cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

uasm-mips.c (11900B)


      1/*
      2 * This file is subject to the terms and conditions of the GNU General Public
      3 * License.  See the file "COPYING" in the main directory of this archive
      4 * for more details.
      5 *
      6 * A small micro-assembler. It is intentionally kept simple, does only
      7 * support a subset of instructions, and does not try to hide pipeline
      8 * effects like branch delay slots.
      9 *
     10 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
     11 * Copyright (C) 2005, 2007  Maciej W. Rozycki
     12 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
     13 * Copyright (C) 2012, 2013  MIPS Technologies, Inc.  All rights reserved.
     14 */
     15
     16#include <linux/kernel.h>
     17#include <linux/types.h>
     18
     19#include <asm/inst.h>
     20#include <asm/elf.h>
     21#include <asm/bugs.h>
     22#include <asm/uasm.h>
     23
     24#define RS_MASK		0x1f
     25#define RS_SH		21
     26#define RT_MASK		0x1f
     27#define RT_SH		16
     28#define SCIMM_MASK	0xfffff
     29#define SCIMM_SH	6
     30
     31/* This macro sets the non-variable bits of an instruction. */
     32#define M(a, b, c, d, e, f)					\
     33	((a) << OP_SH						\
     34	 | (b) << RS_SH						\
     35	 | (c) << RT_SH						\
     36	 | (d) << RD_SH						\
     37	 | (e) << RE_SH						\
     38	 | (f) << FUNC_SH)
     39
     40/* This macro sets the non-variable bits of an R6 instruction. */
     41#define M6(a, b, c, d, e)					\
     42	((a) << OP_SH						\
     43	 | (b) << RS_SH						\
     44	 | (c) << RT_SH						\
     45	 | (d) << SIMM9_SH					\
     46	 | (e) << FUNC_SH)
     47
     48#include "uasm.c"
     49
     50static const struct insn insn_table[insn_invalid] = {
     51	[insn_addiu]	= {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
     52	[insn_addu]	= {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD},
     53	[insn_and]	= {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD},
     54	[insn_andi]	= {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
     55	[insn_bbit0]	= {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
     56	[insn_bbit1]	= {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
     57	[insn_beq]	= {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
     58	[insn_beql]	= {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
     59	[insn_bgez]	= {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM},
     60	[insn_bgezl]	= {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM},
     61	[insn_bgtz]	= {M(bgtz_op, 0, 0, 0, 0, 0), RS | BIMM},
     62	[insn_blez]	= {M(blez_op, 0, 0, 0, 0, 0), RS | BIMM},
     63	[insn_bltz]	= {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM},
     64	[insn_bltzl]	= {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM},
     65	[insn_bne]	= {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
     66	[insn_break]	= {M(spec_op, 0, 0, 0, 0, break_op), SCIMM},
     67#ifndef CONFIG_CPU_MIPSR6
     68	[insn_cache]	= {M(cache_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
     69#else
     70	[insn_cache]	= {M6(spec3_op, 0, 0, 0, cache6_op),  RS | RT | SIMM9},
     71#endif
     72	[insn_cfc1]	= {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD},
     73	[insn_cfcmsa]	= {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE},
     74	[insn_ctc1]	= {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD},
     75	[insn_ctcmsa]	= {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE},
     76	[insn_daddiu]	= {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
     77	[insn_daddu]	= {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD},
     78	[insn_ddivu]	= {M(spec_op, 0, 0, 0, 0, ddivu_op), RS | RT},
     79	[insn_ddivu_r6]	= {M(spec_op, 0, 0, 0, ddivu_ddivu6_op, ddivu_op),
     80				RS | RT | RD},
     81	[insn_di]	= {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT},
     82	[insn_dins]	= {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE},
     83	[insn_dinsm]	= {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE},
     84	[insn_dinsu]	= {M(spec3_op, 0, 0, 0, 0, dinsu_op), RS | RT | RD | RE},
     85	[insn_divu]	= {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT},
     86	[insn_divu_r6]	= {M(spec_op, 0, 0, 0, divu_divu6_op, divu_op),
     87				RS | RT | RD},
     88	[insn_dmfc0]	= {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
     89	[insn_dmodu]	= {M(spec_op, 0, 0, 0, ddivu_dmodu_op, ddivu_op),
     90				RS | RT | RD},
     91	[insn_dmtc0]	= {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
     92	[insn_dmultu]	= {M(spec_op, 0, 0, 0, 0, dmultu_op), RS | RT},
     93	[insn_dmulu]	= {M(spec_op, 0, 0, 0, dmultu_dmulu_op, dmultu_op),
     94				RS | RT | RD},
     95	[insn_drotr]	= {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE},
     96	[insn_drotr32]	= {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE},
     97	[insn_dsbh]	= {M(spec3_op, 0, 0, 0, dsbh_op, dbshfl_op), RT | RD},
     98	[insn_dshd]	= {M(spec3_op, 0, 0, 0, dshd_op, dbshfl_op), RT | RD},
     99	[insn_dsll]	= {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE},
    100	[insn_dsll32]	= {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE},
    101	[insn_dsllv]	= {M(spec_op, 0, 0, 0, 0, dsllv_op),  RS | RT | RD},
    102	[insn_dsra]	= {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE},
    103	[insn_dsra32]	= {M(spec_op, 0, 0, 0, 0, dsra32_op), RT | RD | RE},
    104	[insn_dsrav]	= {M(spec_op, 0, 0, 0, 0, dsrav_op),  RS | RT | RD},
    105	[insn_dsrl]	= {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE},
    106	[insn_dsrl32]	= {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE},
    107	[insn_dsrlv]	= {M(spec_op, 0, 0, 0, 0, dsrlv_op),  RS | RT | RD},
    108	[insn_dsubu]	= {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD},
    109	[insn_eret]	= {M(cop0_op, cop_op, 0, 0, 0, eret_op),  0},
    110	[insn_ext]	= {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE},
    111	[insn_ins]	= {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE},
    112	[insn_j]	= {M(j_op, 0, 0, 0, 0, 0),  JIMM},
    113	[insn_jal]	= {M(jal_op, 0, 0, 0, 0, 0),	JIMM},
    114	[insn_jalr]	= {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD},
    115#ifndef CONFIG_CPU_MIPSR6
    116	[insn_jr]	= {M(spec_op, 0, 0, 0, 0, jr_op),  RS},
    117#else
    118	[insn_jr]	= {M(spec_op, 0, 0, 0, 0, jalr_op),  RS},
    119#endif
    120	[insn_lb]	= {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
    121	[insn_lbu]	= {M(lbu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
    122	[insn_ld]	= {M(ld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
    123	[insn_lddir]	= {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD},
    124	[insn_ldpte]	= {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD},
    125	[insn_ldx]	= {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD},
    126	[insn_lh]	= {M(lh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
    127	[insn_lhu]	= {M(lhu_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
    128#ifndef CONFIG_CPU_MIPSR6
    129	[insn_ll]	= {M(ll_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
    130	[insn_lld]	= {M(lld_op, 0, 0, 0, 0, 0),	RS | RT | SIMM},
    131#else
    132	[insn_ll]	= {M6(spec3_op, 0, 0, 0, ll6_op),  RS | RT | SIMM9},
    133	[insn_lld]	= {M6(spec3_op, 0, 0, 0, lld6_op),  RS | RT | SIMM9},
    134#endif
    135	[insn_lui]	= {M(lui_op, 0, 0, 0, 0, 0),	RT | SIMM},
    136	[insn_lw]	= {M(lw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
    137	[insn_lwu]	= {M(lwu_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
    138	[insn_lwx]	= {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD},
    139	[insn_mfc0]	= {M(cop0_op, mfc_op, 0, 0, 0, 0),  RT | RD | SET},
    140	[insn_mfhc0]	= {M(cop0_op, mfhc0_op, 0, 0, 0, 0),  RT | RD | SET},
    141	[insn_mfhi]	= {M(spec_op, 0, 0, 0, 0, mfhi_op), RD},
    142	[insn_mflo]	= {M(spec_op, 0, 0, 0, 0, mflo_op), RD},
    143	[insn_modu]	= {M(spec_op, 0, 0, 0, divu_modu_op, divu_op),
    144				RS | RT | RD},
    145	[insn_movn]	= {M(spec_op, 0, 0, 0, 0, movn_op), RS | RT | RD},
    146	[insn_movz]	= {M(spec_op, 0, 0, 0, 0, movz_op), RS | RT | RD},
    147	[insn_mtc0]	= {M(cop0_op, mtc_op, 0, 0, 0, 0),  RT | RD | SET},
    148	[insn_mthc0]	= {M(cop0_op, mthc0_op, 0, 0, 0, 0),  RT | RD | SET},
    149	[insn_mthi]	= {M(spec_op, 0, 0, 0, 0, mthi_op), RS},
    150	[insn_mtlo]	= {M(spec_op, 0, 0, 0, 0, mtlo_op), RS},
    151	[insn_mulu]	= {M(spec_op, 0, 0, 0, multu_mulu_op, multu_op),
    152				RS | RT | RD},
    153	[insn_muhu]	= {M(spec_op, 0, 0, 0, multu_muhu_op, multu_op),
    154				RS | RT | RD},
    155#ifndef CONFIG_CPU_MIPSR6
    156	[insn_mul]	= {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
    157#else
    158	[insn_mul]	= {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
    159#endif
    160	[insn_multu]	= {M(spec_op, 0, 0, 0, 0, multu_op), RS | RT},
    161	[insn_nor]	= {M(spec_op, 0, 0, 0, 0, nor_op),  RS | RT | RD},
    162	[insn_or]	= {M(spec_op, 0, 0, 0, 0, or_op),  RS | RT | RD},
    163	[insn_ori]	= {M(ori_op, 0, 0, 0, 0, 0),	RS | RT | UIMM},
    164#ifndef CONFIG_CPU_MIPSR6
    165	[insn_pref]	= {M(pref_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
    166#else
    167	[insn_pref]	= {M6(spec3_op, 0, 0, 0, pref6_op),  RS | RT | SIMM9},
    168#endif
    169	[insn_rfe]	= {M(cop0_op, cop_op, 0, 0, 0, rfe_op),  0},
    170	[insn_rotr]	= {M(spec_op, 1, 0, 0, 0, srl_op),  RT | RD | RE},
    171	[insn_sb]	= {M(sb_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
    172#ifndef CONFIG_CPU_MIPSR6
    173	[insn_sc]	= {M(sc_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
    174	[insn_scd]	= {M(scd_op, 0, 0, 0, 0, 0),	RS | RT | SIMM},
    175#else
    176	[insn_sc]	= {M6(spec3_op, 0, 0, 0, sc6_op),  RS | RT | SIMM9},
    177	[insn_scd]	= {M6(spec3_op, 0, 0, 0, scd6_op),  RS | RT | SIMM9},
    178#endif
    179	[insn_sd]	= {M(sd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
    180	[insn_seleqz]	= {M(spec_op, 0, 0, 0, 0, seleqz_op), RS | RT | RD},
    181	[insn_selnez]	= {M(spec_op, 0, 0, 0, 0, selnez_op), RS | RT | RD},
    182	[insn_sh]	= {M(sh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
    183	[insn_sll]	= {M(spec_op, 0, 0, 0, 0, sll_op),  RT | RD | RE},
    184	[insn_sllv]	= {M(spec_op, 0, 0, 0, 0, sllv_op),  RS | RT | RD},
    185	[insn_slt]	= {M(spec_op, 0, 0, 0, 0, slt_op),  RS | RT | RD},
    186	[insn_slti]	= {M(slti_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
    187	[insn_sltiu]	= {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
    188	[insn_sltu]	= {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD},
    189	[insn_sra]	= {M(spec_op, 0, 0, 0, 0, sra_op),  RT | RD | RE},
    190	[insn_srav]	= {M(spec_op, 0, 0, 0, 0, srav_op), RS | RT | RD},
    191	[insn_srl]	= {M(spec_op, 0, 0, 0, 0, srl_op),  RT | RD | RE},
    192	[insn_srlv]	= {M(spec_op, 0, 0, 0, 0, srlv_op),  RS | RT | RD},
    193	[insn_subu]	= {M(spec_op, 0, 0, 0, 0, subu_op),	RS | RT | RD},
    194	[insn_sw]	= {M(sw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM},
    195	[insn_sync]	= {M(spec_op, 0, 0, 0, 0, sync_op), RE},
    196	[insn_syscall]	= {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
    197	[insn_tlbp]	= {M(cop0_op, cop_op, 0, 0, 0, tlbp_op),  0},
    198	[insn_tlbr]	= {M(cop0_op, cop_op, 0, 0, 0, tlbr_op),  0},
    199	[insn_tlbwi]	= {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op),  0},
    200	[insn_tlbwr]	= {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op),  0},
    201	[insn_wait]	= {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM},
    202	[insn_wsbh]	= {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD},
    203	[insn_xor]	= {M(spec_op, 0, 0, 0, 0, xor_op),  RS | RT | RD},
    204	[insn_xori]	= {M(xori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM},
    205	[insn_yield]	= {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD},
    206};
    207
    208#undef M
    209
    210static inline u32 build_bimm(s32 arg)
    211{
    212	WARN(arg > 0x1ffff || arg < -0x20000,
    213	     KERN_WARNING "Micro-assembler field overflow\n");
    214
    215	WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
    216
    217	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
    218}
    219
    220static inline u32 build_jimm(u32 arg)
    221{
    222	WARN(arg & ~(JIMM_MASK << 2),
    223	     KERN_WARNING "Micro-assembler field overflow\n");
    224
    225	return (arg >> 2) & JIMM_MASK;
    226}
    227
    228/*
    229 * The order of opcode arguments is implicitly left to right,
    230 * starting with RS and ending with FUNC or IMM.
    231 */
    232static void build_insn(u32 **buf, enum opcode opc, ...)
    233{
    234	const struct insn *ip;
    235	va_list ap;
    236	u32 op;
    237
    238	if (opc < 0 || opc >= insn_invalid ||
    239	    (opc == insn_daddiu && r4k_daddiu_bug()) ||
    240	    (insn_table[opc].match == 0 && insn_table[opc].fields == 0))
    241		panic("Unsupported Micro-assembler instruction %d", opc);
    242
    243	ip = &insn_table[opc];
    244
    245	op = ip->match;
    246	va_start(ap, opc);
    247	if (ip->fields & RS)
    248		op |= build_rs(va_arg(ap, u32));
    249	if (ip->fields & RT)
    250		op |= build_rt(va_arg(ap, u32));
    251	if (ip->fields & RD)
    252		op |= build_rd(va_arg(ap, u32));
    253	if (ip->fields & RE)
    254		op |= build_re(va_arg(ap, u32));
    255	if (ip->fields & SIMM)
    256		op |= build_simm(va_arg(ap, s32));
    257	if (ip->fields & UIMM)
    258		op |= build_uimm(va_arg(ap, u32));
    259	if (ip->fields & BIMM)
    260		op |= build_bimm(va_arg(ap, s32));
    261	if (ip->fields & JIMM)
    262		op |= build_jimm(va_arg(ap, u32));
    263	if (ip->fields & FUNC)
    264		op |= build_func(va_arg(ap, u32));
    265	if (ip->fields & SET)
    266		op |= build_set(va_arg(ap, u32));
    267	if (ip->fields & SCIMM)
    268		op |= build_scimm(va_arg(ap, u32));
    269	if (ip->fields & SIMM9)
    270		op |= build_scimm9(va_arg(ap, u32));
    271	va_end(ap);
    272
    273	**buf = op;
    274	(*buf)++;
    275}
    276
    277static inline void
    278__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
    279{
    280	long laddr = (long)lab->addr;
    281	long raddr = (long)rel->addr;
    282
    283	switch (rel->type) {
    284	case R_MIPS_PC16:
    285		*rel->addr |= build_bimm(laddr - (raddr + 4));
    286		break;
    287
    288	default:
    289		panic("Unsupported Micro-assembler relocation %d",
    290		      rel->type);
    291	}
    292}