dsemul.c (9277B)
1// SPDX-License-Identifier: GPL-2.0 2#include <linux/err.h> 3#include <linux/slab.h> 4#include <linux/mm_types.h> 5#include <linux/sched/task.h> 6 7#include <asm/branch.h> 8#include <asm/cacheflush.h> 9#include <asm/fpu_emulator.h> 10#include <asm/inst.h> 11#include <asm/mipsregs.h> 12#include <linux/uaccess.h> 13 14/** 15 * struct emuframe - The 'emulation' frame structure 16 * @emul: The instruction to 'emulate'. 17 * @badinst: A break instruction to cause a return to the kernel. 18 * 19 * This structure defines the frames placed within the delay slot emulation 20 * page in response to a call to mips_dsemul(). Each thread may be allocated 21 * only one frame at any given time. The kernel stores within it the 22 * instruction to be 'emulated' followed by a break instruction, then 23 * executes the frame in user mode. The break causes a trap to the kernel 24 * which leads to do_dsemulret() being called unless the instruction in 25 * @emul causes a trap itself, is a branch, or a signal is delivered to 26 * the thread. In these cases the allocated frame will either be reused by 27 * a subsequent delay slot 'emulation', or be freed during signal delivery or 28 * upon thread exit. 29 * 30 * This approach is used because: 31 * 32 * - Actually emulating all instructions isn't feasible. We would need to 33 * be able to handle instructions from all revisions of the MIPS ISA, 34 * all ASEs & all vendor instruction set extensions. This would be a 35 * whole lot of work & continual maintenance burden as new instructions 36 * are introduced, and in the case of some vendor extensions may not 37 * even be possible. Thus we need to take the approach of actually 38 * executing the instruction. 39 * 40 * - We must execute the instruction within user context. If we were to 41 * execute the instruction in kernel mode then it would have access to 42 * kernel resources without very careful checks, leaving us with a 43 * high potential for security or stability issues to arise. 44 * 45 * - We used to place the frame on the users stack, but this requires 46 * that the stack be executable. This is bad for security so the 47 * per-process page is now used instead. 48 * 49 * - The instruction in @emul may be something entirely invalid for a 50 * delay slot. The user may (intentionally or otherwise) place a branch 51 * in a delay slot, or a kernel mode instruction, or something else 52 * which generates an exception. Thus we can't rely upon the break in 53 * @badinst always being hit. For this reason we track the index of the 54 * frame allocated to each thread, allowing us to clean it up at later 55 * points such as signal delivery or thread exit. 56 * 57 * - The user may generate a fake struct emuframe if they wish, invoking 58 * the BRK_MEMU break instruction themselves. We must therefore not 59 * trust that BRK_MEMU means there's actually a valid frame allocated 60 * to the thread, and must not allow the user to do anything they 61 * couldn't already. 62 */ 63struct emuframe { 64 mips_instruction emul; 65 mips_instruction badinst; 66}; 67 68static const int emupage_frame_count = PAGE_SIZE / sizeof(struct emuframe); 69 70static inline __user struct emuframe *dsemul_page(void) 71{ 72 return (__user struct emuframe *)STACK_TOP; 73} 74 75static int alloc_emuframe(void) 76{ 77 mm_context_t *mm_ctx = ¤t->mm->context; 78 int idx; 79 80retry: 81 spin_lock(&mm_ctx->bd_emupage_lock); 82 83 /* Ensure we have an allocation bitmap */ 84 if (!mm_ctx->bd_emupage_allocmap) { 85 mm_ctx->bd_emupage_allocmap = 86 kcalloc(BITS_TO_LONGS(emupage_frame_count), 87 sizeof(unsigned long), 88 GFP_ATOMIC); 89 90 if (!mm_ctx->bd_emupage_allocmap) { 91 idx = BD_EMUFRAME_NONE; 92 goto out_unlock; 93 } 94 } 95 96 /* Attempt to allocate a single bit/frame */ 97 idx = bitmap_find_free_region(mm_ctx->bd_emupage_allocmap, 98 emupage_frame_count, 0); 99 if (idx < 0) { 100 /* 101 * Failed to allocate a frame. We'll wait until one becomes 102 * available. We unlock the page so that other threads actually 103 * get the opportunity to free their frames, which means 104 * technically the result of bitmap_full may be incorrect. 105 * However the worst case is that we repeat all this and end up 106 * back here again. 107 */ 108 spin_unlock(&mm_ctx->bd_emupage_lock); 109 if (!wait_event_killable(mm_ctx->bd_emupage_queue, 110 !bitmap_full(mm_ctx->bd_emupage_allocmap, 111 emupage_frame_count))) 112 goto retry; 113 114 /* Received a fatal signal - just give in */ 115 return BD_EMUFRAME_NONE; 116 } 117 118 /* Success! */ 119 pr_debug("allocate emuframe %d to %d\n", idx, current->pid); 120out_unlock: 121 spin_unlock(&mm_ctx->bd_emupage_lock); 122 return idx; 123} 124 125static void free_emuframe(int idx, struct mm_struct *mm) 126{ 127 mm_context_t *mm_ctx = &mm->context; 128 129 spin_lock(&mm_ctx->bd_emupage_lock); 130 131 pr_debug("free emuframe %d from %d\n", idx, current->pid); 132 bitmap_clear(mm_ctx->bd_emupage_allocmap, idx, 1); 133 134 /* If some thread is waiting for a frame, now's its chance */ 135 wake_up(&mm_ctx->bd_emupage_queue); 136 137 spin_unlock(&mm_ctx->bd_emupage_lock); 138} 139 140static bool within_emuframe(struct pt_regs *regs) 141{ 142 unsigned long base = (unsigned long)dsemul_page(); 143 144 if (regs->cp0_epc < base) 145 return false; 146 if (regs->cp0_epc >= (base + PAGE_SIZE)) 147 return false; 148 149 return true; 150} 151 152bool dsemul_thread_cleanup(struct task_struct *tsk) 153{ 154 int fr_idx; 155 156 /* Clear any allocated frame, retrieving its index */ 157 fr_idx = atomic_xchg(&tsk->thread.bd_emu_frame, BD_EMUFRAME_NONE); 158 159 /* If no frame was allocated, we're done */ 160 if (fr_idx == BD_EMUFRAME_NONE) 161 return false; 162 163 task_lock(tsk); 164 165 /* Free the frame that this thread had allocated */ 166 if (tsk->mm) 167 free_emuframe(fr_idx, tsk->mm); 168 169 task_unlock(tsk); 170 return true; 171} 172 173bool dsemul_thread_rollback(struct pt_regs *regs) 174{ 175 struct emuframe __user *fr; 176 int fr_idx; 177 178 /* Do nothing if we're not executing from a frame */ 179 if (!within_emuframe(regs)) 180 return false; 181 182 /* Find the frame being executed */ 183 fr_idx = atomic_read(¤t->thread.bd_emu_frame); 184 if (fr_idx == BD_EMUFRAME_NONE) 185 return false; 186 fr = &dsemul_page()[fr_idx]; 187 188 /* 189 * If the PC is at the emul instruction, roll back to the branch. If 190 * PC is at the badinst (break) instruction, we've already emulated the 191 * instruction so progress to the continue PC. If it's anything else 192 * then something is amiss & the user has branched into some other area 193 * of the emupage - we'll free the allocated frame anyway. 194 */ 195 if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->emul) 196 regs->cp0_epc = current->thread.bd_emu_branch_pc; 197 else if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->badinst) 198 regs->cp0_epc = current->thread.bd_emu_cont_pc; 199 200 atomic_set(¤t->thread.bd_emu_frame, BD_EMUFRAME_NONE); 201 free_emuframe(fr_idx, current->mm); 202 return true; 203} 204 205void dsemul_mm_cleanup(struct mm_struct *mm) 206{ 207 mm_context_t *mm_ctx = &mm->context; 208 209 kfree(mm_ctx->bd_emupage_allocmap); 210} 211 212int mips_dsemul(struct pt_regs *regs, mips_instruction ir, 213 unsigned long branch_pc, unsigned long cont_pc) 214{ 215 int isa16 = get_isa16_mode(regs->cp0_epc); 216 mips_instruction break_math; 217 unsigned long fr_uaddr; 218 struct emuframe fr; 219 int fr_idx, ret; 220 221 /* NOP is easy */ 222 if (ir == 0) 223 return -1; 224 225 /* microMIPS instructions */ 226 if (isa16) { 227 union mips_instruction insn = { .word = ir }; 228 229 /* NOP16 aka MOVE16 $0, $0 */ 230 if ((ir >> 16) == MM_NOP16) 231 return -1; 232 233 /* ADDIUPC */ 234 if (insn.mm_a_format.opcode == mm_addiupc_op) { 235 unsigned int rs; 236 s32 v; 237 238 rs = (((insn.mm_a_format.rs + 0xe) & 0xf) + 2); 239 v = regs->cp0_epc & ~3; 240 v += insn.mm_a_format.simmediate << 2; 241 regs->regs[rs] = (long)v; 242 return -1; 243 } 244 } 245 246 pr_debug("dsemul 0x%08lx cont at 0x%08lx\n", regs->cp0_epc, cont_pc); 247 248 /* Allocate a frame if we don't already have one */ 249 fr_idx = atomic_read(¤t->thread.bd_emu_frame); 250 if (fr_idx == BD_EMUFRAME_NONE) 251 fr_idx = alloc_emuframe(); 252 if (fr_idx == BD_EMUFRAME_NONE) 253 return SIGBUS; 254 255 /* Retrieve the appropriately encoded break instruction */ 256 break_math = BREAK_MATH(isa16); 257 258 /* Write the instructions to the frame */ 259 if (isa16) { 260 union mips_instruction _emul = { 261 .halfword = { ir >> 16, ir } 262 }; 263 union mips_instruction _badinst = { 264 .halfword = { break_math >> 16, break_math } 265 }; 266 267 fr.emul = _emul.word; 268 fr.badinst = _badinst.word; 269 } else { 270 fr.emul = ir; 271 fr.badinst = break_math; 272 } 273 274 /* Write the frame to user memory */ 275 fr_uaddr = (unsigned long)&dsemul_page()[fr_idx]; 276 ret = access_process_vm(current, fr_uaddr, &fr, sizeof(fr), 277 FOLL_FORCE | FOLL_WRITE); 278 if (unlikely(ret != sizeof(fr))) { 279 MIPS_FPU_EMU_INC_STATS(errors); 280 free_emuframe(fr_idx, current->mm); 281 return SIGBUS; 282 } 283 284 /* Record the PC of the branch, PC to continue from & frame index */ 285 current->thread.bd_emu_branch_pc = branch_pc; 286 current->thread.bd_emu_cont_pc = cont_pc; 287 atomic_set(¤t->thread.bd_emu_frame, fr_idx); 288 289 /* Change user register context to execute the frame */ 290 regs->cp0_epc = fr_uaddr | isa16; 291 292 return 0; 293} 294 295bool do_dsemulret(struct pt_regs *xcp) 296{ 297 /* Cleanup the allocated frame, returning if there wasn't one */ 298 if (!dsemul_thread_cleanup(current)) { 299 MIPS_FPU_EMU_INC_STATS(errors); 300 return false; 301 } 302 303 /* Set EPC to return to post-branch instruction */ 304 xcp->cp0_epc = current->thread.bd_emu_cont_pc; 305 pr_debug("dsemulret to 0x%08lx\n", xcp->cp0_epc); 306 MIPS_FPU_EMU_INC_STATS(ds_emul); 307 return true; 308}