boot_cpu_type()) {
   2030		case CPU_CAVIUM_OCTEON3:
   2031			/* Octeon III has a read-only guest.PRid */
   2032			*v = read_gc0_prid();
   2033			break;
   2034		default:
   2035			*v = (long)kvm_read_c0_guest_prid(cop0);
   2036			break;
   2037		}
   2038		break;
   2039	case KVM_REG_MIPS_CP0_EBASE:
   2040		*v = kvm_vz_read_gc0_ebase();
   2041		break;
   2042	case KVM_REG_MIPS_CP0_CONFIG:
   2043		*v = read_gc0_config();
   2044		break;
   2045	case KVM_REG_MIPS_CP0_CONFIG1:
   2046		if (!cpu_guest_has_conf1)
   2047			return -EINVAL;
   2048		*v = read_gc0_config1();
   2049		break;
   2050	case KVM_REG_MIPS_CP0_CONFIG2:
   2051		if (!cpu_guest_has_conf2)
   2052			return -EINVAL;
   2053		*v = read_gc0_config2();
   2054		break;
   2055	case KVM_REG_MIPS_CP0_CONFIG3:
   2056		if (!cpu_guest_has_conf3)
   2057			return -EINVAL;
   2058		*v = read_gc0_config3();
   2059		break;
   2060	case KVM_REG_MIPS_CP0_CONFIG4:
   2061		if (!cpu_guest_has_conf4)
   2062			return -EINVAL;
   2063		*v = read_gc0_config4();
   2064		break;
   2065	case KVM_REG_MIPS_CP0_CONFIG5:
   2066		if (!cpu_guest_has_conf5)
   2067			return -EINVAL;
   2068		*v = read_gc0_config5();
   2069		break;
   2070	case KVM_REG_MIPS_CP0_CONFIG6:
   2071		*v = kvm_read_sw_gc0_config6(cop0);
   2072		break;
   2073	case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
   2074		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
   2075			return -EINVAL;
   2076		idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
   2077		if (idx >= ARRAY_SIZE(vcpu->arch.maar))
   2078			return -EINVAL;
   2079		*v = vcpu->arch.maar[idx];
   2080		break;
   2081	case KVM_REG_MIPS_CP0_MAARI:
   2082		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
   2083			return -EINVAL;
   2084		*v = kvm_read_sw_gc0_maari(vcpu->arch.cop0);
   2085		break;
   2086#ifdef CONFIG_64BIT
   2087	case KVM_REG_MIPS_CP0_XCONTEXT:
   2088		*v = read_gc0_xcontext();
   2089		break;
   2090#endif
   2091	case KVM_REG_MIPS_CP0_ERROREPC:
   2092		*v = (long)read_gc0_errorepc();
   2093		break;
   2094	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
   2095		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
   2096		if (!cpu_guest_has_kscr(idx))
   2097			return -EINVAL;
   2098		switch (idx) {
   2099		case 2:
   2100			*v = (long)read_gc0_kscratch1();
   2101			break;
   2102		case 3:
   2103			*v = (long)read_gc0_kscratch2();
   2104			break;
   2105		case 4:
   2106			*v = (long)read_gc0_kscratch3();
   2107			break;
   2108		case 5:
   2109			*v = (long)read_gc0_kscratch4();
   2110			break;
   2111		case 6:
   2112			*v = (long)read_gc0_kscratch5();
   2113			break;
   2114		case 7:
   2115			*v = (long)read_gc0_kscratch6();
   2116			break;
   2117		}
   2118		break;
   2119	case KVM_REG_MIPS_COUNT_CTL:
   2120		*v = vcpu->arch.count_ctl;
   2121		break;
   2122	case KVM_REG_MIPS_COUNT_RESUME:
   2123		*v = ktime_to_ns(vcpu->arch.count_resume);
   2124		break;
   2125	case KVM_REG_MIPS_COUNT_HZ:
   2126		*v = vcpu->arch.count_hz;
   2127		break;
   2128	default:
   2129		return -EINVAL;
   2130	}
   2131	return 0;
   2132}
   2133
   2134static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu,
   2135			      const struct kvm_one_reg *reg,
   2136			      s64 v)
   2137{
   2138	struct mips_coproc *cop0 = vcpu->arch.cop0;
   2139	unsigned int idx;
   2140	int ret = 0;
   2141	unsigned int cur, change;
   2142
   2143	switch (reg->id) {
   2144	case KVM_REG_MIPS_CP0_INDEX:
   2145		write_gc0_index(v);
   2146		break;
   2147	case KVM_REG_MIPS_CP0_ENTRYLO0:
   2148		write_gc0_entrylo0(entrylo_user_to_kvm(v));
   2149		break;
   2150	case KVM_REG_MIPS_CP0_ENTRYLO1:
   2151		write_gc0_entrylo1(entrylo_user_to_kvm(v));
   2152		break;
   2153	case KVM_REG_MIPS_CP0_CONTEXT:
   2154		write_gc0_context(v);
   2155		break;
   2156	case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
   2157		if (!cpu_guest_has_contextconfig)
   2158			return -EINVAL;
   2159		write_gc0_contextconfig(v);
   2160		break;
   2161	case KVM_REG_MIPS_CP0_USERLOCAL:
   2162		if (!cpu_guest_has_userlocal)
   2163			return -EINVAL;
   2164		write_gc0_userlocal(v);
   2165		break;
   2166#ifdef CONFIG_64BIT
   2167	case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
   2168		if (!cpu_guest_has_contextconfig)
   2169			return -EINVAL;
   2170		write_gc0_xcontextconfig(v);
   2171		break;
   2172#endif
   2173	case KVM_REG_MIPS_CP0_PAGEMASK:
   2174		write_gc0_pagemask(v);
   2175		break;
   2176	case KVM_REG_MIPS_CP0_PAGEGRAIN:
   2177		write_gc0_pagegrain(v);
   2178		break;
   2179	case KVM_REG_MIPS_CP0_SEGCTL0:
   2180		if (!cpu_guest_has_segments)
   2181			return -EINVAL;
   2182		write_gc0_segctl0(v);
   2183		break;
   2184	case KVM_REG_MIPS_CP0_SEGCTL1:
   2185		if (!cpu_guest_has_segments)
   2186			return -EINVAL;
   2187		write_gc0_segctl1(v);
   2188		break;
   2189	case KVM_REG_MIPS_CP0_SEGCTL2:
   2190		if (!cpu_guest_has_segments)
   2191			return -EINVAL;
   2192		write_gc0_segctl2(v);
   2193		break;
   2194	case KVM_REG_MIPS_CP0_PWBASE:
   2195		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
   2196			return -EINVAL;
   2197		write_gc0_pwbase(v);
   2198		break;
   2199	case KVM_REG_MIPS_CP0_PWFIELD:
   2200		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
   2201			return -EINVAL;
   2202		write_gc0_pwfield(v);
   2203		break;
   2204	case KVM_REG_MIPS_CP0_PWSIZE:
   2205		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
   2206			return -EINVAL;
   2207		write_gc0_pwsize(v);
   2208		break;
   2209	case KVM_REG_MIPS_CP0_WIRED:
   2210		change_gc0_wired(MIPSR6_WIRED_WIRED, v);
   2211		break;
   2212	case KVM_REG_MIPS_CP0_PWCTL:
   2213		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
   2214			return -EINVAL;
   2215		write_gc0_pwctl(v);
   2216		break;
   2217	case KVM_REG_MIPS_CP0_HWRENA:
   2218		write_gc0_hwrena(v);
   2219		break;
   2220	case KVM_REG_MIPS_CP0_BADVADDR:
   2221		write_gc0_badvaddr(v);
   2222		break;
   2223	case KVM_REG_MIPS_CP0_BADINSTR:
   2224		if (!cpu_guest_has_badinstr)
   2225			return -EINVAL;
   2226		write_gc0_badinstr(v);
   2227		break;
   2228	case KVM_REG_MIPS_CP0_BADINSTRP:
   2229		if (!cpu_guest_has_badinstrp)
   2230			return -EINVAL;
   2231		write_gc0_badinstrp(v);
   2232		break;
   2233	case KVM_REG_MIPS_CP0_COUNT:
   2234		kvm_mips_write_count(vcpu, v);
   2235		break;
   2236	case KVM_REG_MIPS_CP0_ENTRYHI:
   2237		write_gc0_entryhi(v);
   2238		break;
   2239	case KVM_REG_MIPS_CP0_COMPARE:
   2240		kvm_mips_write_compare(vcpu, v, false);
   2241		break;
   2242	case KVM_REG_MIPS_CP0_STATUS:
   2243		write_gc0_status(v);
   2244		break;
   2245	case KVM_REG_MIPS_CP0_INTCTL:
   2246		write_gc0_intctl(v);
   2247		break;
   2248	case KVM_REG_MIPS_CP0_CAUSE:
   2249		/*
   2250		 * If the timer is stopped or started (DC bit) it must look
   2251		 * atomic with changes to the timer interrupt pending bit (TI).
   2252		 * A timer interrupt should not happen in between.
   2253		 */
   2254		if ((read_gc0_cause() ^ v) & CAUSEF_DC) {
   2255			if (v & CAUSEF_DC) {
   2256				/* disable timer first */
   2257				kvm_mips_count_disable_cause(vcpu);
   2258				change_gc0_cause((u32)~CAUSEF_DC, v);
   2259			} else {
   2260				/* enable timer last */
   2261				change_gc0_cause((u32)~CAUSEF_DC, v);
   2262				kvm_mips_count_enable_cause(vcpu);
   2263			}
   2264		} else {
   2265			write_gc0_cause(v);
   2266		}
   2267		break;
   2268	case KVM_REG_MIPS_CP0_EPC:
   2269		write_gc0_epc(v);
   2270		break;
   2271	case KVM_REG_MIPS_CP0_PRID:
   2272		switch (boot_cpu_type()) {
   2273		case CPU_CAVIUM_OCTEON3:
   2274			/* Octeon III has a guest.PRid, but its read-only */
   2275			break;
   2276		default:
   2277			kvm_write_c0_guest_prid(cop0, v);
   2278			break;
   2279		}
   2280		break;
   2281	case KVM_REG_MIPS_CP0_EBASE:
   2282		kvm_vz_write_gc0_ebase(v);
   2283		break;
   2284	case KVM_REG_MIPS_CP0_CONFIG:
   2285		cur = read_gc0_config();
   2286		change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu);
   2287		if (change) {
   2288			v = cur ^ change;
   2289			write_gc0_config(v);
   2290		}
   2291		break;
   2292	case KVM_REG_MIPS_CP0_CONFIG1:
   2293		if (!cpu_guest_has_conf1)
   2294			break;
   2295		cur = read_gc0_config1();
   2296		change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu);
   2297		if (change) {
   2298			v = cur ^ change;
   2299			write_gc0_config1(v);
   2300		}
   2301		break;
   2302	case KVM_REG_MIPS_CP0_CONFIG2:
   2303		if (!cpu_guest_has_conf2)
   2304			break;
   2305		cur = read_gc0_config2();
   2306		change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu);
   2307		if (change) {
   2308			v = cur ^ change;
   2309			write_gc0_config2(v);
   2310		}
   2311		break;
   2312	case KVM_REG_MIPS_CP0_CONFIG3:
   2313		if (!cpu_guest_has_conf3)
   2314			break;
   2315		cur = read_gc0_config3();
   2316		change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu);
   2317		if (change) {
   2318			v = cur ^ change;
   2319			write_gc0_config3(v);
   2320		}
   2321		break;
   2322	case KVM_REG_MIPS_CP0_CONFIG4:
   2323		if (!cpu_guest_has_conf4)
   2324			break;
   2325		cur = read_gc0_config4();
   2326		change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu);
   2327		if (change) {
   2328			v = cur ^ change;
   2329			write_gc0_config4(v);
   2330		}
   2331		break;
   2332	case KVM_REG_MIPS_CP0_CONFIG5:
   2333		if (!cpu_guest_has_conf5)
   2334			break;
   2335		cur = read_gc0_config5();
   2336		change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu);
   2337		if (change) {
   2338			v = cur ^ change;
   2339			write_gc0_config5(v);
   2340		}
   2341		break;
   2342	case KVM_REG_MIPS_CP0_CONFIG6:
   2343		cur = kvm_read_sw_gc0_config6(cop0);
   2344		change = (cur ^ v) & kvm_vz_config6_user_wrmask(vcpu);
   2345		if (change) {
   2346			v = cur ^ change;
   2347			kvm_write_sw_gc0_config6(cop0, (int)v);
   2348		}
   2349		break;
   2350	case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
   2351		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
   2352			return -EINVAL;
   2353		idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
   2354		if (idx >= ARRAY_SIZE(vcpu->arch.maar))
   2355			return -EINVAL;
   2356		vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v);
   2357		break;
   2358	case KVM_REG_MIPS_CP0_MAARI:
   2359		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
   2360			return -EINVAL;
   2361		kvm_write_maari(vcpu, v);
   2362		break;
   2363#ifdef CONFIG_64BIT
   2364	case KVM_REG_MIPS_CP0_XCONTEXT:
   2365		write_gc0_xcontext(v);
   2366		break;
   2367#endif
   2368	case KVM_REG_MIPS_CP0_ERROREPC:
   2369		write_gc0_errorepc(v);
   2370		break;
   2371	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
   2372		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
   2373		if (!cpu_guest_has_kscr(idx))
   2374			return -EINVAL;
   2375		switch (idx) {
   2376		case 2:
   2377			write_gc0_kscratch1(v);
   2378			break;
   2379		case 3:
   2380			write_gc0_kscratch2(v);
   2381			break;
   2382		case 4:
   2383			write_gc0_kscratch3(v);
   2384			break;
   2385		case 5:
   2386			write_gc0_kscratch4(v);
   2387			break;
   2388		case 6:
   2389			write_gc0_kscratch5(v);
   2390			break;
   2391		case 7:
   2392			write_gc0_kscratch6(v);
   2393			break;
   2394		}
   2395		break;
   2396	case KVM_REG_MIPS_COUNT_CTL:
   2397		ret = kvm_mips_set_count_ctl(vcpu, v);
   2398		break;
   2399	case KVM_REG_MIPS_COUNT_RESUME:
   2400		ret = kvm_mips_set_count_resume(vcpu, v);
   2401		break;
   2402	case KVM_REG_MIPS_COUNT_HZ:
   2403		ret = kvm_mips_set_count_hz(vcpu, v);
   2404		break;
   2405	default:
   2406		return -EINVAL;
   2407	}
   2408	return ret;
   2409}
   2410
   2411#define guestid_cache(cpu)	(cpu_data[cpu].guestid_cache)
   2412static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu)
   2413{
   2414	unsigned long guestid = guestid_cache(cpu);
   2415
   2416	if (!(++guestid & GUESTID_MASK)) {
   2417		if (cpu_has_vtag_icache)
   2418			flush_icache_all();
   2419
   2420		if (!guestid)		/* fix version if needed */
   2421			guestid = GUESTID_FIRST_VERSION;
   2422
   2423		++guestid;		/* guestid 0 reserved for root */
   2424
   2425		/* start new guestid cycle */
   2426		kvm_vz_local_flush_roottlb_all_guests();
   2427		kvm_vz_local_flush_guesttlb_all();
   2428	}
   2429
   2430	guestid_cache(cpu) = guestid;
   2431}
   2432
   2433/* Returns 1 if the guest TLB may be clobbered */
   2434static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu)
   2435{
   2436	int ret = 0;
   2437	int i;
   2438
   2439	if (!kvm_request_pending(vcpu))
   2440		return 0;
   2441
   2442	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
   2443		if (cpu_has_guestid) {
   2444			/* Drop all GuestIDs for this VCPU */
   2445			for_each_possible_cpu(i)
   2446				vcpu->arch.vzguestid[i] = 0;
   2447			/* This will clobber guest TLB contents too */
   2448			ret = 1;
   2449		}
   2450		/*
   2451		 * For Root ASID Dealias (RAD) we don't do anything here, but we
   2452		 * still need the request to ensure we recheck asid_flush_mask.
   2453		 * We can still return 0 as only the root TLB will be affected
   2454		 * by a root ASID flush.
   2455		 */
   2456	}
   2457
   2458	return ret;
   2459}
   2460
   2461static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu)
   2462{
   2463	unsigned int wired = read_gc0_wired();
   2464	struct kvm_mips_tlb *tlbs;
   2465	int i;
   2466
   2467	/* Expand the wired TLB array if necessary */
   2468	wired &= MIPSR6_WIRED_WIRED;
   2469	if (wired > vcpu->arch.wired_tlb_limit) {
   2470		tlbs = krealloc(vcpu->arch.wired_tlb, wired *
   2471				sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC);
   2472		if (WARN_ON(!tlbs)) {
   2473			/* Save whatever we can */
   2474			wired = vcpu->arch.wired_tlb_limit;
   2475		} else {
   2476			vcpu->arch.wired_tlb = tlbs;
   2477			vcpu->arch.wired_tlb_limit = wired;
   2478		}
   2479	}
   2480
   2481	if (wired)
   2482		/* Save wired entries from the guest TLB */
   2483		kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired);
   2484	/* Invalidate any dropped entries since last time */
   2485	for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) {
   2486		vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i);
   2487		vcpu->arch.wired_tlb[i].tlb_lo[0] = 0;
   2488		vcpu->arch.wired_tlb[i].tlb_lo[1] = 0;
   2489		vcpu->arch.wired_tlb[i].tlb_mask = 0;
   2490	}
   2491	vcpu->arch.wired_tlb_used = wired;
   2492}
   2493
   2494static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu)
   2495{
   2496	/* Load wired entries into the guest TLB */
   2497	if (vcpu->arch.wired_tlb)
   2498		kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0,
   2499				     vcpu->arch.wired_tlb_used);
   2500}
   2501
   2502static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu)
   2503{
   2504	struct kvm *kvm = vcpu->kvm;
   2505	struct mm_struct *gpa_mm = &kvm->arch.gpa_mm;
   2506	bool migrated;
   2507
   2508	/*
   2509	 * Are we entering guest context on a different CPU to last time?
   2510	 * If so, the VCPU's guest TLB state on this CPU may be stale.
   2511	 */
   2512	migrated = (vcpu->arch.last_exec_cpu != cpu);
   2513	vcpu->arch.last_exec_cpu = cpu;
   2514
   2515	/*
   2516	 * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
   2517	 * remains set until another vcpu is loaded in.  As a rule GuestRID
   2518	 * remains zeroed when in root context unless the kernel is busy
   2519	 * manipulating guest tlb entries.
   2520	 */
   2521	if (cpu_has_guestid) {
   2522		/*
   2523		 * Check if our GuestID is of an older version and thus invalid.
   2524		 *
   2525		 * We also discard the stored GuestID if we've executed on
   2526		 * another CPU, as the guest mappings may have changed without
   2527		 * hypervisor knowledge.
   2528		 */
   2529		if (migrated ||
   2530		    (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) &
   2531					GUESTID_VERSION_MASK) {
   2532			kvm_vz_get_new_guestid(cpu, vcpu);
   2533			vcpu->arch.vzguestid[cpu] = guestid_cache(cpu);
   2534			trace_kvm_guestid_change(vcpu,
   2535						 vcpu->arch.vzguestid[cpu]);
   2536		}
   2537
   2538		/* Restore GuestID */
   2539		change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]);
   2540	} else {
   2541		/*
   2542		 * The Guest TLB only stores a single guest's TLB state, so
   2543		 * flush it if another VCPU has executed on this CPU.
   2544		 *
   2545		 * We also flush if we've executed on another CPU, as the guest
   2546		 * mappings may have changed without hypervisor knowledge.
   2547		 */
   2548		if (migrated || last_exec_vcpu[cpu] != vcpu)
   2549			kvm_vz_local_flush_guesttlb_all();
   2550		last_exec_vcpu[cpu] = vcpu;
   2551
   2552		/*
   2553		 * Root ASID dealiases guest GPA mappings in the root TLB.
   2554		 * Allocate new root ASID if needed.
   2555		 */
   2556		if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask))
   2557			get_new_mmu_context(gpa_mm);
   2558		else
   2559			check_mmu_context(gpa_mm);
   2560	}
   2561}
   2562
   2563static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
   2564{
   2565	struct mips_coproc *cop0 = vcpu->arch.cop0;
   2566	bool migrated, all;
   2567
   2568	/*
   2569	 * Have we migrated to a different CPU?
   2570	 * If so, any old guest TLB state may be stale.
   2571	 */
   2572	migrated = (vcpu->arch.last_sched_cpu != cpu);
   2573
   2574	/*
   2575	 * Was this the last VCPU to run on this CPU?
   2576	 * If not, any old guest state from this VCPU will have been clobbered.
   2577	 */
   2578	all = migrated || (last_vcpu[cpu] != vcpu);
   2579	last_vcpu[cpu] = vcpu;
   2580
   2581	/*
   2582	 * Restore CP0_Wired unconditionally as we clear it after use, and
   2583	 * restore wired guest TLB entries (while in guest context).
   2584	 */
   2585	kvm_restore_gc0_wired(cop0);
   2586	if (current->flags & PF_VCPU) {
   2587		tlbw_use_hazard();
   2588		kvm_vz_vcpu_load_tlb(vcpu, cpu);
   2589		kvm_vz_vcpu_load_wired(vcpu);
   2590	}
   2591
   2592	/*
   2593	 * Restore timer state regardless, as e.g. Cause.TI can change over time
   2594	 * if left unmaintained.
   2595	 */
   2596	kvm_vz_restore_timer(vcpu);
   2597
   2598	/* Set MC bit if we want to trace guest mode changes */
   2599	if (kvm_trace_guest_mode_change)
   2600		set_c0_guestctl0(MIPS_GCTL0_MC);
   2601	else
   2602		clear_c0_guestctl0(MIPS_GCTL0_MC);
   2603
   2604	/* Don't bother restoring registers multiple times unless necessary */
   2605	if (!all)
   2606		return 0;
   2607
   2608	/*
   2609	 * Restore config registers first, as some implementations restrict
   2610	 * writes to other registers when the corresponding feature bits aren't
   2611	 * set. For example Status.CU1 cannot be set unless Config1.FP is set.
   2612	 */
   2613	kvm_restore_gc0_config(cop0);
   2614	if (cpu_guest_has_conf1)
   2615		kvm_restore_gc0_config1(cop0);
   2616	if (cpu_guest_has_conf2)
   2617		kvm_restore_gc0_config2(cop0);
   2618	if (cpu_guest_has_conf3)
   2619		kvm_restore_gc0_config3(cop0);
   2620	if (cpu_guest_has_conf4)
   2621		kvm_restore_gc0_config4(cop0);
   2622	if (cpu_guest_has_conf5)
   2623		kvm_restore_gc0_config5(cop0);
   2624	if (cpu_guest_has_conf6)
   2625		kvm_restore_gc0_config6(cop0);
   2626	if (cpu_guest_has_conf7)
   2627		kvm_restore_gc0_config7(cop0);
   2628
   2629	kvm_restore_gc0_index(cop0);
   2630	kvm_restore_gc0_entrylo0(cop0);
   2631	kvm_restore_gc0_entrylo1(cop0);
   2632	kvm_restore_gc0_context(cop0);
   2633	if (cpu_guest_has_contextconfig)
   2634		kvm_restore_gc0_contextconfig(cop0);
   2635#ifdef CONFIG_64BIT
   2636	kvm_restore_gc0_xcontext(cop0);
   2637	if (cpu_guest_has_contextconfig)
   2638		kvm_restore_gc0_xcontextconfig(cop0);
   2639#endif
   2640	kvm_restore_gc0_pagemask(cop0);
   2641	kvm_restore_gc0_pagegrain(cop0);
   2642	kvm_restore_gc0_hwrena(cop0);
   2643	kvm_restore_gc0_badvaddr(cop0);
   2644	kvm_restore_gc0_entryhi(cop0);
   2645	kvm_restore_gc0_status(cop0);
   2646	kvm_restore_gc0_intctl(cop0);
   2647	kvm_restore_gc0_epc(cop0);
   2648	kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0));
   2649	if (cpu_guest_has_userlocal)
   2650		kvm_restore_gc0_userlocal(cop0);
   2651
   2652	kvm_restore_gc0_errorepc(cop0);
   2653
   2654	/* restore KScratch registers if enabled in guest */
   2655	if (cpu_guest_has_conf4) {
   2656		if (cpu_guest_has_kscr(2))
   2657			kvm_restore_gc0_kscratch1(cop0);
   2658		if (cpu_guest_has_kscr(3))
   2659			kvm_restore_gc0_kscratch2(cop0);
   2660		if (cpu_guest_has_kscr(4))
   2661			kvm_restore_gc0_kscratch3(cop0);
   2662		if (cpu_guest_has_kscr(5))
   2663			kvm_restore_gc0_kscratch4(cop0);
   2664		if (cpu_guest_has_kscr(6))
   2665			kvm_restore_gc0_kscratch5(cop0);
   2666		if (cpu_guest_has_kscr(7))
   2667			kvm_restore_gc0_kscratch6(cop0);
   2668	}
   2669
   2670	if (cpu_guest_has_badinstr)
   2671		kvm_restore_gc0_badinstr(cop0);
   2672	if (cpu_guest_has_badinstrp)
   2673		kvm_restore_gc0_badinstrp(cop0);
   2674
   2675	if (cpu_guest_has_segments) {
   2676		kvm_restore_gc0_segctl0(cop0);
   2677		kvm_restore_gc0_segctl1(cop0);
   2678		kvm_restore_gc0_segctl2(cop0);
   2679	}
   2680
   2681	/* restore HTW registers */
   2682	if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
   2683		kvm_restore_gc0_pwbase(cop0);
   2684		kvm_restore_gc0_pwfield(cop0);
   2685		kvm_restore_gc0_pwsize(cop0);
   2686		kvm_restore_gc0_pwctl(cop0);
   2687	}
   2688
   2689	/* restore Root.GuestCtl2 from unused Guest guestctl2 register */
   2690	if (cpu_has_guestctl2)
   2691		write_c0_guestctl2(
   2692			cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]);
   2693
   2694	/*
   2695	 * We should clear linked load bit to break interrupted atomics. This
   2696	 * prevents a SC on the next VCPU from succeeding by matching a LL on
   2697	 * the previous VCPU.
   2698	 */
   2699	if (vcpu->kvm->created_vcpus > 1)
   2700		write_gc0_lladdr(0);
   2701
   2702	return 0;
   2703}
   2704
   2705static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
   2706{
   2707	struct mips_coproc *cop0 = vcpu->arch.cop0;
   2708
   2709	if (current->flags & PF_VCPU)
   2710		kvm_vz_vcpu_save_wired(vcpu);
   2711
   2712	kvm_lose_fpu(vcpu);
   2713
   2714	kvm_save_gc0_index(cop0);
   2715	kvm_save_gc0_entrylo0(cop0);
   2716	kvm_save_gc0_entrylo1(cop0);
   2717	kvm_save_gc0_context(cop0);
   2718	if (cpu_guest_has_contextconfig)
   2719		kvm_save_gc0_contextconfig(cop0);
   2720#ifdef CONFIG_64BIT
   2721	kvm_save_gc0_xcontext(cop0);
   2722	if (cpu_guest_has_contextconfig)
   2723		kvm_save_gc0_xcontextconfig(cop0);
   2724#endif
   2725	kvm_save_gc0_pagemask(cop0);
   2726	kvm_save_gc0_pagegrain(cop0);
   2727	kvm_save_gc0_wired(cop0);
   2728	/* allow wired TLB entries to be overwritten */
   2729	clear_gc0_wired(MIPSR6_WIRED_WIRED);
   2730	kvm_save_gc0_hwrena(cop0);
   2731	kvm_save_gc0_badvaddr(cop0);
   2732	kvm_save_gc0_entryhi(cop0);
   2733	kvm_save_gc0_status(cop0);
   2734	kvm_save_gc0_intctl(cop0);
   2735	kvm_save_gc0_epc(cop0);
   2736	kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase());
   2737	if (cpu_guest_has_userlocal)
   2738		kvm_save_gc0_userlocal(cop0);
   2739
   2740	/* only save implemented config registers */
   2741	kvm_save_gc0_config(cop0);
   2742	if (cpu_guest_has_conf1)
   2743		kvm_save_gc0_config1(cop0);
   2744	if (cpu_guest_has_conf2)
   2745		kvm_save_gc0_config2(cop0);
   2746	if (cpu_guest_has_conf3)
   2747		kvm_save_gc0_config3(cop0);
   2748	if (cpu_guest_has_conf4)
   2749		kvm_save_gc0_config4(cop0);
   2750	if (cpu_guest_has_conf5)
   2751		kvm_save_gc0_config5(cop0);
   2752	if (cpu_guest_has_conf6)
   2753		kvm_save_gc0_config6(cop0);
   2754	if (cpu_guest_has_conf7)
   2755		kvm_save_gc0_config7(cop0);
   2756
   2757	kvm_save_gc0_errorepc(cop0);
   2758
   2759	/* save KScratch registers if enabled in guest */
   2760	if (cpu_guest_has_conf4) {
   2761		if (cpu_guest_has_kscr(2))
   2762			kvm_save_gc0_kscratch1(cop0);
   2763		if (cpu_guest_has_kscr(3))
   2764			kvm_save_gc0_kscratch2(cop0);
   2765		if (cpu_guest_has_kscr(4))
   2766			kvm_save_gc0_kscratch3(cop0);
   2767		if (cpu_guest_has_kscr(5))
   2768			kvm_save_gc0_kscratch4(cop0);
   2769		if (cpu_guest_has_kscr(6))
   2770			kvm_save_gc0_kscratch5(cop0);
   2771		if (cpu_guest_has_kscr(7))
   2772			kvm_save_gc0_kscratch6(cop0);
   2773	}
   2774
   2775	if (cpu_guest_has_badinstr)
   2776		kvm_save_gc0_badinstr(cop0);
   2777	if (cpu_guest_has_badinstrp)
   2778		kvm_save_gc0_badinstrp(cop0);
   2779
   2780	if (cpu_guest_has_segments) {
   2781		kvm_save_gc0_segctl0(cop0);
   2782		kvm_save_gc0_segctl1(cop0);
   2783		kvm_save_gc0_segctl2(cop0);
   2784	}
   2785
   2786	/* save HTW registers if enabled in guest */
   2787	if (cpu_guest_has_ldpte || (cpu_guest_has_htw &&
   2788	    kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW)) {
   2789		kvm_save_gc0_pwbase(cop0);
   2790		kvm_save_gc0_pwfield(cop0);
   2791		kvm_save_gc0_pwsize(cop0);
   2792		kvm_save_gc0_pwctl(cop0);
   2793	}
   2794
   2795	kvm_vz_save_timer(vcpu);
   2796
   2797	/* save Root.GuestCtl2 in unused Guest guestctl2 register */
   2798	if (cpu_has_guestctl2)
   2799		cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] =
   2800			read_c0_guestctl2();
   2801
   2802	return 0;
   2803}
   2804
   2805/**
   2806 * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
   2807 * @size:	Number of guest VTLB entries (0 < @size <= root VTLB entries).
   2808 *
   2809 * Attempt to resize the guest VTLB by writing guest Config registers. This is
   2810 * necessary for cores with a shared root/guest TLB to avoid overlap with wired
   2811 * entries in the root VTLB.
   2812 *
   2813 * Returns:	The resulting guest VTLB size.
   2814 */
   2815static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size)
   2816{
   2817	unsigned int config4 = 0, ret = 0, limit;
   2818
   2819	/* Write MMUSize - 1 into guest Config registers */
   2820	if (cpu_guest_has_conf1)
   2821		change_gc0_config1(MIPS_CONF1_TLBS,
   2822				   (size - 1) << MIPS_CONF1_TLBS_SHIFT);
   2823	if (cpu_guest_has_conf4) {
   2824		config4 = read_gc0_config4();
   2825		if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
   2826		    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) {
   2827			config4 &= ~MIPS_CONF4_VTLBSIZEEXT;
   2828			config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
   2829				MIPS_CONF4_VTLBSIZEEXT_SHIFT;
   2830		} else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
   2831			   MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) {
   2832			config4 &= ~MIPS_CONF4_MMUSIZEEXT;
   2833			config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
   2834				MIPS_CONF4_MMUSIZEEXT_SHIFT;
   2835		}
   2836		write_gc0_config4(config4);
   2837	}
   2838
   2839	/*
   2840	 * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
   2841	 * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
   2842	 * not dropped)
   2843	 */
   2844	if (cpu_has_mips_r6) {
   2845		limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >>
   2846						MIPSR6_WIRED_LIMIT_SHIFT;
   2847		if (size - 1 <= limit)
   2848			limit = 0;
   2849		write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT);
   2850	}
   2851
   2852	/* Read back MMUSize - 1 */
   2853	back_to_back_c0_hazard();
   2854	if (cpu_guest_has_conf1)
   2855		ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >>
   2856						MIPS_CONF1_TLBS_SHIFT;
   2857	if (config4) {
   2858		if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
   2859		    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT)
   2860			ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
   2861				MIPS_CONF4_VTLBSIZEEXT_SHIFT) <<
   2862				MIPS_CONF1_TLBS_SIZE;
   2863		else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
   2864			 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT)
   2865			ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >>
   2866				MIPS_CONF4_MMUSIZEEXT_SHIFT) <<
   2867				MIPS_CONF1_TLBS_SIZE;
   2868	}
   2869	return ret + 1;
   2870}
   2871
   2872static int kvm_vz_hardware_enable(void)
   2873{
   2874	unsigned int mmu_size, guest_mmu_size, ftlb_size;
   2875	u64 guest_cvmctl, cvmvmconfig;
   2876
   2877	switch (current_cpu_type()) {
   2878	case CPU_CAVIUM_OCTEON3:
   2879		/* Set up guest timer/perfcount IRQ lines */
   2880		guest_cvmctl = read_gc0_cvmctl();
   2881		guest_cvmctl &= ~CVMCTL_IPTI;
   2882		guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT;
   2883		guest_cvmctl &= ~CVMCTL_IPPCI;
   2884		guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT;
   2885		write_gc0_cvmctl(guest_cvmctl);
   2886
   2887		cvmvmconfig = read_c0_cvmvmconfig();
   2888		/* No I/O hole translation. */
   2889		cvmvmconfig |= CVMVMCONF_DGHT;
   2890		/* Halve the root MMU size */
   2891		mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
   2892			    >> CVMVMCONF_MMUSIZEM1_S) + 1;
   2893		guest_mmu_size = mmu_size / 2;
   2894		mmu_size -= guest_mmu_size;
   2895		cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
   2896		cvmvmconfig |= mmu_size - 1;
   2897		write_c0_cvmvmconfig(cvmvmconfig);
   2898
   2899		/* Update our records */
   2900		current_cpu_data.tlbsize = mmu_size;
   2901		current_cpu_data.tlbsizevtlb = mmu_size;
   2902		current_cpu_data.guest.tlbsize = guest_mmu_size;
   2903
   2904		/* Flush moved entries in new (guest) context */
   2905		kvm_vz_local_flush_guesttlb_all();
   2906		break;
   2907	default:
   2908		/*
   2909		 * ImgTec cores tend to use a shared root/guest TLB. To avoid
   2910		 * overlap of root wired and guest entries, the guest TLB may
   2911		 * need resizing.
   2912		 */
   2913		mmu_size = current_cpu_data.tlbsizevtlb;
   2914		ftlb_size = current_cpu_data.tlbsize - mmu_size;
   2915
   2916		/* Try switching to maximum guest VTLB size for flush */
   2917		guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size);
   2918		current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
   2919		kvm_vz_local_flush_guesttlb_all();
   2920
   2921		/*
   2922		 * Reduce to make space for root wired entries and at least 2
   2923		 * root non-wired entries. This does assume that long-term wired
   2924		 * entries won't be added later.
   2925		 */
   2926		guest_mmu_size = mmu_size - num_wired_entries() - 2;
   2927		guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size);
   2928		current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
   2929
   2930		/*
   2931		 * Write the VTLB size, but if another CPU has already written,
   2932		 * check it matches or we won't provide a consistent view to the
   2933		 * guest. If this ever happens it suggests an asymmetric number
   2934		 * of wired entries.
   2935		 */
   2936		if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) &&
   2937		    WARN(guest_mmu_size != kvm_vz_guest_vtlb_size,
   2938			 "Available guest VTLB size mismatch"))
   2939			return -EINVAL;
   2940		break;
   2941	}
   2942
   2943	/*
   2944	 * Enable virtualization features granting guest direct control of
   2945	 * certain features:
   2946	 * CP0=1:	Guest coprocessor 0 context.
   2947	 * AT=Guest:	Guest MMU.
   2948	 * CG=1:	Hit (virtual address) CACHE operations (optional).
   2949	 * CF=1:	Guest Config registers.
   2950	 * CGI=1:	Indexed flush CACHE operations (optional).
   2951	 */
   2952	write_c0_guestctl0(MIPS_GCTL0_CP0 |
   2953			   (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) |
   2954			   MIPS_GCTL0_CG | MIPS_GCTL0_CF);
   2955	if (cpu_has_guestctl0ext) {
   2956		if (current_cpu_type() != CPU_LOONGSON64)
   2957			set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
   2958		else
   2959			clear_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
   2960	}
   2961
   2962	if (cpu_has_guestid) {
   2963		write_c0_guestctl1(0);
   2964		kvm_vz_local_flush_roottlb_all_guests();
   2965
   2966		GUESTID_MASK = current_cpu_data.guestid_mask;
   2967		GUESTID_FIRST_VERSION = GUESTID_MASK + 1;
   2968		GUESTID_VERSION_MASK = ~GUESTID_MASK;
   2969
   2970		current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION;
   2971	}
   2972
   2973	/* clear any pending injected virtual guest interrupts */
   2974	if (cpu_has_guestctl2)
   2975		clear_c0_guestctl2(0x3f << 10);
   2976
   2977#ifdef CONFIG_CPU_LOONGSON64
   2978	/* Control guest CCA attribute */
   2979	if (cpu_has_csr())
   2980		csr_writel(csr_readl(0xffffffec) | 0x1, 0xffffffec);
   2981#endif
   2982
   2983	return 0;
   2984}
   2985
   2986static void kvm_vz_hardware_disable(void)
   2987{
   2988	u64 cvmvmconfig;
   2989	unsigned int mmu_size;
   2990
   2991	/* Flush any remaining guest TLB entries */
   2992	kvm_vz_local_flush_guesttlb_all();
   2993
   2994	switch (current_cpu_type()) {
   2995	case CPU_CAVIUM_OCTEON3:
   2996		/*
   2997		 * Allocate whole TLB for root. Existing guest TLB entries will
   2998		 * change ownership to the root TLB. We should be safe though as
   2999		 * they've already been flushed above while in guest TLB.
   3000		 */
   3001		cvmvmconfig = read_c0_cvmvmconfig();
   3002		mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
   3003			    >> CVMVMCONF_MMUSIZEM1_S) + 1;
   3004		cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
   3005		cvmvmconfig |= mmu_size - 1;
   3006		write_c0_cvmvmconfig(cvmvmconfig);
   3007
   3008		/* Update our records */
   3009		current_cpu_data.tlbsize = mmu_size;
   3010		current_cpu_data.tlbsizevtlb = mmu_size;
   3011		current_cpu_data.guest.tlbsize = 0;
   3012
   3013		/* Flush moved entries in new (root) context */
   3014		local_flush_tlb_all();
   3015		break;
   3016	}
   3017
   3018	if (cpu_has_guestid) {
   3019		write_c0_guestctl1(0);
   3020		kvm_vz_local_flush_roottlb_all_guests();
   3021	}
   3022}
   3023
   3024static int kvm_vz_check_extension(struct kvm *kvm, long ext)
   3025{
   3026	int r;
   3027
   3028	switch (ext) {
   3029	case KVM_CAP_MIPS_VZ:
   3030		/* we wouldn't be here unless cpu_has_vz */
   3031		r = 1;
   3032		break;
   3033#ifdef CONFIG_64BIT
   3034	case KVM_CAP_MIPS_64BIT:
   3035		/* We support 64-bit registers/operations and addresses */
   3036		r = 2;
   3037		break;
   3038#endif
   3039	case KVM_CAP_IOEVENTFD:
   3040		r = 1;
   3041		break;
   3042	default:
   3043		r = 0;
   3044		break;
   3045	}
   3046
   3047	return r;
   3048}
   3049
   3050static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu)
   3051{
   3052	int i;
   3053
   3054	for_each_possible_cpu(i)
   3055		vcpu->arch.vzguestid[i] = 0;
   3056
   3057	return 0;
   3058}
   3059
   3060static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu)
   3061{
   3062	int cpu;
   3063
   3064	/*
   3065	 * If the VCPU is freed and reused as another VCPU, we don't want the
   3066	 * matching pointer wrongly hanging around in last_vcpu[] or
   3067	 * last_exec_vcpu[].
   3068	 */
   3069	for_each_possible_cpu(cpu) {
   3070		if (last_vcpu[cpu] == vcpu)
   3071			last_vcpu[cpu] = NULL;
   3072		if (last_exec_vcpu[cpu] == vcpu)
   3073			last_exec_vcpu[cpu] = NULL;
   3074	}
   3075}
   3076
   3077static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu)
   3078{
   3079	struct mips_coproc *cop0 = vcpu->arch.cop0;
   3080	unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */
   3081
   3082	/*
   3083	 * Start off the timer at the same frequency as the host timer, but the
   3084	 * soft timer doesn't handle frequencies greater than 1GHz yet.
   3085	 */
   3086	if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC)
   3087		count_hz = mips_hpt_frequency;
   3088	kvm_mips_init_count(vcpu, count_hz);
   3089
   3090	/*
   3091	 * Initialize guest register state to valid architectural reset state.
   3092	 */
   3093
   3094	/* PageGrain */
   3095	if (cpu_has_mips_r5 || cpu_has_mips_r6)
   3096		kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC);
   3097	/* Wired */
   3098	if (cpu_has_mips_r6)
   3099		kvm_write_sw_gc0_wired(cop0,
   3100				       read_gc0_wired() & MIPSR6_WIRED_LIMIT);
   3101	/* Status */
   3102	kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL);
   3103	if (cpu_has_mips_r5 || cpu_has_mips_r6)
   3104		kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status());
   3105	/* IntCtl */
   3106	kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() &
   3107				(INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI));
   3108	/* PRId */
   3109	kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id);
   3110	/* EBase */
   3111	kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id);
   3112	/* Config */
   3113	kvm_save_gc0_config(cop0);
   3114	/* architecturally writable (e.g. from guest) */
   3115	kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK,
   3116				 _page_cachable_default >> _CACHE_SHIFT);
   3117	/* architecturally read only, but maybe writable from root */
   3118	kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config());
   3119	if (cpu_guest_has_conf1) {
   3120		kvm_set_sw_gc0_config(cop0, MIPS_CONF_M);
   3121		/* Config1 */
   3122		kvm_save_gc0_config1(cop0);
   3123		/* architecturally read only, but maybe writable from root */
   3124		kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2	|
   3125					       MIPS_CONF1_MD	|
   3126					       MIPS_CONF1_PC	|
   3127					       MIPS_CONF1_WR	|
   3128					       MIPS_CONF1_CA	|
   3129					       MIPS_CONF1_FP);
   3130	}
   3131	if (cpu_guest_has_conf2) {
   3132		kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M);
   3133		/* Config2 */
   3134		kvm_save_gc0_config2(cop0);
   3135	}
   3136	if (cpu_guest_has_conf3) {
   3137		kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M);
   3138		/* Config3 */
   3139		kvm_save_gc0_config3(cop0);
   3140		/* architecturally writable (e.g. from guest) */
   3141		kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE);
   3142		/* architecturally read only, but maybe writable from root */
   3143		kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA	|
   3144					       MIPS_CONF3_BPG	|
   3145					       MIPS_CONF3_ULRI	|
   3146					       MIPS_CONF3_DSP	|
   3147					       MIPS_CONF3_CTXTC	|
   3148					       MIPS_CONF3_ITL	|
   3149					       MIPS_CONF3_LPA	|
   3150					       MIPS_CONF3_VEIC	|
   3151					       MIPS_CONF3_VINT	|
   3152					       MIPS_CONF3_SP	|
   3153					       MIPS_CONF3_CDMM	|
   3154					       MIPS_CONF3_MT	|
   3155					       MIPS_CONF3_SM	|
   3156					       MIPS_CONF3_TL);
   3157	}
   3158	if (cpu_guest_has_conf4) {
   3159		kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M);
   3160		/* Config4 */
   3161		kvm_save_gc0_config4(cop0);
   3162	}
   3163	if (cpu_guest_has_conf5) {
   3164		kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M);
   3165		/* Config5 */
   3166		kvm_save_gc0_config5(cop0);
   3167		/* architecturally writable (e.g. from guest) */
   3168		kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K	|
   3169					       MIPS_CONF5_CV	|
   3170					       MIPS_CONF5_MSAEN	|
   3171					       MIPS_CONF5_UFE	|
   3172					       MIPS_CONF5_FRE	|
   3173					       MIPS_CONF5_SBRI	|
   3174					       MIPS_CONF5_UFR);
   3175		/* architecturally read only, but maybe writable from root */
   3176		kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP);
   3177	}
   3178
   3179	if (cpu_guest_has_contextconfig) {
   3180		/* ContextConfig */
   3181		kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0);
   3182#ifdef CONFIG_64BIT
   3183		/* XContextConfig */
   3184		/* bits SEGBITS-13+3:4 set */
   3185		kvm_write_sw_gc0_xcontextconfig(cop0,
   3186					((1ull << (cpu_vmbits - 13)) - 1) << 4);
   3187#endif
   3188	}
   3189
   3190	/* Implementation dependent, use the legacy layout */
   3191	if (cpu_guest_has_segments) {
   3192		/* SegCtl0, SegCtl1, SegCtl2 */
   3193		kvm_write_sw_gc0_segctl0(cop0, 0x00200010);
   3194		kvm_write_sw_gc0_segctl1(cop0, 0x00000002 |
   3195				(_page_cachable_default >> _CACHE_SHIFT) <<
   3196						(16 + MIPS_SEGCFG_C_SHIFT));
   3197		kvm_write_sw_gc0_segctl2(cop0, 0x00380438);
   3198	}
   3199
   3200	/* reset HTW registers */
   3201	if (cpu_guest_has_htw && (cpu_has_mips_r5 || cpu_has_mips_r6)) {
   3202		/* PWField */
   3203		kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302);
   3204		/* PWSize */
   3205		kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT);
   3206	}
   3207
   3208	/* start with no pending virtual guest interrupts */
   3209	if (cpu_has_guestctl2)
   3210		cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0;
   3211
   3212	/* Put PC at reset vector */
   3213	vcpu->arch.pc = CKSEG1ADDR(0x1fc00000);
   3214
   3215	return 0;
   3216}
   3217
   3218static void kvm_vz_prepare_flush_shadow(struct kvm *kvm)
   3219{
   3220	if (!cpu_has_guestid) {
   3221		/*
   3222		 * For each CPU there is a single GPA ASID used by all VCPUs in
   3223		 * the VM, so it doesn't make sense for the VCPUs to handle
   3224		 * invalidation of these ASIDs individually.
   3225		 *
   3226		 * Instead mark all CPUs as needing ASID invalidation in
   3227		 * asid_flush_mask, and kvm_flush_remote_tlbs(kvm) will
   3228		 * kick any running VCPUs so they check asid_flush_mask.
   3229		 */
   3230		cpumask_setall(&kvm->arch.asid_flush_mask);
   3231	}
   3232}
   3233
   3234static void kvm_vz_vcpu_reenter(struct kvm_vcpu *vcpu)
   3235{
   3236	int cpu = smp_processor_id();
   3237	int preserve_guest_tlb;
   3238
   3239	preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu);
   3240
   3241	if (preserve_guest_tlb)
   3242		kvm_vz_vcpu_save_wired(vcpu);
   3243
   3244	kvm_vz_vcpu_load_tlb(vcpu, cpu);
   3245
   3246	if (preserve_guest_tlb)
   3247		kvm_vz_vcpu_load_wired(vcpu);
   3248}
   3249
   3250static int kvm_vz_vcpu_run(struct kvm_vcpu *vcpu)
   3251{
   3252	int cpu = smp_processor_id();
   3253	int r;
   3254
   3255	kvm_vz_acquire_htimer(vcpu);
   3256	/* Check if we have any exceptions/interrupts pending */
   3257	kvm_mips_deliver_interrupts(vcpu, read_gc0_cause());
   3258
   3259	kvm_vz_check_requests(vcpu, cpu);
   3260	kvm_vz_vcpu_load_tlb(vcpu, cpu);
   3261	kvm_vz_vcpu_load_wired(vcpu);
   3262
   3263	r = vcpu->arch.vcpu_run(vcpu);
   3264
   3265	kvm_vz_vcpu_save_wired(vcpu);
   3266
   3267	return r;
   3268}
   3269
   3270static struct kvm_mips_callbacks kvm_vz_callbacks = {
   3271	.handle_cop_unusable = kvm_trap_vz_handle_cop_unusable,
   3272	.handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss,
   3273	.handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss,
   3274	.handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss,
   3275	.handle_addr_err_st = kvm_trap_vz_no_handler,
   3276	.handle_addr_err_ld = kvm_trap_vz_no_handler,
   3277	.handle_syscall = kvm_trap_vz_no_handler,
   3278	.handle_res_inst = kvm_trap_vz_no_handler,
   3279	.handle_break = kvm_trap_vz_no_handler,
   3280	.handle_msa_disabled = kvm_trap_vz_handle_msa_disabled,
   3281	.handle_guest_exit = kvm_trap_vz_handle_guest_exit,
   3282
   3283	.hardware_enable = kvm_vz_hardware_enable,
   3284	.hardware_disable = kvm_vz_hardware_disable,
   3285	.check_extension = kvm_vz_check_extension,
   3286	.vcpu_init = kvm_vz_vcpu_init,
   3287	.vcpu_uninit = kvm_vz_vcpu_uninit,
   3288	.vcpu_setup = kvm_vz_vcpu_setup,
   3289	.prepare_flush_shadow = kvm_vz_prepare_flush_shadow,
   3290	.gva_to_gpa = kvm_vz_gva_to_gpa_cb,
   3291	.queue_timer_int = kvm_vz_queue_timer_int_cb,
   3292	.dequeue_timer_int = kvm_vz_dequeue_timer_int_cb,
   3293	.queue_io_int = kvm_vz_queue_io_int_cb,
   3294	.dequeue_io_int = kvm_vz_dequeue_io_int_cb,
   3295	.irq_deliver = kvm_vz_irq_deliver_cb,
   3296	.irq_clear = kvm_vz_irq_clear_cb,
   3297	.num_regs = kvm_vz_num_regs,
   3298	.copy_reg_indices = kvm_vz_copy_reg_indices,
   3299	.get_one_reg = kvm_vz_get_one_reg,
   3300	.set_one_reg = kvm_vz_set_one_reg,
   3301	.vcpu_load = kvm_vz_vcpu_load,
   3302	.vcpu_put = kvm_vz_vcpu_put,
   3303	.vcpu_run = kvm_vz_vcpu_run,
   3304	.vcpu_reenter = kvm_vz_vcpu_reenter,
   3305};
   3306
   3307int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks)
   3308{
   3309	if (!cpu_has_vz)
   3310		return -ENODEV;
   3311
   3312	/*
   3313	 * VZ requires at least 2 KScratch registers, so it should have been
   3314	 * possible to allocate pgd_reg.
   3315	 */
   3316	if (WARN(pgd_reg == -1,
   3317		 "pgd_reg not allocated even though cpu_has_vz\n"))
   3318		return -ENODEV;
   3319
   3320	pr_info("Starting KVM with MIPS VZ extensions\n");
   3321
   3322	*install_callbacks = &kvm_vz_callbacks;
   3323	return 0;
   3324}