bpf_jit_comp.h (7783B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Just-In-Time compiler for eBPF bytecode on 32-bit and 64-bit MIPS. 4 * 5 * Copyright (c) 2021 Anyfi Networks AB. 6 * Author: Johan Almbladh <johan.almbladh@gmail.com> 7 * 8 * Based on code and ideas from 9 * Copyright (c) 2017 Cavium, Inc. 10 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com> 11 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com> 12 */ 13 14#ifndef _BPF_JIT_COMP_H 15#define _BPF_JIT_COMP_H 16 17/* MIPS registers */ 18#define MIPS_R_ZERO 0 /* Const zero */ 19#define MIPS_R_AT 1 /* Asm temp */ 20#define MIPS_R_V0 2 /* Result */ 21#define MIPS_R_V1 3 /* Result */ 22#define MIPS_R_A0 4 /* Argument */ 23#define MIPS_R_A1 5 /* Argument */ 24#define MIPS_R_A2 6 /* Argument */ 25#define MIPS_R_A3 7 /* Argument */ 26#define MIPS_R_A4 8 /* Arg (n64) */ 27#define MIPS_R_A5 9 /* Arg (n64) */ 28#define MIPS_R_A6 10 /* Arg (n64) */ 29#define MIPS_R_A7 11 /* Arg (n64) */ 30#define MIPS_R_T0 8 /* Temp (o32) */ 31#define MIPS_R_T1 9 /* Temp (o32) */ 32#define MIPS_R_T2 10 /* Temp (o32) */ 33#define MIPS_R_T3 11 /* Temp (o32) */ 34#define MIPS_R_T4 12 /* Temporary */ 35#define MIPS_R_T5 13 /* Temporary */ 36#define MIPS_R_T6 14 /* Temporary */ 37#define MIPS_R_T7 15 /* Temporary */ 38#define MIPS_R_S0 16 /* Saved */ 39#define MIPS_R_S1 17 /* Saved */ 40#define MIPS_R_S2 18 /* Saved */ 41#define MIPS_R_S3 19 /* Saved */ 42#define MIPS_R_S4 20 /* Saved */ 43#define MIPS_R_S5 21 /* Saved */ 44#define MIPS_R_S6 22 /* Saved */ 45#define MIPS_R_S7 23 /* Saved */ 46#define MIPS_R_T8 24 /* Temporary */ 47#define MIPS_R_T9 25 /* Temporary */ 48/* MIPS_R_K0 26 Reserved */ 49/* MIPS_R_K1 27 Reserved */ 50#define MIPS_R_GP 28 /* Global ptr */ 51#define MIPS_R_SP 29 /* Stack ptr */ 52#define MIPS_R_FP 30 /* Frame ptr */ 53#define MIPS_R_RA 31 /* Return */ 54 55/* 56 * Jump address mask for immediate jumps. The four most significant bits 57 * must be equal to PC. 58 */ 59#define MIPS_JMP_MASK 0x0fffffffUL 60 61/* Maximum number of iterations in offset table computation */ 62#define JIT_MAX_ITERATIONS 8 63 64/* 65 * Jump pseudo-instructions used internally 66 * for branch conversion and branch optimization. 67 */ 68#define JIT_JNSET 0xe0 69#define JIT_JNOP 0xf0 70 71/* Descriptor flag for PC-relative branch conversion */ 72#define JIT_DESC_CONVERT BIT(31) 73 74/* JIT context for an eBPF program */ 75struct jit_context { 76 struct bpf_prog *program; /* The eBPF program being JITed */ 77 u32 *descriptors; /* eBPF to JITed CPU insn descriptors */ 78 u32 *target; /* JITed code buffer */ 79 u32 bpf_index; /* Index of current BPF program insn */ 80 u32 jit_index; /* Index of current JIT target insn */ 81 u32 changes; /* Number of PC-relative branch conv */ 82 u32 accessed; /* Bit mask of read eBPF registers */ 83 u32 clobbered; /* Bit mask of modified CPU registers */ 84 u32 stack_size; /* Total allocated stack size in bytes */ 85 u32 saved_size; /* Size of callee-saved registers */ 86 u32 stack_used; /* Stack size used for function calls */ 87}; 88 89/* Emit the instruction if the JIT memory space has been allocated */ 90#define __emit(ctx, func, ...) \ 91do { \ 92 if ((ctx)->target != NULL) { \ 93 u32 *p = &(ctx)->target[ctx->jit_index]; \ 94 uasm_i_##func(&p, ##__VA_ARGS__); \ 95 } \ 96 (ctx)->jit_index++; \ 97} while (0) 98#define emit(...) __emit(__VA_ARGS__) 99 100/* Workaround for R10000 ll/sc errata */ 101#ifdef CONFIG_WAR_R10000_LLSC 102#define LLSC_beqz beqzl 103#else 104#define LLSC_beqz beqz 105#endif 106 107/* Workaround for Loongson-3 ll/sc errata */ 108#ifdef CONFIG_CPU_LOONGSON3_WORKAROUNDS 109#define LLSC_sync(ctx) emit(ctx, sync, 0) 110#define LLSC_offset 4 111#else 112#define LLSC_sync(ctx) 113#define LLSC_offset 0 114#endif 115 116/* Workaround for Loongson-2F jump errata */ 117#ifdef CONFIG_CPU_JUMP_WORKAROUNDS 118#define JALR_MASK 0xffffffffcfffffffULL 119#else 120#define JALR_MASK (~0ULL) 121#endif 122 123/* 124 * Mark a BPF register as accessed, it needs to be 125 * initialized by the program if expected, e.g. FP. 126 */ 127static inline void access_reg(struct jit_context *ctx, u8 reg) 128{ 129 ctx->accessed |= BIT(reg); 130} 131 132/* 133 * Mark a CPU register as clobbered, it needs to be 134 * saved/restored by the program if callee-saved. 135 */ 136static inline void clobber_reg(struct jit_context *ctx, u8 reg) 137{ 138 ctx->clobbered |= BIT(reg); 139} 140 141/* 142 * Push registers on the stack, starting at a given depth from the stack 143 * pointer and increasing. The next depth to be written is returned. 144 */ 145int push_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth); 146 147/* 148 * Pop registers from the stack, starting at a given depth from the stack 149 * pointer and increasing. The next depth to be read is returned. 150 */ 151int pop_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth); 152 153/* Compute the 28-bit jump target address from a BPF program location */ 154int get_target(struct jit_context *ctx, u32 loc); 155 156/* Compute the PC-relative offset to relative BPF program offset */ 157int get_offset(const struct jit_context *ctx, int off); 158 159/* dst = imm (32-bit) */ 160void emit_mov_i(struct jit_context *ctx, u8 dst, s32 imm); 161 162/* dst = src (32-bit) */ 163void emit_mov_r(struct jit_context *ctx, u8 dst, u8 src); 164 165/* Validate ALU/ALU64 immediate range */ 166bool valid_alu_i(u8 op, s32 imm); 167 168/* Rewrite ALU/ALU64 immediate operation */ 169bool rewrite_alu_i(u8 op, s32 imm, u8 *alu, s32 *val); 170 171/* ALU immediate operation (32-bit) */ 172void emit_alu_i(struct jit_context *ctx, u8 dst, s32 imm, u8 op); 173 174/* ALU register operation (32-bit) */ 175void emit_alu_r(struct jit_context *ctx, u8 dst, u8 src, u8 op); 176 177/* Atomic read-modify-write (32-bit) */ 178void emit_atomic_r(struct jit_context *ctx, u8 dst, u8 src, s16 off, u8 code); 179 180/* Atomic compare-and-exchange (32-bit) */ 181void emit_cmpxchg_r(struct jit_context *ctx, u8 dst, u8 src, u8 res, s16 off); 182 183/* Swap bytes and truncate a register word or half word */ 184void emit_bswap_r(struct jit_context *ctx, u8 dst, u32 width); 185 186/* Validate JMP/JMP32 immediate range */ 187bool valid_jmp_i(u8 op, s32 imm); 188 189/* Prepare a PC-relative jump operation with immediate conditional */ 190void setup_jmp_i(struct jit_context *ctx, s32 imm, u8 width, 191 u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off); 192 193/* Prepare a PC-relative jump operation with register conditional */ 194void setup_jmp_r(struct jit_context *ctx, bool same_reg, 195 u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off); 196 197/* Finish a PC-relative jump operation */ 198int finish_jmp(struct jit_context *ctx, u8 jit_op, s16 bpf_off); 199 200/* Conditional JMP/JMP32 immediate */ 201void emit_jmp_i(struct jit_context *ctx, u8 dst, s32 imm, s32 off, u8 op); 202 203/* Conditional JMP/JMP32 register */ 204void emit_jmp_r(struct jit_context *ctx, u8 dst, u8 src, s32 off, u8 op); 205 206/* Jump always */ 207int emit_ja(struct jit_context *ctx, s16 off); 208 209/* Jump to epilogue */ 210int emit_exit(struct jit_context *ctx); 211 212/* 213 * Build program prologue to set up the stack and registers. 214 * This function is implemented separately for 32-bit and 64-bit JITs. 215 */ 216void build_prologue(struct jit_context *ctx); 217 218/* 219 * Build the program epilogue to restore the stack and registers. 220 * This function is implemented separately for 32-bit and 64-bit JITs. 221 */ 222void build_epilogue(struct jit_context *ctx, int dest_reg); 223 224/* 225 * Convert an eBPF instruction to native instruction, i.e 226 * JITs an eBPF instruction. 227 * Returns : 228 * 0 - Successfully JITed an 8-byte eBPF instruction 229 * >0 - Successfully JITed a 16-byte eBPF instruction 230 * <0 - Failed to JIT. 231 * This function is implemented separately for 32-bit and 64-bit JITs. 232 */ 233int build_insn(const struct bpf_insn *insn, struct jit_context *ctx); 234 235#endif /* _BPF_JIT_COMP_H */