cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

uasm-micromips.c (8665B)


      1/*
      2 * This file is subject to the terms and conditions of the GNU General Public
      3 * License.  See the file "COPYING" in the main directory of this archive
      4 * for more details.
      5 *
      6 * A small micro-assembler. It is intentionally kept simple, does only
      7 * support a subset of instructions, and does not try to hide pipeline
      8 * effects like branch delay slots.
      9 *
     10 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
     11 * Copyright (C) 2005, 2007  Maciej W. Rozycki
     12 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
     13 * Copyright (C) 2012, 2013   MIPS Technologies, Inc.  All rights reserved.
     14 */
     15
     16#include <linux/kernel.h>
     17#include <linux/types.h>
     18
     19#include <asm/inst.h>
     20#include <asm/elf.h>
     21#include <asm/bugs.h>
     22#include <asm/uasm.h>
     23
     24#define RS_MASK		0x1f
     25#define RS_SH		16
     26#define RT_MASK		0x1f
     27#define RT_SH		21
     28#define SCIMM_MASK	0x3ff
     29#define SCIMM_SH	16
     30
     31/* This macro sets the non-variable bits of an instruction. */
     32#define M(a, b, c, d, e, f)					\
     33	((a) << OP_SH						\
     34	 | (b) << RT_SH						\
     35	 | (c) << RS_SH						\
     36	 | (d) << RD_SH						\
     37	 | (e) << RE_SH						\
     38	 | (f) << FUNC_SH)
     39
     40#include "uasm.c"
     41
     42static const struct insn insn_table_MM[insn_invalid] = {
     43	[insn_addu]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD},
     44	[insn_addiu]	= {M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
     45	[insn_and]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD},
     46	[insn_andi]	= {M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
     47	[insn_beq]	= {M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
     48	[insn_beql]	= {0, 0},
     49	[insn_bgez]	= {M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM},
     50	[insn_bgezl]	= {0, 0},
     51	[insn_bltz]	= {M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM},
     52	[insn_bltzl]	= {0, 0},
     53	[insn_bne]	= {M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM},
     54	[insn_cache]	= {M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM},
     55	[insn_cfc1]	= {M(mm_pool32f_op, 0, 0, 0, mm_cfc1_op, mm_32f_73_op), RT | RS},
     56	[insn_cfcmsa]	= {M(mm_pool32s_op, 0, msa_cfc_op, 0, 0, mm_32s_elm_op), RD | RE},
     57	[insn_ctc1]	= {M(mm_pool32f_op, 0, 0, 0, mm_ctc1_op, mm_32f_73_op), RT | RS},
     58	[insn_ctcmsa]	= {M(mm_pool32s_op, 0, msa_ctc_op, 0, 0, mm_32s_elm_op), RD | RE},
     59	[insn_daddu]	= {0, 0},
     60	[insn_daddiu]	= {0, 0},
     61	[insn_di]	= {M(mm_pool32a_op, 0, 0, 0, mm_di_op, mm_pool32axf_op), RS},
     62	[insn_divu]	= {M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS},
     63	[insn_dmfc0]	= {0, 0},
     64	[insn_dmtc0]	= {0, 0},
     65	[insn_dsll]	= {0, 0},
     66	[insn_dsll32]	= {0, 0},
     67	[insn_dsra]	= {0, 0},
     68	[insn_dsrl]	= {0, 0},
     69	[insn_dsrl32]	= {0, 0},
     70	[insn_drotr]	= {0, 0},
     71	[insn_drotr32]	= {0, 0},
     72	[insn_dsubu]	= {0, 0},
     73	[insn_eret]	= {M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0},
     74	[insn_ins]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE},
     75	[insn_ext]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE},
     76	[insn_j]	= {M(mm_j32_op, 0, 0, 0, 0, 0), JIMM},
     77	[insn_jal]	= {M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM},
     78	[insn_jalr]	= {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS},
     79	[insn_jr]	= {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS},
     80	[insn_lb]	= {M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
     81	[insn_ld]	= {0, 0},
     82	[insn_lh]	= {M(mm_lh32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
     83	[insn_ll]	= {M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM},
     84	[insn_lld]	= {0, 0},
     85	[insn_lui]	= {M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM},
     86	[insn_lw]	= {M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
     87	[insn_mfc0]	= {M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD},
     88	[insn_mfhi]	= {M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS},
     89	[insn_mflo]	= {M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS},
     90	[insn_mtc0]	= {M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD},
     91	[insn_mthi]	= {M(mm_pool32a_op, 0, 0, 0, mm_mthi32_op, mm_pool32axf_op), RS},
     92	[insn_mtlo]	= {M(mm_pool32a_op, 0, 0, 0, mm_mtlo32_op, mm_pool32axf_op), RS},
     93	[insn_mul]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD},
     94	[insn_or]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD},
     95	[insn_ori]	= {M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
     96	[insn_pref]	= {M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM},
     97	[insn_rfe]	= {0, 0},
     98	[insn_sc]	= {M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM},
     99	[insn_scd]	= {0, 0},
    100	[insn_sd]	= {0, 0},
    101	[insn_sll]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD},
    102	[insn_sllv]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD},
    103	[insn_slt]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD},
    104	[insn_sltiu]	= {M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
    105	[insn_sltu]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD},
    106	[insn_sra]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD},
    107	[insn_srav]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_srav_op), RT | RS | RD},
    108	[insn_srl]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD},
    109	[insn_srlv]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD},
    110	[insn_rotr]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD},
    111	[insn_subu]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD},
    112	[insn_sw]	= {M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
    113	[insn_sync]	= {M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS},
    114	[insn_tlbp]	= {M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0},
    115	[insn_tlbr]	= {M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0},
    116	[insn_tlbwi]	= {M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0},
    117	[insn_tlbwr]	= {M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0},
    118	[insn_wait]	= {M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM},
    119	[insn_wsbh]	= {M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS},
    120	[insn_xor]	= {M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD},
    121	[insn_xori]	= {M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
    122	[insn_dins]	= {0, 0},
    123	[insn_dinsm]	= {0, 0},
    124	[insn_syscall]	= {M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM},
    125	[insn_bbit0]	= {0, 0},
    126	[insn_bbit1]	= {0, 0},
    127	[insn_lwx]	= {0, 0},
    128	[insn_ldx]	= {0, 0},
    129};
    130
    131#undef M
    132
    133static inline u32 build_bimm(s32 arg)
    134{
    135	WARN(arg > 0xffff || arg < -0x10000,
    136	     KERN_WARNING "Micro-assembler field overflow\n");
    137
    138	WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
    139
    140	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 1) & 0x7fff);
    141}
    142
    143static inline u32 build_jimm(u32 arg)
    144{
    145
    146	WARN(arg & ~((JIMM_MASK << 2) | 1),
    147	     KERN_WARNING "Micro-assembler field overflow\n");
    148
    149	return (arg >> 1) & JIMM_MASK;
    150}
    151
    152/*
    153 * The order of opcode arguments is implicitly left to right,
    154 * starting with RS and ending with FUNC or IMM.
    155 */
    156static void build_insn(u32 **buf, enum opcode opc, ...)
    157{
    158	const struct insn *ip;
    159	va_list ap;
    160	u32 op;
    161
    162	if (opc < 0 || opc >= insn_invalid ||
    163	    (opc == insn_daddiu && r4k_daddiu_bug()) ||
    164	    (insn_table_MM[opc].match == 0 && insn_table_MM[opc].fields == 0))
    165		panic("Unsupported Micro-assembler instruction %d", opc);
    166
    167	ip = &insn_table_MM[opc];
    168
    169	op = ip->match;
    170	va_start(ap, opc);
    171	if (ip->fields & RS) {
    172		if (opc == insn_mfc0 || opc == insn_mtc0 ||
    173		    opc == insn_cfc1 || opc == insn_ctc1)
    174			op |= build_rt(va_arg(ap, u32));
    175		else
    176			op |= build_rs(va_arg(ap, u32));
    177	}
    178	if (ip->fields & RT) {
    179		if (opc == insn_mfc0 || opc == insn_mtc0 ||
    180		    opc == insn_cfc1 || opc == insn_ctc1)
    181			op |= build_rs(va_arg(ap, u32));
    182		else
    183			op |= build_rt(va_arg(ap, u32));
    184	}
    185	if (ip->fields & RD)
    186		op |= build_rd(va_arg(ap, u32));
    187	if (ip->fields & RE)
    188		op |= build_re(va_arg(ap, u32));
    189	if (ip->fields & SIMM)
    190		op |= build_simm(va_arg(ap, s32));
    191	if (ip->fields & UIMM)
    192		op |= build_uimm(va_arg(ap, u32));
    193	if (ip->fields & BIMM)
    194		op |= build_bimm(va_arg(ap, s32));
    195	if (ip->fields & JIMM)
    196		op |= build_jimm(va_arg(ap, u32));
    197	if (ip->fields & FUNC)
    198		op |= build_func(va_arg(ap, u32));
    199	if (ip->fields & SET)
    200		op |= build_set(va_arg(ap, u32));
    201	if (ip->fields & SCIMM)
    202		op |= build_scimm(va_arg(ap, u32));
    203	va_end(ap);
    204
    205#ifdef CONFIG_CPU_LITTLE_ENDIAN
    206	**buf = ((op & 0xffff) << 16) | (op >> 16);
    207#else
    208	**buf = op;
    209#endif
    210	(*buf)++;
    211}
    212
    213static inline void
    214__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
    215{
    216	long laddr = (long)lab->addr;
    217	long raddr = (long)rel->addr;
    218
    219	switch (rel->type) {
    220	case R_MIPS_PC16:
    221#ifdef CONFIG_CPU_LITTLE_ENDIAN
    222		*rel->addr |= (build_bimm(laddr - (raddr + 4)) << 16);
    223#else
    224		*rel->addr |= build_bimm(laddr - (raddr + 4));
    225#endif
    226		break;
    227
    228	default:
    229		panic("Unsupported Micro-assembler relocation %d",
    230		      rel->type);
    231	}
    232}