cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cp1emu.c (71698B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
      4 *
      5 * MIPS floating point support
      6 * Copyright (C) 1994-2000 Algorithmics Ltd.
      7 *
      8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
      9 * Copyright (C) 2000  MIPS Technologies, Inc.
     10 *
     11 * A complete emulator for MIPS coprocessor 1 instructions.  This is
     12 * required for #float(switch) or #float(trap), where it catches all
     13 * COP1 instructions via the "CoProcessor Unusable" exception.
     14 *
     15 * More surprisingly it is also required for #float(ieee), to help out
     16 * the hardware FPU at the boundaries of the IEEE-754 representation
     17 * (denormalised values, infinities, underflow, etc).  It is made
     18 * quite nasty because emulation of some non-COP1 instructions is
     19 * required, e.g. in branch delay slots.
     20 *
     21 * Note if you know that you won't have an FPU, then you'll get much
     22 * better performance by compiling with -msoft-float!
     23 */
     24#include <linux/sched.h>
     25#include <linux/debugfs.h>
     26#include <linux/percpu-defs.h>
     27#include <linux/perf_event.h>
     28
     29#include <asm/branch.h>
     30#include <asm/inst.h>
     31#include <asm/ptrace.h>
     32#include <asm/signal.h>
     33#include <linux/uaccess.h>
     34
     35#include <asm/cpu-info.h>
     36#include <asm/processor.h>
     37#include <asm/fpu_emulator.h>
     38#include <asm/fpu.h>
     39#include <asm/mips-r2-to-r6-emul.h>
     40
     41#include "ieee754.h"
     42
     43/* Function which emulates a floating point instruction. */
     44
     45static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
     46	mips_instruction);
     47
     48static int fpux_emu(struct pt_regs *,
     49	struct mips_fpu_struct *, mips_instruction, void __user **);
     50
     51/* Control registers */
     52
     53#define FPCREG_RID	0	/* $0  = revision id */
     54#define FPCREG_FCCR	25	/* $25 = fccr */
     55#define FPCREG_FEXR	26	/* $26 = fexr */
     56#define FPCREG_FENR	28	/* $28 = fenr */
     57#define FPCREG_CSR	31	/* $31 = csr */
     58
     59/* convert condition code register number to csr bit */
     60const unsigned int fpucondbit[8] = {
     61	FPU_CSR_COND,
     62	FPU_CSR_COND1,
     63	FPU_CSR_COND2,
     64	FPU_CSR_COND3,
     65	FPU_CSR_COND4,
     66	FPU_CSR_COND5,
     67	FPU_CSR_COND6,
     68	FPU_CSR_COND7
     69};
     70
     71/* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
     72static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
     73static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
     74static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
     75static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
     76
     77/*
     78 * This functions translates a 32-bit microMIPS instruction
     79 * into a 32-bit MIPS32 instruction. Returns 0 on success
     80 * and SIGILL otherwise.
     81 */
     82static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
     83{
     84	union mips_instruction insn = *insn_ptr;
     85	union mips_instruction mips32_insn = insn;
     86	int func, fmt, op;
     87
     88	switch (insn.mm_i_format.opcode) {
     89	case mm_ldc132_op:
     90		mips32_insn.mm_i_format.opcode = ldc1_op;
     91		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
     92		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
     93		break;
     94	case mm_lwc132_op:
     95		mips32_insn.mm_i_format.opcode = lwc1_op;
     96		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
     97		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
     98		break;
     99	case mm_sdc132_op:
    100		mips32_insn.mm_i_format.opcode = sdc1_op;
    101		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
    102		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
    103		break;
    104	case mm_swc132_op:
    105		mips32_insn.mm_i_format.opcode = swc1_op;
    106		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
    107		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
    108		break;
    109	case mm_pool32i_op:
    110		/* NOTE: offset is << by 1 if in microMIPS mode. */
    111		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
    112		    (insn.mm_i_format.rt == mm_bc1t_op)) {
    113			mips32_insn.fb_format.opcode = cop1_op;
    114			mips32_insn.fb_format.bc = bc_op;
    115			mips32_insn.fb_format.flag =
    116				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
    117		} else
    118			return SIGILL;
    119		break;
    120	case mm_pool32f_op:
    121		switch (insn.mm_fp0_format.func) {
    122		case mm_32f_01_op:
    123		case mm_32f_11_op:
    124		case mm_32f_02_op:
    125		case mm_32f_12_op:
    126		case mm_32f_41_op:
    127		case mm_32f_51_op:
    128		case mm_32f_42_op:
    129		case mm_32f_52_op:
    130			op = insn.mm_fp0_format.func;
    131			if (op == mm_32f_01_op)
    132				func = madd_s_op;
    133			else if (op == mm_32f_11_op)
    134				func = madd_d_op;
    135			else if (op == mm_32f_02_op)
    136				func = nmadd_s_op;
    137			else if (op == mm_32f_12_op)
    138				func = nmadd_d_op;
    139			else if (op == mm_32f_41_op)
    140				func = msub_s_op;
    141			else if (op == mm_32f_51_op)
    142				func = msub_d_op;
    143			else if (op == mm_32f_42_op)
    144				func = nmsub_s_op;
    145			else
    146				func = nmsub_d_op;
    147			mips32_insn.fp6_format.opcode = cop1x_op;
    148			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
    149			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
    150			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
    151			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
    152			mips32_insn.fp6_format.func = func;
    153			break;
    154		case mm_32f_10_op:
    155			func = -1;	/* Invalid */
    156			op = insn.mm_fp5_format.op & 0x7;
    157			if (op == mm_ldxc1_op)
    158				func = ldxc1_op;
    159			else if (op == mm_sdxc1_op)
    160				func = sdxc1_op;
    161			else if (op == mm_lwxc1_op)
    162				func = lwxc1_op;
    163			else if (op == mm_swxc1_op)
    164				func = swxc1_op;
    165
    166			if (func != -1) {
    167				mips32_insn.r_format.opcode = cop1x_op;
    168				mips32_insn.r_format.rs =
    169					insn.mm_fp5_format.base;
    170				mips32_insn.r_format.rt =
    171					insn.mm_fp5_format.index;
    172				mips32_insn.r_format.rd = 0;
    173				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
    174				mips32_insn.r_format.func = func;
    175			} else
    176				return SIGILL;
    177			break;
    178		case mm_32f_40_op:
    179			op = -1;	/* Invalid */
    180			if (insn.mm_fp2_format.op == mm_fmovt_op)
    181				op = 1;
    182			else if (insn.mm_fp2_format.op == mm_fmovf_op)
    183				op = 0;
    184			if (op != -1) {
    185				mips32_insn.fp0_format.opcode = cop1_op;
    186				mips32_insn.fp0_format.fmt =
    187					sdps_format[insn.mm_fp2_format.fmt];
    188				mips32_insn.fp0_format.ft =
    189					(insn.mm_fp2_format.cc<<2) + op;
    190				mips32_insn.fp0_format.fs =
    191					insn.mm_fp2_format.fs;
    192				mips32_insn.fp0_format.fd =
    193					insn.mm_fp2_format.fd;
    194				mips32_insn.fp0_format.func = fmovc_op;
    195			} else
    196				return SIGILL;
    197			break;
    198		case mm_32f_60_op:
    199			func = -1;	/* Invalid */
    200			if (insn.mm_fp0_format.op == mm_fadd_op)
    201				func = fadd_op;
    202			else if (insn.mm_fp0_format.op == mm_fsub_op)
    203				func = fsub_op;
    204			else if (insn.mm_fp0_format.op == mm_fmul_op)
    205				func = fmul_op;
    206			else if (insn.mm_fp0_format.op == mm_fdiv_op)
    207				func = fdiv_op;
    208			if (func != -1) {
    209				mips32_insn.fp0_format.opcode = cop1_op;
    210				mips32_insn.fp0_format.fmt =
    211					sdps_format[insn.mm_fp0_format.fmt];
    212				mips32_insn.fp0_format.ft =
    213					insn.mm_fp0_format.ft;
    214				mips32_insn.fp0_format.fs =
    215					insn.mm_fp0_format.fs;
    216				mips32_insn.fp0_format.fd =
    217					insn.mm_fp0_format.fd;
    218				mips32_insn.fp0_format.func = func;
    219			} else
    220				return SIGILL;
    221			break;
    222		case mm_32f_70_op:
    223			func = -1;	/* Invalid */
    224			if (insn.mm_fp0_format.op == mm_fmovn_op)
    225				func = fmovn_op;
    226			else if (insn.mm_fp0_format.op == mm_fmovz_op)
    227				func = fmovz_op;
    228			if (func != -1) {
    229				mips32_insn.fp0_format.opcode = cop1_op;
    230				mips32_insn.fp0_format.fmt =
    231					sdps_format[insn.mm_fp0_format.fmt];
    232				mips32_insn.fp0_format.ft =
    233					insn.mm_fp0_format.ft;
    234				mips32_insn.fp0_format.fs =
    235					insn.mm_fp0_format.fs;
    236				mips32_insn.fp0_format.fd =
    237					insn.mm_fp0_format.fd;
    238				mips32_insn.fp0_format.func = func;
    239			} else
    240				return SIGILL;
    241			break;
    242		case mm_32f_73_op:    /* POOL32FXF */
    243			switch (insn.mm_fp1_format.op) {
    244			case mm_movf0_op:
    245			case mm_movf1_op:
    246			case mm_movt0_op:
    247			case mm_movt1_op:
    248				if ((insn.mm_fp1_format.op & 0x7f) ==
    249				    mm_movf0_op)
    250					op = 0;
    251				else
    252					op = 1;
    253				mips32_insn.r_format.opcode = spec_op;
    254				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
    255				mips32_insn.r_format.rt =
    256					(insn.mm_fp4_format.cc << 2) + op;
    257				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
    258				mips32_insn.r_format.re = 0;
    259				mips32_insn.r_format.func = movc_op;
    260				break;
    261			case mm_fcvtd0_op:
    262			case mm_fcvtd1_op:
    263			case mm_fcvts0_op:
    264			case mm_fcvts1_op:
    265				if ((insn.mm_fp1_format.op & 0x7f) ==
    266				    mm_fcvtd0_op) {
    267					func = fcvtd_op;
    268					fmt = swl_format[insn.mm_fp3_format.fmt];
    269				} else {
    270					func = fcvts_op;
    271					fmt = dwl_format[insn.mm_fp3_format.fmt];
    272				}
    273				mips32_insn.fp0_format.opcode = cop1_op;
    274				mips32_insn.fp0_format.fmt = fmt;
    275				mips32_insn.fp0_format.ft = 0;
    276				mips32_insn.fp0_format.fs =
    277					insn.mm_fp3_format.fs;
    278				mips32_insn.fp0_format.fd =
    279					insn.mm_fp3_format.rt;
    280				mips32_insn.fp0_format.func = func;
    281				break;
    282			case mm_fmov0_op:
    283			case mm_fmov1_op:
    284			case mm_fabs0_op:
    285			case mm_fabs1_op:
    286			case mm_fneg0_op:
    287			case mm_fneg1_op:
    288				if ((insn.mm_fp1_format.op & 0x7f) ==
    289				    mm_fmov0_op)
    290					func = fmov_op;
    291				else if ((insn.mm_fp1_format.op & 0x7f) ==
    292					 mm_fabs0_op)
    293					func = fabs_op;
    294				else
    295					func = fneg_op;
    296				mips32_insn.fp0_format.opcode = cop1_op;
    297				mips32_insn.fp0_format.fmt =
    298					sdps_format[insn.mm_fp3_format.fmt];
    299				mips32_insn.fp0_format.ft = 0;
    300				mips32_insn.fp0_format.fs =
    301					insn.mm_fp3_format.fs;
    302				mips32_insn.fp0_format.fd =
    303					insn.mm_fp3_format.rt;
    304				mips32_insn.fp0_format.func = func;
    305				break;
    306			case mm_ffloorl_op:
    307			case mm_ffloorw_op:
    308			case mm_fceill_op:
    309			case mm_fceilw_op:
    310			case mm_ftruncl_op:
    311			case mm_ftruncw_op:
    312			case mm_froundl_op:
    313			case mm_froundw_op:
    314			case mm_fcvtl_op:
    315			case mm_fcvtw_op:
    316				if (insn.mm_fp1_format.op == mm_ffloorl_op)
    317					func = ffloorl_op;
    318				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
    319					func = ffloor_op;
    320				else if (insn.mm_fp1_format.op == mm_fceill_op)
    321					func = fceill_op;
    322				else if (insn.mm_fp1_format.op == mm_fceilw_op)
    323					func = fceil_op;
    324				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
    325					func = ftruncl_op;
    326				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
    327					func = ftrunc_op;
    328				else if (insn.mm_fp1_format.op == mm_froundl_op)
    329					func = froundl_op;
    330				else if (insn.mm_fp1_format.op == mm_froundw_op)
    331					func = fround_op;
    332				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
    333					func = fcvtl_op;
    334				else
    335					func = fcvtw_op;
    336				mips32_insn.fp0_format.opcode = cop1_op;
    337				mips32_insn.fp0_format.fmt =
    338					sd_format[insn.mm_fp1_format.fmt];
    339				mips32_insn.fp0_format.ft = 0;
    340				mips32_insn.fp0_format.fs =
    341					insn.mm_fp1_format.fs;
    342				mips32_insn.fp0_format.fd =
    343					insn.mm_fp1_format.rt;
    344				mips32_insn.fp0_format.func = func;
    345				break;
    346			case mm_frsqrt_op:
    347			case mm_fsqrt_op:
    348			case mm_frecip_op:
    349				if (insn.mm_fp1_format.op == mm_frsqrt_op)
    350					func = frsqrt_op;
    351				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
    352					func = fsqrt_op;
    353				else
    354					func = frecip_op;
    355				mips32_insn.fp0_format.opcode = cop1_op;
    356				mips32_insn.fp0_format.fmt =
    357					sdps_format[insn.mm_fp1_format.fmt];
    358				mips32_insn.fp0_format.ft = 0;
    359				mips32_insn.fp0_format.fs =
    360					insn.mm_fp1_format.fs;
    361				mips32_insn.fp0_format.fd =
    362					insn.mm_fp1_format.rt;
    363				mips32_insn.fp0_format.func = func;
    364				break;
    365			case mm_mfc1_op:
    366			case mm_mtc1_op:
    367			case mm_cfc1_op:
    368			case mm_ctc1_op:
    369			case mm_mfhc1_op:
    370			case mm_mthc1_op:
    371				if (insn.mm_fp1_format.op == mm_mfc1_op)
    372					op = mfc_op;
    373				else if (insn.mm_fp1_format.op == mm_mtc1_op)
    374					op = mtc_op;
    375				else if (insn.mm_fp1_format.op == mm_cfc1_op)
    376					op = cfc_op;
    377				else if (insn.mm_fp1_format.op == mm_ctc1_op)
    378					op = ctc_op;
    379				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
    380					op = mfhc_op;
    381				else
    382					op = mthc_op;
    383				mips32_insn.fp1_format.opcode = cop1_op;
    384				mips32_insn.fp1_format.op = op;
    385				mips32_insn.fp1_format.rt =
    386					insn.mm_fp1_format.rt;
    387				mips32_insn.fp1_format.fs =
    388					insn.mm_fp1_format.fs;
    389				mips32_insn.fp1_format.fd = 0;
    390				mips32_insn.fp1_format.func = 0;
    391				break;
    392			default:
    393				return SIGILL;
    394			}
    395			break;
    396		case mm_32f_74_op:	/* c.cond.fmt */
    397			mips32_insn.fp0_format.opcode = cop1_op;
    398			mips32_insn.fp0_format.fmt =
    399				sdps_format[insn.mm_fp4_format.fmt];
    400			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
    401			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
    402			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
    403			mips32_insn.fp0_format.func =
    404				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
    405			break;
    406		default:
    407			return SIGILL;
    408		}
    409		break;
    410	default:
    411		return SIGILL;
    412	}
    413
    414	*insn_ptr = mips32_insn;
    415	return 0;
    416}
    417
    418/*
    419 * Redundant with logic already in kernel/branch.c,
    420 * embedded in compute_return_epc.  At some point,
    421 * a single subroutine should be used across both
    422 * modules.
    423 */
    424int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
    425		  unsigned long *contpc)
    426{
    427	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
    428	unsigned int fcr31;
    429	unsigned int bit = 0;
    430	unsigned int bit0;
    431	union fpureg *fpr;
    432
    433	switch (insn.i_format.opcode) {
    434	case spec_op:
    435		switch (insn.r_format.func) {
    436		case jalr_op:
    437			if (insn.r_format.rd != 0) {
    438				regs->regs[insn.r_format.rd] =
    439					regs->cp0_epc + dec_insn.pc_inc +
    440					dec_insn.next_pc_inc;
    441			}
    442			fallthrough;
    443		case jr_op:
    444			/* For R6, JR already emulated in jalr_op */
    445			if (NO_R6EMU && insn.r_format.func == jr_op)
    446				break;
    447			*contpc = regs->regs[insn.r_format.rs];
    448			return 1;
    449		}
    450		break;
    451	case bcond_op:
    452		switch (insn.i_format.rt) {
    453		case bltzal_op:
    454		case bltzall_op:
    455			if (NO_R6EMU && (insn.i_format.rs ||
    456			    insn.i_format.rt == bltzall_op))
    457				break;
    458
    459			regs->regs[31] = regs->cp0_epc +
    460				dec_insn.pc_inc +
    461				dec_insn.next_pc_inc;
    462			fallthrough;
    463		case bltzl_op:
    464			if (NO_R6EMU)
    465				break;
    466			fallthrough;
    467		case bltz_op:
    468			if ((long)regs->regs[insn.i_format.rs] < 0)
    469				*contpc = regs->cp0_epc +
    470					dec_insn.pc_inc +
    471					(insn.i_format.simmediate << 2);
    472			else
    473				*contpc = regs->cp0_epc +
    474					dec_insn.pc_inc +
    475					dec_insn.next_pc_inc;
    476			return 1;
    477		case bgezal_op:
    478		case bgezall_op:
    479			if (NO_R6EMU && (insn.i_format.rs ||
    480			    insn.i_format.rt == bgezall_op))
    481				break;
    482
    483			regs->regs[31] = regs->cp0_epc +
    484				dec_insn.pc_inc +
    485				dec_insn.next_pc_inc;
    486			fallthrough;
    487		case bgezl_op:
    488			if (NO_R6EMU)
    489				break;
    490			fallthrough;
    491		case bgez_op:
    492			if ((long)regs->regs[insn.i_format.rs] >= 0)
    493				*contpc = regs->cp0_epc +
    494					dec_insn.pc_inc +
    495					(insn.i_format.simmediate << 2);
    496			else
    497				*contpc = regs->cp0_epc +
    498					dec_insn.pc_inc +
    499					dec_insn.next_pc_inc;
    500			return 1;
    501		}
    502		break;
    503	case jalx_op:
    504		set_isa16_mode(bit);
    505		fallthrough;
    506	case jal_op:
    507		regs->regs[31] = regs->cp0_epc +
    508			dec_insn.pc_inc +
    509			dec_insn.next_pc_inc;
    510		fallthrough;
    511	case j_op:
    512		*contpc = regs->cp0_epc + dec_insn.pc_inc;
    513		*contpc >>= 28;
    514		*contpc <<= 28;
    515		*contpc |= (insn.j_format.target << 2);
    516		/* Set microMIPS mode bit: XOR for jalx. */
    517		*contpc ^= bit;
    518		return 1;
    519	case beql_op:
    520		if (NO_R6EMU)
    521			break;
    522		fallthrough;
    523	case beq_op:
    524		if (regs->regs[insn.i_format.rs] ==
    525		    regs->regs[insn.i_format.rt])
    526			*contpc = regs->cp0_epc +
    527				dec_insn.pc_inc +
    528				(insn.i_format.simmediate << 2);
    529		else
    530			*contpc = regs->cp0_epc +
    531				dec_insn.pc_inc +
    532				dec_insn.next_pc_inc;
    533		return 1;
    534	case bnel_op:
    535		if (NO_R6EMU)
    536			break;
    537		fallthrough;
    538	case bne_op:
    539		if (regs->regs[insn.i_format.rs] !=
    540		    regs->regs[insn.i_format.rt])
    541			*contpc = regs->cp0_epc +
    542				dec_insn.pc_inc +
    543				(insn.i_format.simmediate << 2);
    544		else
    545			*contpc = regs->cp0_epc +
    546				dec_insn.pc_inc +
    547				dec_insn.next_pc_inc;
    548		return 1;
    549	case blezl_op:
    550		if (!insn.i_format.rt && NO_R6EMU)
    551			break;
    552		fallthrough;
    553	case blez_op:
    554
    555		/*
    556		 * Compact branches for R6 for the
    557		 * blez and blezl opcodes.
    558		 * BLEZ  | rs = 0 | rt != 0  == BLEZALC
    559		 * BLEZ  | rs = rt != 0      == BGEZALC
    560		 * BLEZ  | rs != 0 | rt != 0 == BGEUC
    561		 * BLEZL | rs = 0 | rt != 0  == BLEZC
    562		 * BLEZL | rs = rt != 0      == BGEZC
    563		 * BLEZL | rs != 0 | rt != 0 == BGEC
    564		 *
    565		 * For real BLEZ{,L}, rt is always 0.
    566		 */
    567		if (cpu_has_mips_r6 && insn.i_format.rt) {
    568			if ((insn.i_format.opcode == blez_op) &&
    569			    ((!insn.i_format.rs && insn.i_format.rt) ||
    570			     (insn.i_format.rs == insn.i_format.rt)))
    571				regs->regs[31] = regs->cp0_epc +
    572					dec_insn.pc_inc;
    573			*contpc = regs->cp0_epc + dec_insn.pc_inc +
    574				dec_insn.next_pc_inc;
    575
    576			return 1;
    577		}
    578		if ((long)regs->regs[insn.i_format.rs] <= 0)
    579			*contpc = regs->cp0_epc +
    580				dec_insn.pc_inc +
    581				(insn.i_format.simmediate << 2);
    582		else
    583			*contpc = regs->cp0_epc +
    584				dec_insn.pc_inc +
    585				dec_insn.next_pc_inc;
    586		return 1;
    587	case bgtzl_op:
    588		if (!insn.i_format.rt && NO_R6EMU)
    589			break;
    590		fallthrough;
    591	case bgtz_op:
    592		/*
    593		 * Compact branches for R6 for the
    594		 * bgtz and bgtzl opcodes.
    595		 * BGTZ  | rs = 0 | rt != 0  == BGTZALC
    596		 * BGTZ  | rs = rt != 0      == BLTZALC
    597		 * BGTZ  | rs != 0 | rt != 0 == BLTUC
    598		 * BGTZL | rs = 0 | rt != 0  == BGTZC
    599		 * BGTZL | rs = rt != 0      == BLTZC
    600		 * BGTZL | rs != 0 | rt != 0 == BLTC
    601		 *
    602		 * *ZALC varint for BGTZ &&& rt != 0
    603		 * For real GTZ{,L}, rt is always 0.
    604		 */
    605		if (cpu_has_mips_r6 && insn.i_format.rt) {
    606			if ((insn.i_format.opcode == blez_op) &&
    607			    ((!insn.i_format.rs && insn.i_format.rt) ||
    608			     (insn.i_format.rs == insn.i_format.rt)))
    609				regs->regs[31] = regs->cp0_epc +
    610					dec_insn.pc_inc;
    611			*contpc = regs->cp0_epc + dec_insn.pc_inc +
    612				dec_insn.next_pc_inc;
    613
    614			return 1;
    615		}
    616
    617		if ((long)regs->regs[insn.i_format.rs] > 0)
    618			*contpc = regs->cp0_epc +
    619				dec_insn.pc_inc +
    620				(insn.i_format.simmediate << 2);
    621		else
    622			*contpc = regs->cp0_epc +
    623				dec_insn.pc_inc +
    624				dec_insn.next_pc_inc;
    625		return 1;
    626	case pop10_op:
    627	case pop30_op:
    628		if (!cpu_has_mips_r6)
    629			break;
    630		if (insn.i_format.rt && !insn.i_format.rs)
    631			regs->regs[31] = regs->cp0_epc + 4;
    632		*contpc = regs->cp0_epc + dec_insn.pc_inc +
    633			dec_insn.next_pc_inc;
    634
    635		return 1;
    636#ifdef CONFIG_CPU_CAVIUM_OCTEON
    637	case lwc2_op: /* This is bbit0 on Octeon */
    638		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
    639			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
    640		else
    641			*contpc = regs->cp0_epc + 8;
    642		return 1;
    643	case ldc2_op: /* This is bbit032 on Octeon */
    644		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
    645			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
    646		else
    647			*contpc = regs->cp0_epc + 8;
    648		return 1;
    649	case swc2_op: /* This is bbit1 on Octeon */
    650		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
    651			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
    652		else
    653			*contpc = regs->cp0_epc + 8;
    654		return 1;
    655	case sdc2_op: /* This is bbit132 on Octeon */
    656		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
    657			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
    658		else
    659			*contpc = regs->cp0_epc + 8;
    660		return 1;
    661#else
    662	case bc6_op:
    663		/*
    664		 * Only valid for MIPS R6 but we can still end up
    665		 * here from a broken userland so just tell emulator
    666		 * this is not a branch and let it break later on.
    667		 */
    668		if  (!cpu_has_mips_r6)
    669			break;
    670		*contpc = regs->cp0_epc + dec_insn.pc_inc +
    671			dec_insn.next_pc_inc;
    672
    673		return 1;
    674	case balc6_op:
    675		if (!cpu_has_mips_r6)
    676			break;
    677		regs->regs[31] = regs->cp0_epc + 4;
    678		*contpc = regs->cp0_epc + dec_insn.pc_inc +
    679			dec_insn.next_pc_inc;
    680
    681		return 1;
    682	case pop66_op:
    683		if (!cpu_has_mips_r6)
    684			break;
    685		*contpc = regs->cp0_epc + dec_insn.pc_inc +
    686			dec_insn.next_pc_inc;
    687
    688		return 1;
    689	case pop76_op:
    690		if (!cpu_has_mips_r6)
    691			break;
    692		if (!insn.i_format.rs)
    693			regs->regs[31] = regs->cp0_epc + 4;
    694		*contpc = regs->cp0_epc + dec_insn.pc_inc +
    695			dec_insn.next_pc_inc;
    696
    697		return 1;
    698#endif
    699	case cop0_op:
    700	case cop1_op:
    701		/* Need to check for R6 bc1nez and bc1eqz branches */
    702		if (cpu_has_mips_r6 &&
    703		    ((insn.i_format.rs == bc1eqz_op) ||
    704		     (insn.i_format.rs == bc1nez_op))) {
    705			bit = 0;
    706			fpr = &current->thread.fpu.fpr[insn.i_format.rt];
    707			bit0 = get_fpr32(fpr, 0) & 0x1;
    708			switch (insn.i_format.rs) {
    709			case bc1eqz_op:
    710				bit = bit0 == 0;
    711				break;
    712			case bc1nez_op:
    713				bit = bit0 != 0;
    714				break;
    715			}
    716			if (bit)
    717				*contpc = regs->cp0_epc +
    718					dec_insn.pc_inc +
    719					(insn.i_format.simmediate << 2);
    720			else
    721				*contpc = regs->cp0_epc +
    722					dec_insn.pc_inc +
    723					dec_insn.next_pc_inc;
    724
    725			return 1;
    726		}
    727		/* R2/R6 compatible cop1 instruction */
    728		fallthrough;
    729	case cop2_op:
    730	case cop1x_op:
    731		if (insn.i_format.rs == bc_op) {
    732			preempt_disable();
    733			if (is_fpu_owner())
    734			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
    735			else
    736				fcr31 = current->thread.fpu.fcr31;
    737			preempt_enable();
    738
    739			bit = (insn.i_format.rt >> 2);
    740			bit += (bit != 0);
    741			bit += 23;
    742			switch (insn.i_format.rt & 3) {
    743			case 0:	/* bc1f */
    744			case 2:	/* bc1fl */
    745				if (~fcr31 & (1 << bit))
    746					*contpc = regs->cp0_epc +
    747						dec_insn.pc_inc +
    748						(insn.i_format.simmediate << 2);
    749				else
    750					*contpc = regs->cp0_epc +
    751						dec_insn.pc_inc +
    752						dec_insn.next_pc_inc;
    753				return 1;
    754			case 1:	/* bc1t */
    755			case 3:	/* bc1tl */
    756				if (fcr31 & (1 << bit))
    757					*contpc = regs->cp0_epc +
    758						dec_insn.pc_inc +
    759						(insn.i_format.simmediate << 2);
    760				else
    761					*contpc = regs->cp0_epc +
    762						dec_insn.pc_inc +
    763						dec_insn.next_pc_inc;
    764				return 1;
    765			}
    766		}
    767		break;
    768	}
    769	return 0;
    770}
    771
    772/*
    773 * In the Linux kernel, we support selection of FPR format on the
    774 * basis of the Status.FR bit.	If an FPU is not present, the FR bit
    775 * is hardwired to zero, which would imply a 32-bit FPU even for
    776 * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
    777 * FPU emu is slow and bulky and optimizing this function offers fairly
    778 * sizeable benefits so we try to be clever and make this function return
    779 * a constant whenever possible, that is on 64-bit kernels without O32
    780 * compatibility enabled and on 32-bit without 64-bit FPU support.
    781 */
    782static inline int cop1_64bit(struct pt_regs *xcp)
    783{
    784	if (IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_MIPS32_O32))
    785		return 1;
    786	else if (IS_ENABLED(CONFIG_32BIT) &&
    787		 !IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
    788		return 0;
    789
    790	return !test_thread_flag(TIF_32BIT_FPREGS);
    791}
    792
    793static inline bool hybrid_fprs(void)
    794{
    795	return test_thread_flag(TIF_HYBRID_FPREGS);
    796}
    797
    798#define SIFROMREG(si, x)						\
    799do {									\
    800	if (cop1_64bit(xcp) && !hybrid_fprs())				\
    801		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
    802	else								\
    803		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
    804} while (0)
    805
    806#define SITOREG(si, x)							\
    807do {									\
    808	if (cop1_64bit(xcp) && !hybrid_fprs()) {			\
    809		unsigned int i;						\
    810		set_fpr32(&ctx->fpr[x], 0, si);				\
    811		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
    812			set_fpr32(&ctx->fpr[x], i, 0);			\
    813	} else {							\
    814		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
    815	}								\
    816} while (0)
    817
    818#define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
    819
    820#define SITOHREG(si, x)							\
    821do {									\
    822	unsigned int i;							\
    823	set_fpr32(&ctx->fpr[x], 1, si);					\
    824	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
    825		set_fpr32(&ctx->fpr[x], i, 0);				\
    826} while (0)
    827
    828#define DIFROMREG(di, x)						\
    829	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) ^ 1)], 0))
    830
    831#define DITOREG(di, x)							\
    832do {									\
    833	unsigned int fpr, i;						\
    834	fpr = (x) & ~(cop1_64bit(xcp) ^ 1);				\
    835	set_fpr64(&ctx->fpr[fpr], 0, di);				\
    836	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
    837		set_fpr64(&ctx->fpr[fpr], i, 0);			\
    838} while (0)
    839
    840#define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
    841#define SPTOREG(sp, x)	SITOREG((sp).bits, x)
    842#define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
    843#define DPTOREG(dp, x)	DITOREG((dp).bits, x)
    844
    845/*
    846 * Emulate a CFC1 instruction.
    847 */
    848static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
    849			    mips_instruction ir)
    850{
    851	u32 fcr31 = ctx->fcr31;
    852	u32 value = 0;
    853
    854	switch (MIPSInst_RD(ir)) {
    855	case FPCREG_CSR:
    856		value = fcr31;
    857		pr_debug("%p gpr[%d]<-csr=%08x\n",
    858			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
    859		break;
    860
    861	case FPCREG_FENR:
    862		if (!cpu_has_mips_r)
    863			break;
    864		value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
    865			MIPS_FENR_FS;
    866		value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
    867		pr_debug("%p gpr[%d]<-enr=%08x\n",
    868			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
    869		break;
    870
    871	case FPCREG_FEXR:
    872		if (!cpu_has_mips_r)
    873			break;
    874		value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
    875		pr_debug("%p gpr[%d]<-exr=%08x\n",
    876			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
    877		break;
    878
    879	case FPCREG_FCCR:
    880		if (!cpu_has_mips_r)
    881			break;
    882		value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
    883			MIPS_FCCR_COND0;
    884		value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
    885			 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
    886		pr_debug("%p gpr[%d]<-ccr=%08x\n",
    887			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
    888		break;
    889
    890	case FPCREG_RID:
    891		value = boot_cpu_data.fpu_id;
    892		break;
    893
    894	default:
    895		break;
    896	}
    897
    898	if (MIPSInst_RT(ir))
    899		xcp->regs[MIPSInst_RT(ir)] = value;
    900}
    901
    902/*
    903 * Emulate a CTC1 instruction.
    904 */
    905static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
    906			    mips_instruction ir)
    907{
    908	u32 fcr31 = ctx->fcr31;
    909	u32 value;
    910	u32 mask;
    911
    912	if (MIPSInst_RT(ir) == 0)
    913		value = 0;
    914	else
    915		value = xcp->regs[MIPSInst_RT(ir)];
    916
    917	switch (MIPSInst_RD(ir)) {
    918	case FPCREG_CSR:
    919		pr_debug("%p gpr[%d]->csr=%08x\n",
    920			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
    921
    922		/* Preserve read-only bits.  */
    923		mask = boot_cpu_data.fpu_msk31;
    924		fcr31 = (value & ~mask) | (fcr31 & mask);
    925		break;
    926
    927	case FPCREG_FENR:
    928		if (!cpu_has_mips_r)
    929			break;
    930		pr_debug("%p gpr[%d]->enr=%08x\n",
    931			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
    932		fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
    933		fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
    934			 FPU_CSR_FS;
    935		fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
    936		break;
    937
    938	case FPCREG_FEXR:
    939		if (!cpu_has_mips_r)
    940			break;
    941		pr_debug("%p gpr[%d]->exr=%08x\n",
    942			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
    943		fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
    944		fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
    945		break;
    946
    947	case FPCREG_FCCR:
    948		if (!cpu_has_mips_r)
    949			break;
    950		pr_debug("%p gpr[%d]->ccr=%08x\n",
    951			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
    952		fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
    953		fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
    954			 FPU_CSR_COND;
    955		fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
    956			 FPU_CSR_CONDX;
    957		break;
    958
    959	default:
    960		break;
    961	}
    962
    963	ctx->fcr31 = fcr31;
    964}
    965
    966/*
    967 * Emulate the single floating point instruction pointed at by EPC.
    968 * Two instructions if the instruction is in a branch delay slot.
    969 */
    970
    971static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
    972		struct mm_decoded_insn dec_insn, void __user **fault_addr)
    973{
    974	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
    975	unsigned int cond, cbit, bit0;
    976	mips_instruction ir;
    977	int likely, pc_inc;
    978	union fpureg *fpr;
    979	u32 __user *wva;
    980	u64 __user *dva;
    981	u32 wval;
    982	u64 dval;
    983	int sig;
    984
    985	/*
    986	 * These are giving gcc a gentle hint about what to expect in
    987	 * dec_inst in order to do better optimization.
    988	 */
    989	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
    990		unreachable();
    991
    992	/* XXX NEC Vr54xx bug workaround */
    993	if (delay_slot(xcp)) {
    994		if (dec_insn.micro_mips_mode) {
    995			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
    996				clear_delay_slot(xcp);
    997		} else {
    998			if (!isBranchInstr(xcp, dec_insn, &contpc))
    999				clear_delay_slot(xcp);
   1000		}
   1001	}
   1002
   1003	if (delay_slot(xcp)) {
   1004		/*
   1005		 * The instruction to be emulated is in a branch delay slot
   1006		 * which means that we have to	emulate the branch instruction
   1007		 * BEFORE we do the cop1 instruction.
   1008		 *
   1009		 * This branch could be a COP1 branch, but in that case we
   1010		 * would have had a trap for that instruction, and would not
   1011		 * come through this route.
   1012		 *
   1013		 * Linux MIPS branch emulator operates on context, updating the
   1014		 * cp0_epc.
   1015		 */
   1016		ir = dec_insn.next_insn;  /* process delay slot instr */
   1017		pc_inc = dec_insn.next_pc_inc;
   1018	} else {
   1019		ir = dec_insn.insn;       /* process current instr */
   1020		pc_inc = dec_insn.pc_inc;
   1021	}
   1022
   1023	/*
   1024	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
   1025	 * instructions, we want to convert microMIPS FPU instructions
   1026	 * into MIPS32 instructions so that we could reuse all of the
   1027	 * FPU emulation code.
   1028	 *
   1029	 * NOTE: We cannot do this for branch instructions since they
   1030	 *       are not a subset. Example: Cannot emulate a 16-bit
   1031	 *       aligned target address with a MIPS32 instruction.
   1032	 */
   1033	if (dec_insn.micro_mips_mode) {
   1034		/*
   1035		 * If next instruction is a 16-bit instruction, then it
   1036		 * it cannot be a FPU instruction. This could happen
   1037		 * since we can be called for non-FPU instructions.
   1038		 */
   1039		if ((pc_inc == 2) ||
   1040			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
   1041			 == SIGILL))
   1042			return SIGILL;
   1043	}
   1044
   1045emul:
   1046	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
   1047	MIPS_FPU_EMU_INC_STATS(emulated);
   1048	switch (MIPSInst_OPCODE(ir)) {
   1049	case ldc1_op:
   1050		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
   1051				     MIPSInst_SIMM(ir));
   1052		MIPS_FPU_EMU_INC_STATS(loads);
   1053
   1054		if (!access_ok(dva, sizeof(u64))) {
   1055			MIPS_FPU_EMU_INC_STATS(errors);
   1056			*fault_addr = dva;
   1057			return SIGBUS;
   1058		}
   1059		if (__get_user(dval, dva)) {
   1060			MIPS_FPU_EMU_INC_STATS(errors);
   1061			*fault_addr = dva;
   1062			return SIGSEGV;
   1063		}
   1064		DITOREG(dval, MIPSInst_RT(ir));
   1065		break;
   1066
   1067	case sdc1_op:
   1068		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
   1069				      MIPSInst_SIMM(ir));
   1070		MIPS_FPU_EMU_INC_STATS(stores);
   1071		DIFROMREG(dval, MIPSInst_RT(ir));
   1072		if (!access_ok(dva, sizeof(u64))) {
   1073			MIPS_FPU_EMU_INC_STATS(errors);
   1074			*fault_addr = dva;
   1075			return SIGBUS;
   1076		}
   1077		if (__put_user(dval, dva)) {
   1078			MIPS_FPU_EMU_INC_STATS(errors);
   1079			*fault_addr = dva;
   1080			return SIGSEGV;
   1081		}
   1082		break;
   1083
   1084	case lwc1_op:
   1085		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
   1086				      MIPSInst_SIMM(ir));
   1087		MIPS_FPU_EMU_INC_STATS(loads);
   1088		if (!access_ok(wva, sizeof(u32))) {
   1089			MIPS_FPU_EMU_INC_STATS(errors);
   1090			*fault_addr = wva;
   1091			return SIGBUS;
   1092		}
   1093		if (__get_user(wval, wva)) {
   1094			MIPS_FPU_EMU_INC_STATS(errors);
   1095			*fault_addr = wva;
   1096			return SIGSEGV;
   1097		}
   1098		SITOREG(wval, MIPSInst_RT(ir));
   1099		break;
   1100
   1101	case swc1_op:
   1102		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
   1103				      MIPSInst_SIMM(ir));
   1104		MIPS_FPU_EMU_INC_STATS(stores);
   1105		SIFROMREG(wval, MIPSInst_RT(ir));
   1106		if (!access_ok(wva, sizeof(u32))) {
   1107			MIPS_FPU_EMU_INC_STATS(errors);
   1108			*fault_addr = wva;
   1109			return SIGBUS;
   1110		}
   1111		if (__put_user(wval, wva)) {
   1112			MIPS_FPU_EMU_INC_STATS(errors);
   1113			*fault_addr = wva;
   1114			return SIGSEGV;
   1115		}
   1116		break;
   1117
   1118	case cop1_op:
   1119		switch (MIPSInst_RS(ir)) {
   1120		case dmfc_op:
   1121			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
   1122				return SIGILL;
   1123
   1124			/* copregister fs -> gpr[rt] */
   1125			if (MIPSInst_RT(ir) != 0) {
   1126				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
   1127					MIPSInst_RD(ir));
   1128			}
   1129			break;
   1130
   1131		case dmtc_op:
   1132			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
   1133				return SIGILL;
   1134
   1135			/* copregister fs <- rt */
   1136			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
   1137			break;
   1138
   1139		case mfhc_op:
   1140			if (!cpu_has_mips_r2_r6)
   1141				return SIGILL;
   1142
   1143			/* copregister rd -> gpr[rt] */
   1144			if (MIPSInst_RT(ir) != 0) {
   1145				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
   1146					MIPSInst_RD(ir));
   1147			}
   1148			break;
   1149
   1150		case mthc_op:
   1151			if (!cpu_has_mips_r2_r6)
   1152				return SIGILL;
   1153
   1154			/* copregister rd <- gpr[rt] */
   1155			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
   1156			break;
   1157
   1158		case mfc_op:
   1159			/* copregister rd -> gpr[rt] */
   1160			if (MIPSInst_RT(ir) != 0) {
   1161				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
   1162					MIPSInst_RD(ir));
   1163			}
   1164			break;
   1165
   1166		case mtc_op:
   1167			/* copregister rd <- rt */
   1168			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
   1169			break;
   1170
   1171		case cfc_op:
   1172			/* cop control register rd -> gpr[rt] */
   1173			cop1_cfc(xcp, ctx, ir);
   1174			break;
   1175
   1176		case ctc_op:
   1177			/* copregister rd <- rt */
   1178			cop1_ctc(xcp, ctx, ir);
   1179			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
   1180				return SIGFPE;
   1181			}
   1182			break;
   1183
   1184		case bc1eqz_op:
   1185		case bc1nez_op:
   1186			if (!cpu_has_mips_r6 || delay_slot(xcp))
   1187				return SIGILL;
   1188
   1189			likely = 0;
   1190			cond = 0;
   1191			fpr = &current->thread.fpu.fpr[MIPSInst_RT(ir)];
   1192			bit0 = get_fpr32(fpr, 0) & 0x1;
   1193			switch (MIPSInst_RS(ir)) {
   1194			case bc1eqz_op:
   1195				MIPS_FPU_EMU_INC_STATS(bc1eqz);
   1196				cond = bit0 == 0;
   1197				break;
   1198			case bc1nez_op:
   1199				MIPS_FPU_EMU_INC_STATS(bc1nez);
   1200				cond = bit0 != 0;
   1201				break;
   1202			}
   1203			goto branch_common;
   1204
   1205		case bc_op:
   1206			if (delay_slot(xcp))
   1207				return SIGILL;
   1208
   1209			if (cpu_has_mips_4_5_r)
   1210				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
   1211			else
   1212				cbit = FPU_CSR_COND;
   1213			cond = ctx->fcr31 & cbit;
   1214
   1215			likely = 0;
   1216			switch (MIPSInst_RT(ir) & 3) {
   1217			case bcfl_op:
   1218				if (cpu_has_mips_2_3_4_5_r)
   1219					likely = 1;
   1220				fallthrough;
   1221			case bcf_op:
   1222				cond = !cond;
   1223				break;
   1224			case bctl_op:
   1225				if (cpu_has_mips_2_3_4_5_r)
   1226					likely = 1;
   1227				fallthrough;
   1228			case bct_op:
   1229				break;
   1230			}
   1231branch_common:
   1232			MIPS_FPU_EMU_INC_STATS(branches);
   1233			set_delay_slot(xcp);
   1234			if (cond) {
   1235				/*
   1236				 * Branch taken: emulate dslot instruction
   1237				 */
   1238				unsigned long bcpc;
   1239
   1240				/*
   1241				 * Remember EPC at the branch to point back
   1242				 * at so that any delay-slot instruction
   1243				 * signal is not silently ignored.
   1244				 */
   1245				bcpc = xcp->cp0_epc;
   1246				xcp->cp0_epc += dec_insn.pc_inc;
   1247
   1248				contpc = MIPSInst_SIMM(ir);
   1249				ir = dec_insn.next_insn;
   1250				if (dec_insn.micro_mips_mode) {
   1251					contpc = (xcp->cp0_epc + (contpc << 1));
   1252
   1253					/* If 16-bit instruction, not FPU. */
   1254					if ((dec_insn.next_pc_inc == 2) ||
   1255						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
   1256
   1257						/*
   1258						 * Since this instruction will
   1259						 * be put on the stack with
   1260						 * 32-bit words, get around
   1261						 * this problem by putting a
   1262						 * NOP16 as the second one.
   1263						 */
   1264						if (dec_insn.next_pc_inc == 2)
   1265							ir = (ir & (~0xffff)) | MM_NOP16;
   1266
   1267						/*
   1268						 * Single step the non-CP1
   1269						 * instruction in the dslot.
   1270						 */
   1271						sig = mips_dsemul(xcp, ir,
   1272								  bcpc, contpc);
   1273						if (sig < 0)
   1274							break;
   1275						if (sig)
   1276							xcp->cp0_epc = bcpc;
   1277						/*
   1278						 * SIGILL forces out of
   1279						 * the emulation loop.
   1280						 */
   1281						return sig ? sig : SIGILL;
   1282					}
   1283				} else
   1284					contpc = (xcp->cp0_epc + (contpc << 2));
   1285
   1286				switch (MIPSInst_OPCODE(ir)) {
   1287				case lwc1_op:
   1288				case swc1_op:
   1289					goto emul;
   1290
   1291				case ldc1_op:
   1292				case sdc1_op:
   1293					if (cpu_has_mips_2_3_4_5_r)
   1294						goto emul;
   1295
   1296					goto bc_sigill;
   1297
   1298				case cop1_op:
   1299					goto emul;
   1300
   1301				case cop1x_op:
   1302					if (cpu_has_mips_4_5_64_r2_r6)
   1303						/* its one of ours */
   1304						goto emul;
   1305
   1306					goto bc_sigill;
   1307
   1308				case spec_op:
   1309					switch (MIPSInst_FUNC(ir)) {
   1310					case movc_op:
   1311						if (cpu_has_mips_4_5_r)
   1312							goto emul;
   1313
   1314						goto bc_sigill;
   1315					}
   1316					break;
   1317
   1318				bc_sigill:
   1319					xcp->cp0_epc = bcpc;
   1320					return SIGILL;
   1321				}
   1322
   1323				/*
   1324				 * Single step the non-cp1
   1325				 * instruction in the dslot
   1326				 */
   1327				sig = mips_dsemul(xcp, ir, bcpc, contpc);
   1328				if (sig < 0)
   1329					break;
   1330				if (sig)
   1331					xcp->cp0_epc = bcpc;
   1332				/* SIGILL forces out of the emulation loop.  */
   1333				return sig ? sig : SIGILL;
   1334			} else if (likely) {	/* branch not taken */
   1335				/*
   1336				 * branch likely nullifies
   1337				 * dslot if not taken
   1338				 */
   1339				xcp->cp0_epc += dec_insn.pc_inc;
   1340				contpc += dec_insn.pc_inc;
   1341				/*
   1342				 * else continue & execute
   1343				 * dslot as normal insn
   1344				 */
   1345			}
   1346			break;
   1347
   1348		default:
   1349			if (!(MIPSInst_RS(ir) & 0x10))
   1350				return SIGILL;
   1351
   1352			/* a real fpu computation instruction */
   1353			sig = fpu_emu(xcp, ctx, ir);
   1354			if (sig)
   1355				return sig;
   1356		}
   1357		break;
   1358
   1359	case cop1x_op:
   1360		if (!cpu_has_mips_4_5_64_r2_r6)
   1361			return SIGILL;
   1362
   1363		sig = fpux_emu(xcp, ctx, ir, fault_addr);
   1364		if (sig)
   1365			return sig;
   1366		break;
   1367
   1368	case spec_op:
   1369		if (!cpu_has_mips_4_5_r)
   1370			return SIGILL;
   1371
   1372		if (MIPSInst_FUNC(ir) != movc_op)
   1373			return SIGILL;
   1374		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
   1375		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
   1376			xcp->regs[MIPSInst_RD(ir)] =
   1377				xcp->regs[MIPSInst_RS(ir)];
   1378		break;
   1379	default:
   1380		return SIGILL;
   1381	}
   1382
   1383	/* we did it !! */
   1384	xcp->cp0_epc = contpc;
   1385	clear_delay_slot(xcp);
   1386
   1387	return 0;
   1388}
   1389
   1390/*
   1391 * Conversion table from MIPS compare ops 48-63
   1392 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
   1393 */
   1394static const unsigned char cmptab[8] = {
   1395	0,			/* cmp_0 (sig) cmp_sf */
   1396	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
   1397	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
   1398	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
   1399	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
   1400	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
   1401	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
   1402	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
   1403};
   1404
   1405static const unsigned char negative_cmptab[8] = {
   1406	0, /* Reserved */
   1407	IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ,
   1408	IEEE754_CLT | IEEE754_CGT | IEEE754_CUN,
   1409	IEEE754_CLT | IEEE754_CGT,
   1410	/* Reserved */
   1411};
   1412
   1413
   1414/*
   1415 * Additional MIPS4 instructions
   1416 */
   1417
   1418#define DEF3OP(name, p, f1, f2, f3)					\
   1419static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
   1420	union ieee754##p s, union ieee754##p t)				\
   1421{									\
   1422	struct _ieee754_csr ieee754_csr_save;				\
   1423	s = f1(s, t);							\
   1424	ieee754_csr_save = ieee754_csr;					\
   1425	s = f2(s, r);							\
   1426	ieee754_csr_save.cx |= ieee754_csr.cx;				\
   1427	ieee754_csr_save.sx |= ieee754_csr.sx;				\
   1428	s = f3(s);							\
   1429	ieee754_csr.cx |= ieee754_csr_save.cx;				\
   1430	ieee754_csr.sx |= ieee754_csr_save.sx;				\
   1431	return s;							\
   1432}
   1433
   1434static union ieee754dp fpemu_dp_recip(union ieee754dp d)
   1435{
   1436	return ieee754dp_div(ieee754dp_one(0), d);
   1437}
   1438
   1439static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
   1440{
   1441	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
   1442}
   1443
   1444static union ieee754sp fpemu_sp_recip(union ieee754sp s)
   1445{
   1446	return ieee754sp_div(ieee754sp_one(0), s);
   1447}
   1448
   1449static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
   1450{
   1451	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
   1452}
   1453
   1454DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
   1455DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
   1456DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
   1457DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
   1458DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
   1459DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
   1460DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
   1461DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
   1462
   1463static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
   1464	mips_instruction ir, void __user **fault_addr)
   1465{
   1466	unsigned int rcsr = 0;	/* resulting csr */
   1467
   1468	MIPS_FPU_EMU_INC_STATS(cp1xops);
   1469
   1470	switch (MIPSInst_FMA_FFMT(ir)) {
   1471	case s_fmt:{		/* 0 */
   1472
   1473		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
   1474		union ieee754sp fd, fr, fs, ft;
   1475		u32 __user *va;
   1476		u32 val;
   1477
   1478		switch (MIPSInst_FUNC(ir)) {
   1479		case lwxc1_op:
   1480			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
   1481				xcp->regs[MIPSInst_FT(ir)]);
   1482
   1483			MIPS_FPU_EMU_INC_STATS(loads);
   1484			if (!access_ok(va, sizeof(u32))) {
   1485				MIPS_FPU_EMU_INC_STATS(errors);
   1486				*fault_addr = va;
   1487				return SIGBUS;
   1488			}
   1489			if (__get_user(val, va)) {
   1490				MIPS_FPU_EMU_INC_STATS(errors);
   1491				*fault_addr = va;
   1492				return SIGSEGV;
   1493			}
   1494			SITOREG(val, MIPSInst_FD(ir));
   1495			break;
   1496
   1497		case swxc1_op:
   1498			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
   1499				xcp->regs[MIPSInst_FT(ir)]);
   1500
   1501			MIPS_FPU_EMU_INC_STATS(stores);
   1502
   1503			SIFROMREG(val, MIPSInst_FS(ir));
   1504			if (!access_ok(va, sizeof(u32))) {
   1505				MIPS_FPU_EMU_INC_STATS(errors);
   1506				*fault_addr = va;
   1507				return SIGBUS;
   1508			}
   1509			if (put_user(val, va)) {
   1510				MIPS_FPU_EMU_INC_STATS(errors);
   1511				*fault_addr = va;
   1512				return SIGSEGV;
   1513			}
   1514			break;
   1515
   1516		case madd_s_op:
   1517			if (cpu_has_mac2008_only)
   1518				handler = ieee754sp_madd;
   1519			else
   1520				handler = fpemu_sp_madd;
   1521			goto scoptop;
   1522		case msub_s_op:
   1523			if (cpu_has_mac2008_only)
   1524				handler = ieee754sp_msub;
   1525			else
   1526				handler = fpemu_sp_msub;
   1527			goto scoptop;
   1528		case nmadd_s_op:
   1529			if (cpu_has_mac2008_only)
   1530				handler = ieee754sp_nmadd;
   1531			else
   1532				handler = fpemu_sp_nmadd;
   1533			goto scoptop;
   1534		case nmsub_s_op:
   1535			if (cpu_has_mac2008_only)
   1536				handler = ieee754sp_nmsub;
   1537			else
   1538				handler = fpemu_sp_nmsub;
   1539			goto scoptop;
   1540
   1541		      scoptop:
   1542			SPFROMREG(fr, MIPSInst_FR(ir));
   1543			SPFROMREG(fs, MIPSInst_FS(ir));
   1544			SPFROMREG(ft, MIPSInst_FT(ir));
   1545			fd = (*handler) (fr, fs, ft);
   1546			SPTOREG(fd, MIPSInst_FD(ir));
   1547
   1548		      copcsr:
   1549			if (ieee754_cxtest(IEEE754_INEXACT)) {
   1550				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
   1551				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
   1552			}
   1553			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
   1554				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
   1555				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
   1556			}
   1557			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
   1558				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
   1559				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
   1560			}
   1561			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
   1562				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
   1563				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
   1564			}
   1565
   1566			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
   1567			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
   1568				/*printk ("SIGFPE: FPU csr = %08x\n",
   1569				   ctx->fcr31); */
   1570				return SIGFPE;
   1571			}
   1572
   1573			break;
   1574
   1575		default:
   1576			return SIGILL;
   1577		}
   1578		break;
   1579	}
   1580
   1581	case d_fmt:{		/* 1 */
   1582		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
   1583		union ieee754dp fd, fr, fs, ft;
   1584		u64 __user *va;
   1585		u64 val;
   1586
   1587		switch (MIPSInst_FUNC(ir)) {
   1588		case ldxc1_op:
   1589			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
   1590				xcp->regs[MIPSInst_FT(ir)]);
   1591
   1592			MIPS_FPU_EMU_INC_STATS(loads);
   1593			if (!access_ok(va, sizeof(u64))) {
   1594				MIPS_FPU_EMU_INC_STATS(errors);
   1595				*fault_addr = va;
   1596				return SIGBUS;
   1597			}
   1598			if (__get_user(val, va)) {
   1599				MIPS_FPU_EMU_INC_STATS(errors);
   1600				*fault_addr = va;
   1601				return SIGSEGV;
   1602			}
   1603			DITOREG(val, MIPSInst_FD(ir));
   1604			break;
   1605
   1606		case sdxc1_op:
   1607			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
   1608				xcp->regs[MIPSInst_FT(ir)]);
   1609
   1610			MIPS_FPU_EMU_INC_STATS(stores);
   1611			DIFROMREG(val, MIPSInst_FS(ir));
   1612			if (!access_ok(va, sizeof(u64))) {
   1613				MIPS_FPU_EMU_INC_STATS(errors);
   1614				*fault_addr = va;
   1615				return SIGBUS;
   1616			}
   1617			if (__put_user(val, va)) {
   1618				MIPS_FPU_EMU_INC_STATS(errors);
   1619				*fault_addr = va;
   1620				return SIGSEGV;
   1621			}
   1622			break;
   1623
   1624		case madd_d_op:
   1625			if (cpu_has_mac2008_only)
   1626				handler = ieee754dp_madd;
   1627			else
   1628				handler = fpemu_dp_madd;
   1629			goto dcoptop;
   1630		case msub_d_op:
   1631			if (cpu_has_mac2008_only)
   1632				handler = ieee754dp_msub;
   1633			else
   1634				handler = fpemu_dp_msub;
   1635			goto dcoptop;
   1636		case nmadd_d_op:
   1637			if (cpu_has_mac2008_only)
   1638				handler = ieee754dp_nmadd;
   1639			else
   1640				handler = fpemu_dp_nmadd;
   1641			goto dcoptop;
   1642		case nmsub_d_op:
   1643			if (cpu_has_mac2008_only)
   1644				handler = ieee754dp_nmsub;
   1645			else
   1646			handler = fpemu_dp_nmsub;
   1647			goto dcoptop;
   1648
   1649		      dcoptop:
   1650			DPFROMREG(fr, MIPSInst_FR(ir));
   1651			DPFROMREG(fs, MIPSInst_FS(ir));
   1652			DPFROMREG(ft, MIPSInst_FT(ir));
   1653			fd = (*handler) (fr, fs, ft);
   1654			DPTOREG(fd, MIPSInst_FD(ir));
   1655			goto copcsr;
   1656
   1657		default:
   1658			return SIGILL;
   1659		}
   1660		break;
   1661	}
   1662
   1663	case 0x3:
   1664		if (MIPSInst_FUNC(ir) != pfetch_op)
   1665			return SIGILL;
   1666
   1667		/* ignore prefx operation */
   1668		break;
   1669
   1670	default:
   1671		return SIGILL;
   1672	}
   1673
   1674	return 0;
   1675}
   1676
   1677
   1678
   1679/*
   1680 * Emulate a single COP1 arithmetic instruction.
   1681 */
   1682static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
   1683	mips_instruction ir)
   1684{
   1685	int rfmt;		/* resulting format */
   1686	unsigned int rcsr = 0;	/* resulting csr */
   1687	unsigned int oldrm;
   1688	unsigned int cbit;
   1689	unsigned int cond;
   1690	union {
   1691		union ieee754dp d;
   1692		union ieee754sp s;
   1693		int w;
   1694		s64 l;
   1695	} rv;			/* resulting value */
   1696	u64 bits;
   1697
   1698	MIPS_FPU_EMU_INC_STATS(cp1ops);
   1699	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
   1700	case s_fmt: {		/* 0 */
   1701		union {
   1702			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
   1703			union ieee754sp(*u) (union ieee754sp);
   1704		} handler;
   1705		union ieee754sp fd, fs, ft;
   1706
   1707		switch (MIPSInst_FUNC(ir)) {
   1708			/* binary ops */
   1709		case fadd_op:
   1710			MIPS_FPU_EMU_INC_STATS(add_s);
   1711			handler.b = ieee754sp_add;
   1712			goto scopbop;
   1713		case fsub_op:
   1714			MIPS_FPU_EMU_INC_STATS(sub_s);
   1715			handler.b = ieee754sp_sub;
   1716			goto scopbop;
   1717		case fmul_op:
   1718			MIPS_FPU_EMU_INC_STATS(mul_s);
   1719			handler.b = ieee754sp_mul;
   1720			goto scopbop;
   1721		case fdiv_op:
   1722			MIPS_FPU_EMU_INC_STATS(div_s);
   1723			handler.b = ieee754sp_div;
   1724			goto scopbop;
   1725
   1726			/* unary  ops */
   1727		case fsqrt_op:
   1728			if (!cpu_has_mips_2_3_4_5_r)
   1729				return SIGILL;
   1730
   1731			MIPS_FPU_EMU_INC_STATS(sqrt_s);
   1732			handler.u = ieee754sp_sqrt;
   1733			goto scopuop;
   1734
   1735		/*
   1736		 * Note that on some MIPS IV implementations such as the
   1737		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
   1738		 * achieve full IEEE-754 accuracy - however this emulator does.
   1739		 */
   1740		case frsqrt_op:
   1741			if (!cpu_has_mips_4_5_64_r2_r6)
   1742				return SIGILL;
   1743
   1744			MIPS_FPU_EMU_INC_STATS(rsqrt_s);
   1745			handler.u = fpemu_sp_rsqrt;
   1746			goto scopuop;
   1747
   1748		case frecip_op:
   1749			if (!cpu_has_mips_4_5_64_r2_r6)
   1750				return SIGILL;
   1751
   1752			MIPS_FPU_EMU_INC_STATS(recip_s);
   1753			handler.u = fpemu_sp_recip;
   1754			goto scopuop;
   1755
   1756		case fmovc_op:
   1757			if (!cpu_has_mips_4_5_r)
   1758				return SIGILL;
   1759
   1760			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
   1761			if (((ctx->fcr31 & cond) != 0) !=
   1762				((MIPSInst_FT(ir) & 1) != 0))
   1763				return 0;
   1764			SPFROMREG(rv.s, MIPSInst_FS(ir));
   1765			break;
   1766
   1767		case fmovz_op:
   1768			if (!cpu_has_mips_4_5_r)
   1769				return SIGILL;
   1770
   1771			if (xcp->regs[MIPSInst_FT(ir)] != 0)
   1772				return 0;
   1773			SPFROMREG(rv.s, MIPSInst_FS(ir));
   1774			break;
   1775
   1776		case fmovn_op:
   1777			if (!cpu_has_mips_4_5_r)
   1778				return SIGILL;
   1779
   1780			if (xcp->regs[MIPSInst_FT(ir)] == 0)
   1781				return 0;
   1782			SPFROMREG(rv.s, MIPSInst_FS(ir));
   1783			break;
   1784
   1785		case fseleqz_op:
   1786			if (!cpu_has_mips_r6)
   1787				return SIGILL;
   1788
   1789			MIPS_FPU_EMU_INC_STATS(seleqz_s);
   1790			SPFROMREG(rv.s, MIPSInst_FT(ir));
   1791			if (rv.w & 0x1)
   1792				rv.w = 0;
   1793			else
   1794				SPFROMREG(rv.s, MIPSInst_FS(ir));
   1795			break;
   1796
   1797		case fselnez_op:
   1798			if (!cpu_has_mips_r6)
   1799				return SIGILL;
   1800
   1801			MIPS_FPU_EMU_INC_STATS(selnez_s);
   1802			SPFROMREG(rv.s, MIPSInst_FT(ir));
   1803			if (rv.w & 0x1)
   1804				SPFROMREG(rv.s, MIPSInst_FS(ir));
   1805			else
   1806				rv.w = 0;
   1807			break;
   1808
   1809		case fmaddf_op: {
   1810			union ieee754sp ft, fs, fd;
   1811
   1812			if (!cpu_has_mips_r6)
   1813				return SIGILL;
   1814
   1815			MIPS_FPU_EMU_INC_STATS(maddf_s);
   1816			SPFROMREG(ft, MIPSInst_FT(ir));
   1817			SPFROMREG(fs, MIPSInst_FS(ir));
   1818			SPFROMREG(fd, MIPSInst_FD(ir));
   1819			rv.s = ieee754sp_maddf(fd, fs, ft);
   1820			goto copcsr;
   1821		}
   1822
   1823		case fmsubf_op: {
   1824			union ieee754sp ft, fs, fd;
   1825
   1826			if (!cpu_has_mips_r6)
   1827				return SIGILL;
   1828
   1829			MIPS_FPU_EMU_INC_STATS(msubf_s);
   1830			SPFROMREG(ft, MIPSInst_FT(ir));
   1831			SPFROMREG(fs, MIPSInst_FS(ir));
   1832			SPFROMREG(fd, MIPSInst_FD(ir));
   1833			rv.s = ieee754sp_msubf(fd, fs, ft);
   1834			goto copcsr;
   1835		}
   1836
   1837		case frint_op: {
   1838			union ieee754sp fs;
   1839
   1840			if (!cpu_has_mips_r6)
   1841				return SIGILL;
   1842
   1843			MIPS_FPU_EMU_INC_STATS(rint_s);
   1844			SPFROMREG(fs, MIPSInst_FS(ir));
   1845			rv.s = ieee754sp_rint(fs);
   1846			goto copcsr;
   1847		}
   1848
   1849		case fclass_op: {
   1850			union ieee754sp fs;
   1851
   1852			if (!cpu_has_mips_r6)
   1853				return SIGILL;
   1854
   1855			MIPS_FPU_EMU_INC_STATS(class_s);
   1856			SPFROMREG(fs, MIPSInst_FS(ir));
   1857			rv.w = ieee754sp_2008class(fs);
   1858			rfmt = w_fmt;
   1859			goto copcsr;
   1860		}
   1861
   1862		case fmin_op: {
   1863			union ieee754sp fs, ft;
   1864
   1865			if (!cpu_has_mips_r6)
   1866				return SIGILL;
   1867
   1868			MIPS_FPU_EMU_INC_STATS(min_s);
   1869			SPFROMREG(ft, MIPSInst_FT(ir));
   1870			SPFROMREG(fs, MIPSInst_FS(ir));
   1871			rv.s = ieee754sp_fmin(fs, ft);
   1872			goto copcsr;
   1873		}
   1874
   1875		case fmina_op: {
   1876			union ieee754sp fs, ft;
   1877
   1878			if (!cpu_has_mips_r6)
   1879				return SIGILL;
   1880
   1881			MIPS_FPU_EMU_INC_STATS(mina_s);
   1882			SPFROMREG(ft, MIPSInst_FT(ir));
   1883			SPFROMREG(fs, MIPSInst_FS(ir));
   1884			rv.s = ieee754sp_fmina(fs, ft);
   1885			goto copcsr;
   1886		}
   1887
   1888		case fmax_op: {
   1889			union ieee754sp fs, ft;
   1890
   1891			if (!cpu_has_mips_r6)
   1892				return SIGILL;
   1893
   1894			MIPS_FPU_EMU_INC_STATS(max_s);
   1895			SPFROMREG(ft, MIPSInst_FT(ir));
   1896			SPFROMREG(fs, MIPSInst_FS(ir));
   1897			rv.s = ieee754sp_fmax(fs, ft);
   1898			goto copcsr;
   1899		}
   1900
   1901		case fmaxa_op: {
   1902			union ieee754sp fs, ft;
   1903
   1904			if (!cpu_has_mips_r6)
   1905				return SIGILL;
   1906
   1907			MIPS_FPU_EMU_INC_STATS(maxa_s);
   1908			SPFROMREG(ft, MIPSInst_FT(ir));
   1909			SPFROMREG(fs, MIPSInst_FS(ir));
   1910			rv.s = ieee754sp_fmaxa(fs, ft);
   1911			goto copcsr;
   1912		}
   1913
   1914		case fabs_op:
   1915			MIPS_FPU_EMU_INC_STATS(abs_s);
   1916			handler.u = ieee754sp_abs;
   1917			goto scopuop;
   1918
   1919		case fneg_op:
   1920			MIPS_FPU_EMU_INC_STATS(neg_s);
   1921			handler.u = ieee754sp_neg;
   1922			goto scopuop;
   1923
   1924		case fmov_op:
   1925			/* an easy one */
   1926			MIPS_FPU_EMU_INC_STATS(mov_s);
   1927			SPFROMREG(rv.s, MIPSInst_FS(ir));
   1928			goto copcsr;
   1929
   1930			/* binary op on handler */
   1931scopbop:
   1932			SPFROMREG(fs, MIPSInst_FS(ir));
   1933			SPFROMREG(ft, MIPSInst_FT(ir));
   1934
   1935			rv.s = (*handler.b) (fs, ft);
   1936			goto copcsr;
   1937scopuop:
   1938			SPFROMREG(fs, MIPSInst_FS(ir));
   1939			rv.s = (*handler.u) (fs);
   1940			goto copcsr;
   1941copcsr:
   1942			if (ieee754_cxtest(IEEE754_INEXACT)) {
   1943				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
   1944				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
   1945			}
   1946			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
   1947				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
   1948				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
   1949			}
   1950			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
   1951				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
   1952				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
   1953			}
   1954			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
   1955				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
   1956				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
   1957			}
   1958			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
   1959				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
   1960				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
   1961			}
   1962			break;
   1963
   1964			/* unary conv ops */
   1965		case fcvts_op:
   1966			return SIGILL;	/* not defined */
   1967
   1968		case fcvtd_op:
   1969			MIPS_FPU_EMU_INC_STATS(cvt_d_s);
   1970			SPFROMREG(fs, MIPSInst_FS(ir));
   1971			rv.d = ieee754dp_fsp(fs);
   1972			rfmt = d_fmt;
   1973			goto copcsr;
   1974
   1975		case fcvtw_op:
   1976			MIPS_FPU_EMU_INC_STATS(cvt_w_s);
   1977			SPFROMREG(fs, MIPSInst_FS(ir));
   1978			rv.w = ieee754sp_tint(fs);
   1979			rfmt = w_fmt;
   1980			goto copcsr;
   1981
   1982		case fround_op:
   1983		case ftrunc_op:
   1984		case fceil_op:
   1985		case ffloor_op:
   1986			if (!cpu_has_mips_2_3_4_5_r)
   1987				return SIGILL;
   1988
   1989			if (MIPSInst_FUNC(ir) == fceil_op)
   1990				MIPS_FPU_EMU_INC_STATS(ceil_w_s);
   1991			if (MIPSInst_FUNC(ir) == ffloor_op)
   1992				MIPS_FPU_EMU_INC_STATS(floor_w_s);
   1993			if (MIPSInst_FUNC(ir) == fround_op)
   1994				MIPS_FPU_EMU_INC_STATS(round_w_s);
   1995			if (MIPSInst_FUNC(ir) == ftrunc_op)
   1996				MIPS_FPU_EMU_INC_STATS(trunc_w_s);
   1997
   1998			oldrm = ieee754_csr.rm;
   1999			SPFROMREG(fs, MIPSInst_FS(ir));
   2000			ieee754_csr.rm = MIPSInst_FUNC(ir);
   2001			rv.w = ieee754sp_tint(fs);
   2002			ieee754_csr.rm = oldrm;
   2003			rfmt = w_fmt;
   2004			goto copcsr;
   2005
   2006		case fsel_op:
   2007			if (!cpu_has_mips_r6)
   2008				return SIGILL;
   2009
   2010			MIPS_FPU_EMU_INC_STATS(sel_s);
   2011			SPFROMREG(fd, MIPSInst_FD(ir));
   2012			if (fd.bits & 0x1)
   2013				SPFROMREG(rv.s, MIPSInst_FT(ir));
   2014			else
   2015				SPFROMREG(rv.s, MIPSInst_FS(ir));
   2016			break;
   2017
   2018		case fcvtl_op:
   2019			if (!cpu_has_mips_3_4_5_64_r2_r6)
   2020				return SIGILL;
   2021
   2022			MIPS_FPU_EMU_INC_STATS(cvt_l_s);
   2023			SPFROMREG(fs, MIPSInst_FS(ir));
   2024			rv.l = ieee754sp_tlong(fs);
   2025			rfmt = l_fmt;
   2026			goto copcsr;
   2027
   2028		case froundl_op:
   2029		case ftruncl_op:
   2030		case fceill_op:
   2031		case ffloorl_op:
   2032			if (!cpu_has_mips_3_4_5_64_r2_r6)
   2033				return SIGILL;
   2034
   2035			if (MIPSInst_FUNC(ir) == fceill_op)
   2036				MIPS_FPU_EMU_INC_STATS(ceil_l_s);
   2037			if (MIPSInst_FUNC(ir) == ffloorl_op)
   2038				MIPS_FPU_EMU_INC_STATS(floor_l_s);
   2039			if (MIPSInst_FUNC(ir) == froundl_op)
   2040				MIPS_FPU_EMU_INC_STATS(round_l_s);
   2041			if (MIPSInst_FUNC(ir) == ftruncl_op)
   2042				MIPS_FPU_EMU_INC_STATS(trunc_l_s);
   2043
   2044			oldrm = ieee754_csr.rm;
   2045			SPFROMREG(fs, MIPSInst_FS(ir));
   2046			ieee754_csr.rm = MIPSInst_FUNC(ir);
   2047			rv.l = ieee754sp_tlong(fs);
   2048			ieee754_csr.rm = oldrm;
   2049			rfmt = l_fmt;
   2050			goto copcsr;
   2051
   2052		default:
   2053			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
   2054				unsigned int cmpop;
   2055				union ieee754sp fs, ft;
   2056
   2057				cmpop = MIPSInst_FUNC(ir) - fcmp_op;
   2058				SPFROMREG(fs, MIPSInst_FS(ir));
   2059				SPFROMREG(ft, MIPSInst_FT(ir));
   2060				rv.w = ieee754sp_cmp(fs, ft,
   2061					cmptab[cmpop & 0x7], cmpop & 0x8);
   2062				rfmt = -1;
   2063				if ((cmpop & 0x8) && ieee754_cxtest
   2064					(IEEE754_INVALID_OPERATION))
   2065					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
   2066				else
   2067					goto copcsr;
   2068
   2069			} else
   2070				return SIGILL;
   2071			break;
   2072		}
   2073		break;
   2074	}
   2075
   2076	case d_fmt: {
   2077		union ieee754dp fd, fs, ft;
   2078		union {
   2079			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
   2080			union ieee754dp(*u) (union ieee754dp);
   2081		} handler;
   2082
   2083		switch (MIPSInst_FUNC(ir)) {
   2084			/* binary ops */
   2085		case fadd_op:
   2086			MIPS_FPU_EMU_INC_STATS(add_d);
   2087			handler.b = ieee754dp_add;
   2088			goto dcopbop;
   2089		case fsub_op:
   2090			MIPS_FPU_EMU_INC_STATS(sub_d);
   2091			handler.b = ieee754dp_sub;
   2092			goto dcopbop;
   2093		case fmul_op:
   2094			MIPS_FPU_EMU_INC_STATS(mul_d);
   2095			handler.b = ieee754dp_mul;
   2096			goto dcopbop;
   2097		case fdiv_op:
   2098			MIPS_FPU_EMU_INC_STATS(div_d);
   2099			handler.b = ieee754dp_div;
   2100			goto dcopbop;
   2101
   2102			/* unary  ops */
   2103		case fsqrt_op:
   2104			if (!cpu_has_mips_2_3_4_5_r)
   2105				return SIGILL;
   2106
   2107			MIPS_FPU_EMU_INC_STATS(sqrt_d);
   2108			handler.u = ieee754dp_sqrt;
   2109			goto dcopuop;
   2110		/*
   2111		 * Note that on some MIPS IV implementations such as the
   2112		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
   2113		 * achieve full IEEE-754 accuracy - however this emulator does.
   2114		 */
   2115		case frsqrt_op:
   2116			if (!cpu_has_mips_4_5_64_r2_r6)
   2117				return SIGILL;
   2118
   2119			MIPS_FPU_EMU_INC_STATS(rsqrt_d);
   2120			handler.u = fpemu_dp_rsqrt;
   2121			goto dcopuop;
   2122		case frecip_op:
   2123			if (!cpu_has_mips_4_5_64_r2_r6)
   2124				return SIGILL;
   2125
   2126			MIPS_FPU_EMU_INC_STATS(recip_d);
   2127			handler.u = fpemu_dp_recip;
   2128			goto dcopuop;
   2129		case fmovc_op:
   2130			if (!cpu_has_mips_4_5_r)
   2131				return SIGILL;
   2132
   2133			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
   2134			if (((ctx->fcr31 & cond) != 0) !=
   2135				((MIPSInst_FT(ir) & 1) != 0))
   2136				return 0;
   2137			DPFROMREG(rv.d, MIPSInst_FS(ir));
   2138			break;
   2139		case fmovz_op:
   2140			if (!cpu_has_mips_4_5_r)
   2141				return SIGILL;
   2142
   2143			if (xcp->regs[MIPSInst_FT(ir)] != 0)
   2144				return 0;
   2145			DPFROMREG(rv.d, MIPSInst_FS(ir));
   2146			break;
   2147		case fmovn_op:
   2148			if (!cpu_has_mips_4_5_r)
   2149				return SIGILL;
   2150
   2151			if (xcp->regs[MIPSInst_FT(ir)] == 0)
   2152				return 0;
   2153			DPFROMREG(rv.d, MIPSInst_FS(ir));
   2154			break;
   2155
   2156		case fseleqz_op:
   2157			if (!cpu_has_mips_r6)
   2158				return SIGILL;
   2159
   2160			MIPS_FPU_EMU_INC_STATS(seleqz_d);
   2161			DPFROMREG(rv.d, MIPSInst_FT(ir));
   2162			if (rv.l & 0x1)
   2163				rv.l = 0;
   2164			else
   2165				DPFROMREG(rv.d, MIPSInst_FS(ir));
   2166			break;
   2167
   2168		case fselnez_op:
   2169			if (!cpu_has_mips_r6)
   2170				return SIGILL;
   2171
   2172			MIPS_FPU_EMU_INC_STATS(selnez_d);
   2173			DPFROMREG(rv.d, MIPSInst_FT(ir));
   2174			if (rv.l & 0x1)
   2175				DPFROMREG(rv.d, MIPSInst_FS(ir));
   2176			else
   2177				rv.l = 0;
   2178			break;
   2179
   2180		case fmaddf_op: {
   2181			union ieee754dp ft, fs, fd;
   2182
   2183			if (!cpu_has_mips_r6)
   2184				return SIGILL;
   2185
   2186			MIPS_FPU_EMU_INC_STATS(maddf_d);
   2187			DPFROMREG(ft, MIPSInst_FT(ir));
   2188			DPFROMREG(fs, MIPSInst_FS(ir));
   2189			DPFROMREG(fd, MIPSInst_FD(ir));
   2190			rv.d = ieee754dp_maddf(fd, fs, ft);
   2191			goto copcsr;
   2192		}
   2193
   2194		case fmsubf_op: {
   2195			union ieee754dp ft, fs, fd;
   2196
   2197			if (!cpu_has_mips_r6)
   2198				return SIGILL;
   2199
   2200			MIPS_FPU_EMU_INC_STATS(msubf_d);
   2201			DPFROMREG(ft, MIPSInst_FT(ir));
   2202			DPFROMREG(fs, MIPSInst_FS(ir));
   2203			DPFROMREG(fd, MIPSInst_FD(ir));
   2204			rv.d = ieee754dp_msubf(fd, fs, ft);
   2205			goto copcsr;
   2206		}
   2207
   2208		case frint_op: {
   2209			union ieee754dp fs;
   2210
   2211			if (!cpu_has_mips_r6)
   2212				return SIGILL;
   2213
   2214			MIPS_FPU_EMU_INC_STATS(rint_d);
   2215			DPFROMREG(fs, MIPSInst_FS(ir));
   2216			rv.d = ieee754dp_rint(fs);
   2217			goto copcsr;
   2218		}
   2219
   2220		case fclass_op: {
   2221			union ieee754dp fs;
   2222
   2223			if (!cpu_has_mips_r6)
   2224				return SIGILL;
   2225
   2226			MIPS_FPU_EMU_INC_STATS(class_d);
   2227			DPFROMREG(fs, MIPSInst_FS(ir));
   2228			rv.l = ieee754dp_2008class(fs);
   2229			rfmt = l_fmt;
   2230			goto copcsr;
   2231		}
   2232
   2233		case fmin_op: {
   2234			union ieee754dp fs, ft;
   2235
   2236			if (!cpu_has_mips_r6)
   2237				return SIGILL;
   2238
   2239			MIPS_FPU_EMU_INC_STATS(min_d);
   2240			DPFROMREG(ft, MIPSInst_FT(ir));
   2241			DPFROMREG(fs, MIPSInst_FS(ir));
   2242			rv.d = ieee754dp_fmin(fs, ft);
   2243			goto copcsr;
   2244		}
   2245
   2246		case fmina_op: {
   2247			union ieee754dp fs, ft;
   2248
   2249			if (!cpu_has_mips_r6)
   2250				return SIGILL;
   2251
   2252			MIPS_FPU_EMU_INC_STATS(mina_d);
   2253			DPFROMREG(ft, MIPSInst_FT(ir));
   2254			DPFROMREG(fs, MIPSInst_FS(ir));
   2255			rv.d = ieee754dp_fmina(fs, ft);
   2256			goto copcsr;
   2257		}
   2258
   2259		case fmax_op: {
   2260			union ieee754dp fs, ft;
   2261
   2262			if (!cpu_has_mips_r6)
   2263				return SIGILL;
   2264
   2265			MIPS_FPU_EMU_INC_STATS(max_d);
   2266			DPFROMREG(ft, MIPSInst_FT(ir));
   2267			DPFROMREG(fs, MIPSInst_FS(ir));
   2268			rv.d = ieee754dp_fmax(fs, ft);
   2269			goto copcsr;
   2270		}
   2271
   2272		case fmaxa_op: {
   2273			union ieee754dp fs, ft;
   2274
   2275			if (!cpu_has_mips_r6)
   2276				return SIGILL;
   2277
   2278			MIPS_FPU_EMU_INC_STATS(maxa_d);
   2279			DPFROMREG(ft, MIPSInst_FT(ir));
   2280			DPFROMREG(fs, MIPSInst_FS(ir));
   2281			rv.d = ieee754dp_fmaxa(fs, ft);
   2282			goto copcsr;
   2283		}
   2284
   2285		case fabs_op:
   2286			MIPS_FPU_EMU_INC_STATS(abs_d);
   2287			handler.u = ieee754dp_abs;
   2288			goto dcopuop;
   2289
   2290		case fneg_op:
   2291			MIPS_FPU_EMU_INC_STATS(neg_d);
   2292			handler.u = ieee754dp_neg;
   2293			goto dcopuop;
   2294
   2295		case fmov_op:
   2296			/* an easy one */
   2297			MIPS_FPU_EMU_INC_STATS(mov_d);
   2298			DPFROMREG(rv.d, MIPSInst_FS(ir));
   2299			goto copcsr;
   2300
   2301			/* binary op on handler */
   2302dcopbop:
   2303			DPFROMREG(fs, MIPSInst_FS(ir));
   2304			DPFROMREG(ft, MIPSInst_FT(ir));
   2305
   2306			rv.d = (*handler.b) (fs, ft);
   2307			goto copcsr;
   2308dcopuop:
   2309			DPFROMREG(fs, MIPSInst_FS(ir));
   2310			rv.d = (*handler.u) (fs);
   2311			goto copcsr;
   2312
   2313		/*
   2314		 * unary conv ops
   2315		 */
   2316		case fcvts_op:
   2317			MIPS_FPU_EMU_INC_STATS(cvt_s_d);
   2318			DPFROMREG(fs, MIPSInst_FS(ir));
   2319			rv.s = ieee754sp_fdp(fs);
   2320			rfmt = s_fmt;
   2321			goto copcsr;
   2322
   2323		case fcvtd_op:
   2324			return SIGILL;	/* not defined */
   2325
   2326		case fcvtw_op:
   2327			MIPS_FPU_EMU_INC_STATS(cvt_w_d);
   2328			DPFROMREG(fs, MIPSInst_FS(ir));
   2329			rv.w = ieee754dp_tint(fs);	/* wrong */
   2330			rfmt = w_fmt;
   2331			goto copcsr;
   2332
   2333		case fround_op:
   2334		case ftrunc_op:
   2335		case fceil_op:
   2336		case ffloor_op:
   2337			if (!cpu_has_mips_2_3_4_5_r)
   2338				return SIGILL;
   2339
   2340			if (MIPSInst_FUNC(ir) == fceil_op)
   2341				MIPS_FPU_EMU_INC_STATS(ceil_w_d);
   2342			if (MIPSInst_FUNC(ir) == ffloor_op)
   2343				MIPS_FPU_EMU_INC_STATS(floor_w_d);
   2344			if (MIPSInst_FUNC(ir) == fround_op)
   2345				MIPS_FPU_EMU_INC_STATS(round_w_d);
   2346			if (MIPSInst_FUNC(ir) == ftrunc_op)
   2347				MIPS_FPU_EMU_INC_STATS(trunc_w_d);
   2348
   2349			oldrm = ieee754_csr.rm;
   2350			DPFROMREG(fs, MIPSInst_FS(ir));
   2351			ieee754_csr.rm = MIPSInst_FUNC(ir);
   2352			rv.w = ieee754dp_tint(fs);
   2353			ieee754_csr.rm = oldrm;
   2354			rfmt = w_fmt;
   2355			goto copcsr;
   2356
   2357		case fsel_op:
   2358			if (!cpu_has_mips_r6)
   2359				return SIGILL;
   2360
   2361			MIPS_FPU_EMU_INC_STATS(sel_d);
   2362			DPFROMREG(fd, MIPSInst_FD(ir));
   2363			if (fd.bits & 0x1)
   2364				DPFROMREG(rv.d, MIPSInst_FT(ir));
   2365			else
   2366				DPFROMREG(rv.d, MIPSInst_FS(ir));
   2367			break;
   2368
   2369		case fcvtl_op:
   2370			if (!cpu_has_mips_3_4_5_64_r2_r6)
   2371				return SIGILL;
   2372
   2373			MIPS_FPU_EMU_INC_STATS(cvt_l_d);
   2374			DPFROMREG(fs, MIPSInst_FS(ir));
   2375			rv.l = ieee754dp_tlong(fs);
   2376			rfmt = l_fmt;
   2377			goto copcsr;
   2378
   2379		case froundl_op:
   2380		case ftruncl_op:
   2381		case fceill_op:
   2382		case ffloorl_op:
   2383			if (!cpu_has_mips_3_4_5_64_r2_r6)
   2384				return SIGILL;
   2385
   2386			if (MIPSInst_FUNC(ir) == fceill_op)
   2387				MIPS_FPU_EMU_INC_STATS(ceil_l_d);
   2388			if (MIPSInst_FUNC(ir) == ffloorl_op)
   2389				MIPS_FPU_EMU_INC_STATS(floor_l_d);
   2390			if (MIPSInst_FUNC(ir) == froundl_op)
   2391				MIPS_FPU_EMU_INC_STATS(round_l_d);
   2392			if (MIPSInst_FUNC(ir) == ftruncl_op)
   2393				MIPS_FPU_EMU_INC_STATS(trunc_l_d);
   2394
   2395			oldrm = ieee754_csr.rm;
   2396			DPFROMREG(fs, MIPSInst_FS(ir));
   2397			ieee754_csr.rm = MIPSInst_FUNC(ir);
   2398			rv.l = ieee754dp_tlong(fs);
   2399			ieee754_csr.rm = oldrm;
   2400			rfmt = l_fmt;
   2401			goto copcsr;
   2402
   2403		default:
   2404			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
   2405				unsigned int cmpop;
   2406				union ieee754dp fs, ft;
   2407
   2408				cmpop = MIPSInst_FUNC(ir) - fcmp_op;
   2409				DPFROMREG(fs, MIPSInst_FS(ir));
   2410				DPFROMREG(ft, MIPSInst_FT(ir));
   2411				rv.w = ieee754dp_cmp(fs, ft,
   2412					cmptab[cmpop & 0x7], cmpop & 0x8);
   2413				rfmt = -1;
   2414				if ((cmpop & 0x8)
   2415					&&
   2416					ieee754_cxtest
   2417					(IEEE754_INVALID_OPERATION))
   2418					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
   2419				else
   2420					goto copcsr;
   2421
   2422			}
   2423			else {
   2424				return SIGILL;
   2425			}
   2426			break;
   2427		}
   2428		break;
   2429	}
   2430
   2431	case w_fmt: {
   2432		union ieee754dp fs;
   2433
   2434		switch (MIPSInst_FUNC(ir)) {
   2435		case fcvts_op:
   2436			/* convert word to single precision real */
   2437			MIPS_FPU_EMU_INC_STATS(cvt_s_w);
   2438			SPFROMREG(fs, MIPSInst_FS(ir));
   2439			rv.s = ieee754sp_fint(fs.bits);
   2440			rfmt = s_fmt;
   2441			goto copcsr;
   2442		case fcvtd_op:
   2443			/* convert word to double precision real */
   2444			MIPS_FPU_EMU_INC_STATS(cvt_d_w);
   2445			SPFROMREG(fs, MIPSInst_FS(ir));
   2446			rv.d = ieee754dp_fint(fs.bits);
   2447			rfmt = d_fmt;
   2448			goto copcsr;
   2449		default: {
   2450			/* Emulating the new CMP.condn.fmt R6 instruction */
   2451#define CMPOP_MASK	0x7
   2452#define SIGN_BIT	(0x1 << 3)
   2453#define PREDICATE_BIT	(0x1 << 4)
   2454
   2455			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
   2456			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
   2457			union ieee754sp fs, ft;
   2458
   2459			/* This is an R6 only instruction */
   2460			if (!cpu_has_mips_r6 ||
   2461			    (MIPSInst_FUNC(ir) & 0x20))
   2462				return SIGILL;
   2463
   2464			if (!sig) {
   2465				if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
   2466					switch (cmpop) {
   2467					case 0:
   2468					MIPS_FPU_EMU_INC_STATS(cmp_af_s);
   2469					break;
   2470					case 1:
   2471					MIPS_FPU_EMU_INC_STATS(cmp_un_s);
   2472					break;
   2473					case 2:
   2474					MIPS_FPU_EMU_INC_STATS(cmp_eq_s);
   2475					break;
   2476					case 3:
   2477					MIPS_FPU_EMU_INC_STATS(cmp_ueq_s);
   2478					break;
   2479					case 4:
   2480					MIPS_FPU_EMU_INC_STATS(cmp_lt_s);
   2481					break;
   2482					case 5:
   2483					MIPS_FPU_EMU_INC_STATS(cmp_ult_s);
   2484					break;
   2485					case 6:
   2486					MIPS_FPU_EMU_INC_STATS(cmp_le_s);
   2487					break;
   2488					case 7:
   2489					MIPS_FPU_EMU_INC_STATS(cmp_ule_s);
   2490					break;
   2491					}
   2492				} else {
   2493					switch (cmpop) {
   2494					case 1:
   2495					MIPS_FPU_EMU_INC_STATS(cmp_or_s);
   2496					break;
   2497					case 2:
   2498					MIPS_FPU_EMU_INC_STATS(cmp_une_s);
   2499					break;
   2500					case 3:
   2501					MIPS_FPU_EMU_INC_STATS(cmp_ne_s);
   2502					break;
   2503					}
   2504				}
   2505			} else {
   2506				if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
   2507					switch (cmpop) {
   2508					case 0:
   2509					MIPS_FPU_EMU_INC_STATS(cmp_saf_s);
   2510					break;
   2511					case 1:
   2512					MIPS_FPU_EMU_INC_STATS(cmp_sun_s);
   2513					break;
   2514					case 2:
   2515					MIPS_FPU_EMU_INC_STATS(cmp_seq_s);
   2516					break;
   2517					case 3:
   2518					MIPS_FPU_EMU_INC_STATS(cmp_sueq_s);
   2519					break;
   2520					case 4:
   2521					MIPS_FPU_EMU_INC_STATS(cmp_slt_s);
   2522					break;
   2523					case 5:
   2524					MIPS_FPU_EMU_INC_STATS(cmp_sult_s);
   2525					break;
   2526					case 6:
   2527					MIPS_FPU_EMU_INC_STATS(cmp_sle_s);
   2528					break;
   2529					case 7:
   2530					MIPS_FPU_EMU_INC_STATS(cmp_sule_s);
   2531					break;
   2532					}
   2533				} else {
   2534					switch (cmpop) {
   2535					case 1:
   2536					MIPS_FPU_EMU_INC_STATS(cmp_sor_s);
   2537					break;
   2538					case 2:
   2539					MIPS_FPU_EMU_INC_STATS(cmp_sune_s);
   2540					break;
   2541					case 3:
   2542					MIPS_FPU_EMU_INC_STATS(cmp_sne_s);
   2543					break;
   2544					}
   2545				}
   2546			}
   2547
   2548			/* fmt is w_fmt for single precision so fix it */
   2549			rfmt = s_fmt;
   2550			/* default to false */
   2551			rv.w = 0;
   2552
   2553			/* CMP.condn.S */
   2554			SPFROMREG(fs, MIPSInst_FS(ir));
   2555			SPFROMREG(ft, MIPSInst_FT(ir));
   2556
   2557			/* positive predicates */
   2558			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
   2559				if (ieee754sp_cmp(fs, ft, cmptab[cmpop],
   2560						  sig))
   2561				    rv.w = -1; /* true, all 1s */
   2562				if ((sig) &&
   2563				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
   2564					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
   2565				else
   2566					goto copcsr;
   2567			} else {
   2568				/* negative predicates */
   2569				switch (cmpop) {
   2570				case 1:
   2571				case 2:
   2572				case 3:
   2573					if (ieee754sp_cmp(fs, ft,
   2574							  negative_cmptab[cmpop],
   2575							  sig))
   2576						rv.w = -1; /* true, all 1s */
   2577					if (sig &&
   2578					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
   2579						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
   2580					else
   2581						goto copcsr;
   2582					break;
   2583				default:
   2584					/* Reserved R6 ops */
   2585					return SIGILL;
   2586				}
   2587			}
   2588			break;
   2589			}
   2590		}
   2591		break;
   2592	}
   2593
   2594	case l_fmt:
   2595
   2596		if (!cpu_has_mips_3_4_5_64_r2_r6)
   2597			return SIGILL;
   2598
   2599		DIFROMREG(bits, MIPSInst_FS(ir));
   2600
   2601		switch (MIPSInst_FUNC(ir)) {
   2602		case fcvts_op:
   2603			/* convert long to single precision real */
   2604			MIPS_FPU_EMU_INC_STATS(cvt_s_l);
   2605			rv.s = ieee754sp_flong(bits);
   2606			rfmt = s_fmt;
   2607			goto copcsr;
   2608		case fcvtd_op:
   2609			/* convert long to double precision real */
   2610			MIPS_FPU_EMU_INC_STATS(cvt_d_l);
   2611			rv.d = ieee754dp_flong(bits);
   2612			rfmt = d_fmt;
   2613			goto copcsr;
   2614		default: {
   2615			/* Emulating the new CMP.condn.fmt R6 instruction */
   2616			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
   2617			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
   2618			union ieee754dp fs, ft;
   2619
   2620			if (!cpu_has_mips_r6 ||
   2621			    (MIPSInst_FUNC(ir) & 0x20))
   2622				return SIGILL;
   2623
   2624			if (!sig) {
   2625				if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
   2626					switch (cmpop) {
   2627					case 0:
   2628					MIPS_FPU_EMU_INC_STATS(cmp_af_d);
   2629					break;
   2630					case 1:
   2631					MIPS_FPU_EMU_INC_STATS(cmp_un_d);
   2632					break;
   2633					case 2:
   2634					MIPS_FPU_EMU_INC_STATS(cmp_eq_d);
   2635					break;
   2636					case 3:
   2637					MIPS_FPU_EMU_INC_STATS(cmp_ueq_d);
   2638					break;
   2639					case 4:
   2640					MIPS_FPU_EMU_INC_STATS(cmp_lt_d);
   2641					break;
   2642					case 5:
   2643					MIPS_FPU_EMU_INC_STATS(cmp_ult_d);
   2644					break;
   2645					case 6:
   2646					MIPS_FPU_EMU_INC_STATS(cmp_le_d);
   2647					break;
   2648					case 7:
   2649					MIPS_FPU_EMU_INC_STATS(cmp_ule_d);
   2650					break;
   2651					}
   2652				} else {
   2653					switch (cmpop) {
   2654					case 1:
   2655					MIPS_FPU_EMU_INC_STATS(cmp_or_d);
   2656					break;
   2657					case 2:
   2658					MIPS_FPU_EMU_INC_STATS(cmp_une_d);
   2659					break;
   2660					case 3:
   2661					MIPS_FPU_EMU_INC_STATS(cmp_ne_d);
   2662					break;
   2663					}
   2664				}
   2665			} else {
   2666				if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
   2667					switch (cmpop) {
   2668					case 0:
   2669					MIPS_FPU_EMU_INC_STATS(cmp_saf_d);
   2670					break;
   2671					case 1:
   2672					MIPS_FPU_EMU_INC_STATS(cmp_sun_d);
   2673					break;
   2674					case 2:
   2675					MIPS_FPU_EMU_INC_STATS(cmp_seq_d);
   2676					break;
   2677					case 3:
   2678					MIPS_FPU_EMU_INC_STATS(cmp_sueq_d);
   2679					break;
   2680					case 4:
   2681					MIPS_FPU_EMU_INC_STATS(cmp_slt_d);
   2682					break;
   2683					case 5:
   2684					MIPS_FPU_EMU_INC_STATS(cmp_sult_d);
   2685					break;
   2686					case 6:
   2687					MIPS_FPU_EMU_INC_STATS(cmp_sle_d);
   2688					break;
   2689					case 7:
   2690					MIPS_FPU_EMU_INC_STATS(cmp_sule_d);
   2691					break;
   2692					}
   2693				} else {
   2694					switch (cmpop) {
   2695					case 1:
   2696					MIPS_FPU_EMU_INC_STATS(cmp_sor_d);
   2697					break;
   2698					case 2:
   2699					MIPS_FPU_EMU_INC_STATS(cmp_sune_d);
   2700					break;
   2701					case 3:
   2702					MIPS_FPU_EMU_INC_STATS(cmp_sne_d);
   2703					break;
   2704					}
   2705				}
   2706			}
   2707
   2708			/* fmt is l_fmt for double precision so fix it */
   2709			rfmt = d_fmt;
   2710			/* default to false */
   2711			rv.l = 0;
   2712
   2713			/* CMP.condn.D */
   2714			DPFROMREG(fs, MIPSInst_FS(ir));
   2715			DPFROMREG(ft, MIPSInst_FT(ir));
   2716
   2717			/* positive predicates */
   2718			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
   2719				if (ieee754dp_cmp(fs, ft,
   2720						  cmptab[cmpop], sig))
   2721				    rv.l = -1LL; /* true, all 1s */
   2722				if (sig &&
   2723				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
   2724					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
   2725				else
   2726					goto copcsr;
   2727			} else {
   2728				/* negative predicates */
   2729				switch (cmpop) {
   2730				case 1:
   2731				case 2:
   2732				case 3:
   2733					if (ieee754dp_cmp(fs, ft,
   2734							  negative_cmptab[cmpop],
   2735							  sig))
   2736						rv.l = -1LL; /* true, all 1s */
   2737					if (sig &&
   2738					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
   2739						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
   2740					else
   2741						goto copcsr;
   2742					break;
   2743				default:
   2744					/* Reserved R6 ops */
   2745					return SIGILL;
   2746				}
   2747			}
   2748			break;
   2749			}
   2750		}
   2751		break;
   2752
   2753	default:
   2754		return SIGILL;
   2755	}
   2756
   2757	/*
   2758	 * Update the fpu CSR register for this operation.
   2759	 * If an exception is required, generate a tidy SIGFPE exception,
   2760	 * without updating the result register.
   2761	 * Note: cause exception bits do not accumulate, they are rewritten
   2762	 * for each op; only the flag/sticky bits accumulate.
   2763	 */
   2764	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
   2765	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
   2766		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
   2767		return SIGFPE;
   2768	}
   2769
   2770	/*
   2771	 * Now we can safely write the result back to the register file.
   2772	 */
   2773	switch (rfmt) {
   2774	case -1:
   2775
   2776		if (cpu_has_mips_4_5_r)
   2777			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
   2778		else
   2779			cbit = FPU_CSR_COND;
   2780		if (rv.w)
   2781			ctx->fcr31 |= cbit;
   2782		else
   2783			ctx->fcr31 &= ~cbit;
   2784		break;
   2785
   2786	case d_fmt:
   2787		DPTOREG(rv.d, MIPSInst_FD(ir));
   2788		break;
   2789	case s_fmt:
   2790		SPTOREG(rv.s, MIPSInst_FD(ir));
   2791		break;
   2792	case w_fmt:
   2793		SITOREG(rv.w, MIPSInst_FD(ir));
   2794		break;
   2795	case l_fmt:
   2796		if (!cpu_has_mips_3_4_5_64_r2_r6)
   2797			return SIGILL;
   2798
   2799		DITOREG(rv.l, MIPSInst_FD(ir));
   2800		break;
   2801	default:
   2802		return SIGILL;
   2803	}
   2804
   2805	return 0;
   2806}
   2807
   2808/*
   2809 * Emulate FPU instructions.
   2810 *
   2811 * If we use FPU hardware, then we have been typically called to handle
   2812 * an unimplemented operation, such as where an operand is a NaN or
   2813 * denormalized.  In that case exit the emulation loop after a single
   2814 * iteration so as to let hardware execute any subsequent instructions.
   2815 *
   2816 * If we have no FPU hardware or it has been disabled, then continue
   2817 * emulating floating-point instructions until one of these conditions
   2818 * has occurred:
   2819 *
   2820 * - a non-FPU instruction has been encountered,
   2821 *
   2822 * - an attempt to emulate has ended with a signal,
   2823 *
   2824 * - the ISA mode has been switched.
   2825 *
   2826 * We need to terminate the emulation loop if we got switched to the
   2827 * MIPS16 mode, whether supported or not, so that we do not attempt
   2828 * to emulate a MIPS16 instruction as a regular MIPS FPU instruction.
   2829 * Similarly if we got switched to the microMIPS mode and only the
   2830 * regular MIPS mode is supported, so that we do not attempt to emulate
   2831 * a microMIPS instruction as a regular MIPS FPU instruction.  Or if
   2832 * we got switched to the regular MIPS mode and only the microMIPS mode
   2833 * is supported, so that we do not attempt to emulate a regular MIPS
   2834 * instruction that should cause an Address Error exception instead.
   2835 * For simplicity we always terminate upon an ISA mode switch.
   2836 */
   2837int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
   2838	int has_fpu, void __user **fault_addr)
   2839{
   2840	unsigned long oldepc, prevepc;
   2841	struct mm_decoded_insn dec_insn;
   2842	u16 instr[4];
   2843	u16 *instr_ptr;
   2844	int sig = 0;
   2845
   2846	/*
   2847	 * Initialize context if it hasn't been used already, otherwise ensure
   2848	 * it has been saved to struct thread_struct.
   2849	 */
   2850	if (!init_fp_ctx(current))
   2851		lose_fpu(1);
   2852
   2853	oldepc = xcp->cp0_epc;
   2854	do {
   2855		prevepc = xcp->cp0_epc;
   2856
   2857		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
   2858			/*
   2859			 * Get next 2 microMIPS instructions and convert them
   2860			 * into 32-bit instructions.
   2861			 */
   2862			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
   2863			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
   2864			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
   2865			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
   2866				MIPS_FPU_EMU_INC_STATS(errors);
   2867				return SIGBUS;
   2868			}
   2869			instr_ptr = instr;
   2870
   2871			/* Get first instruction. */
   2872			if (mm_insn_16bit(*instr_ptr)) {
   2873				/* Duplicate the half-word. */
   2874				dec_insn.insn = (*instr_ptr << 16) |
   2875					(*instr_ptr);
   2876				/* 16-bit instruction. */
   2877				dec_insn.pc_inc = 2;
   2878				instr_ptr += 1;
   2879			} else {
   2880				dec_insn.insn = (*instr_ptr << 16) |
   2881					*(instr_ptr+1);
   2882				/* 32-bit instruction. */
   2883				dec_insn.pc_inc = 4;
   2884				instr_ptr += 2;
   2885			}
   2886			/* Get second instruction. */
   2887			if (mm_insn_16bit(*instr_ptr)) {
   2888				/* Duplicate the half-word. */
   2889				dec_insn.next_insn = (*instr_ptr << 16) |
   2890					(*instr_ptr);
   2891				/* 16-bit instruction. */
   2892				dec_insn.next_pc_inc = 2;
   2893			} else {
   2894				dec_insn.next_insn = (*instr_ptr << 16) |
   2895					*(instr_ptr+1);
   2896				/* 32-bit instruction. */
   2897				dec_insn.next_pc_inc = 4;
   2898			}
   2899			dec_insn.micro_mips_mode = 1;
   2900		} else {
   2901			if ((get_user(dec_insn.insn,
   2902			    (mips_instruction __user *) xcp->cp0_epc)) ||
   2903			    (get_user(dec_insn.next_insn,
   2904			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
   2905				MIPS_FPU_EMU_INC_STATS(errors);
   2906				return SIGBUS;
   2907			}
   2908			dec_insn.pc_inc = 4;
   2909			dec_insn.next_pc_inc = 4;
   2910			dec_insn.micro_mips_mode = 0;
   2911		}
   2912
   2913		if ((dec_insn.insn == 0) ||
   2914		   ((dec_insn.pc_inc == 2) &&
   2915		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
   2916			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
   2917		else {
   2918			/*
   2919			 * The 'ieee754_csr' is an alias of ctx->fcr31.
   2920			 * No need to copy ctx->fcr31 to ieee754_csr.
   2921			 */
   2922			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
   2923		}
   2924
   2925		if (has_fpu)
   2926			break;
   2927		if (sig)
   2928			break;
   2929		/*
   2930		 * We have to check for the ISA bit explicitly here,
   2931		 * because `get_isa16_mode' may return 0 if support
   2932		 * for code compression has been globally disabled,
   2933		 * or otherwise we may produce the wrong signal or
   2934		 * even proceed successfully where we must not.
   2935		 */
   2936		if ((xcp->cp0_epc ^ prevepc) & 0x1)
   2937			break;
   2938
   2939		cond_resched();
   2940	} while (xcp->cp0_epc > prevepc);
   2941
   2942	/* SIGILL indicates a non-fpu instruction */
   2943	if (sig == SIGILL && xcp->cp0_epc != oldepc)
   2944		/* but if EPC has advanced, then ignore it */
   2945		sig = 0;
   2946
   2947	return sig;
   2948}