cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

msi-octeon.c (12361B)


      1/*
      2 * This file is subject to the terms and conditions of the GNU General Public
      3 * License.  See the file "COPYING" in the main directory of this archive
      4 * for more details.
      5 *
      6 * Copyright (C) 2005-2009, 2010 Cavium Networks
      7 */
      8#include <linux/kernel.h>
      9#include <linux/init.h>
     10#include <linux/msi.h>
     11#include <linux/spinlock.h>
     12#include <linux/interrupt.h>
     13
     14#include <asm/octeon/octeon.h>
     15#include <asm/octeon/cvmx-npi-defs.h>
     16#include <asm/octeon/cvmx-pci-defs.h>
     17#include <asm/octeon/cvmx-npei-defs.h>
     18#include <asm/octeon/cvmx-sli-defs.h>
     19#include <asm/octeon/cvmx-pexp-defs.h>
     20#include <asm/octeon/pci-octeon.h>
     21
     22/*
     23 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
     24 * in use.
     25 */
     26static u64 msi_free_irq_bitmask[4];
     27
     28/*
     29 * Each bit in msi_multiple_irq_bitmask tells that the device using
     30 * this bit in msi_free_irq_bitmask is also using the next bit. This
     31 * is used so we can disable all of the MSI interrupts when a device
     32 * uses multiple.
     33 */
     34static u64 msi_multiple_irq_bitmask[4];
     35
     36/*
     37 * This lock controls updates to msi_free_irq_bitmask and
     38 * msi_multiple_irq_bitmask.
     39 */
     40static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
     41
     42/*
     43 * Number of MSI IRQs used. This variable is set up in
     44 * the module init time.
     45 */
     46static int msi_irq_size;
     47
     48/**
     49 * Called when a driver request MSI interrupts instead of the
     50 * legacy INT A-D. This routine will allocate multiple interrupts
     51 * for MSI devices that support them. A device can override this by
     52 * programming the MSI control bits [6:4] before calling
     53 * pci_enable_msi().
     54 *
     55 * @dev:    Device requesting MSI interrupts
     56 * @desc:   MSI descriptor
     57 *
     58 * Returns 0 on success.
     59 */
     60int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
     61{
     62	struct msi_msg msg;
     63	u16 control;
     64	int configured_private_bits;
     65	int request_private_bits;
     66	int irq = 0;
     67	int irq_step;
     68	u64 search_mask;
     69	int index;
     70
     71	if (desc->pci.msi_attrib.is_msix)
     72		return -EINVAL;
     73
     74	/*
     75	 * Read the MSI config to figure out how many IRQs this device
     76	 * wants.  Most devices only want 1, which will give
     77	 * configured_private_bits and request_private_bits equal 0.
     78	 */
     79	pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
     80
     81	/*
     82	 * If the number of private bits has been configured then use
     83	 * that value instead of the requested number. This gives the
     84	 * driver the chance to override the number of interrupts
     85	 * before calling pci_enable_msi().
     86	 */
     87	configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
     88	if (configured_private_bits == 0) {
     89		/* Nothing is configured, so use the hardware requested size */
     90		request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
     91	} else {
     92		/*
     93		 * Use the number of configured bits, assuming the
     94		 * driver wanted to override the hardware request
     95		 * value.
     96		 */
     97		request_private_bits = configured_private_bits;
     98	}
     99
    100	/*
    101	 * The PCI 2.3 spec mandates that there are at most 32
    102	 * interrupts. If this device asks for more, only give it one.
    103	 */
    104	if (request_private_bits > 5)
    105		request_private_bits = 0;
    106
    107try_only_one:
    108	/*
    109	 * The IRQs have to be aligned on a power of two based on the
    110	 * number being requested.
    111	 */
    112	irq_step = 1 << request_private_bits;
    113
    114	/* Mask with one bit for each IRQ */
    115	search_mask = (1 << irq_step) - 1;
    116
    117	/*
    118	 * We're going to search msi_free_irq_bitmask_lock for zero
    119	 * bits. This represents an MSI interrupt number that isn't in
    120	 * use.
    121	 */
    122	spin_lock(&msi_free_irq_bitmask_lock);
    123	for (index = 0; index < msi_irq_size/64; index++) {
    124		for (irq = 0; irq < 64; irq += irq_step) {
    125			if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
    126				msi_free_irq_bitmask[index] |= search_mask << irq;
    127				msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
    128				goto msi_irq_allocated;
    129			}
    130		}
    131	}
    132msi_irq_allocated:
    133	spin_unlock(&msi_free_irq_bitmask_lock);
    134
    135	/* Make sure the search for available interrupts didn't fail */
    136	if (irq >= 64) {
    137		if (request_private_bits) {
    138			pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
    139			       1 << request_private_bits);
    140			request_private_bits = 0;
    141			goto try_only_one;
    142		} else
    143			panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
    144	}
    145
    146	/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
    147	irq += index*64;
    148	irq += OCTEON_IRQ_MSI_BIT0;
    149
    150	switch (octeon_dma_bar_type) {
    151	case OCTEON_DMA_BAR_TYPE_SMALL:
    152		/* When not using big bar, Bar 0 is based at 128MB */
    153		msg.address_lo =
    154			((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
    155		msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
    156		break;
    157	case OCTEON_DMA_BAR_TYPE_BIG:
    158		/* When using big bar, Bar 0 is based at 0 */
    159		msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
    160		msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
    161		break;
    162	case OCTEON_DMA_BAR_TYPE_PCIE:
    163		/* When using PCIe, Bar 0 is based at 0 */
    164		/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
    165		msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
    166		msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
    167		break;
    168	case OCTEON_DMA_BAR_TYPE_PCIE2:
    169		/* When using PCIe2, Bar 0 is based at 0 */
    170		msg.address_lo = (0 + CVMX_SLI_PCIE_MSI_RCV) & 0xffffffff;
    171		msg.address_hi = (0 + CVMX_SLI_PCIE_MSI_RCV) >> 32;
    172		break;
    173	default:
    174		panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
    175	}
    176	msg.data = irq - OCTEON_IRQ_MSI_BIT0;
    177
    178	/* Update the number of IRQs the device has available to it */
    179	control &= ~PCI_MSI_FLAGS_QSIZE;
    180	control |= request_private_bits << 4;
    181	pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
    182
    183	irq_set_msi_desc(irq, desc);
    184	pci_write_msi_msg(irq, &msg);
    185	return 0;
    186}
    187
    188/**
    189 * Called when a device no longer needs its MSI interrupts. All
    190 * MSI interrupts for the device are freed.
    191 *
    192 * @irq:    The devices first irq number. There may be multple in sequence.
    193 */
    194void arch_teardown_msi_irq(unsigned int irq)
    195{
    196	int number_irqs;
    197	u64 bitmask;
    198	int index = 0;
    199	int irq0;
    200
    201	if ((irq < OCTEON_IRQ_MSI_BIT0)
    202		|| (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
    203		panic("arch_teardown_msi_irq: Attempted to teardown illegal "
    204		      "MSI interrupt (%d)", irq);
    205
    206	irq -= OCTEON_IRQ_MSI_BIT0;
    207	index = irq / 64;
    208	irq0 = irq % 64;
    209
    210	/*
    211	 * Count the number of IRQs we need to free by looking at the
    212	 * msi_multiple_irq_bitmask. Each bit set means that the next
    213	 * IRQ is also owned by this device.
    214	 */
    215	number_irqs = 0;
    216	while ((irq0 + number_irqs < 64) &&
    217	       (msi_multiple_irq_bitmask[index]
    218		& (1ull << (irq0 + number_irqs))))
    219		number_irqs++;
    220	number_irqs++;
    221	/* Mask with one bit for each IRQ */
    222	bitmask = (1 << number_irqs) - 1;
    223	/* Shift the mask to the correct bit location */
    224	bitmask <<= irq0;
    225	if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
    226		panic("arch_teardown_msi_irq: Attempted to teardown MSI "
    227		      "interrupt (%d) not in use", irq);
    228
    229	/* Checks are done, update the in use bitmask */
    230	spin_lock(&msi_free_irq_bitmask_lock);
    231	msi_free_irq_bitmask[index] &= ~bitmask;
    232	msi_multiple_irq_bitmask[index] &= ~bitmask;
    233	spin_unlock(&msi_free_irq_bitmask_lock);
    234}
    235
    236static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
    237
    238static u64 msi_rcv_reg[4];
    239static u64 mis_ena_reg[4];
    240
    241static void octeon_irq_msi_enable_pcie(struct irq_data *data)
    242{
    243	u64 en;
    244	unsigned long flags;
    245	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
    246	int irq_index = msi_number >> 6;
    247	int irq_bit = msi_number & 0x3f;
    248
    249	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
    250	en = cvmx_read_csr(mis_ena_reg[irq_index]);
    251	en |= 1ull << irq_bit;
    252	cvmx_write_csr(mis_ena_reg[irq_index], en);
    253	cvmx_read_csr(mis_ena_reg[irq_index]);
    254	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
    255}
    256
    257static void octeon_irq_msi_disable_pcie(struct irq_data *data)
    258{
    259	u64 en;
    260	unsigned long flags;
    261	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
    262	int irq_index = msi_number >> 6;
    263	int irq_bit = msi_number & 0x3f;
    264
    265	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
    266	en = cvmx_read_csr(mis_ena_reg[irq_index]);
    267	en &= ~(1ull << irq_bit);
    268	cvmx_write_csr(mis_ena_reg[irq_index], en);
    269	cvmx_read_csr(mis_ena_reg[irq_index]);
    270	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
    271}
    272
    273static struct irq_chip octeon_irq_chip_msi_pcie = {
    274	.name = "MSI",
    275	.irq_enable = octeon_irq_msi_enable_pcie,
    276	.irq_disable = octeon_irq_msi_disable_pcie,
    277};
    278
    279static void octeon_irq_msi_enable_pci(struct irq_data *data)
    280{
    281	/*
    282	 * Octeon PCI doesn't have the ability to mask/unmask MSI
    283	 * interrupts individually. Instead of masking/unmasking them
    284	 * in groups of 16, we simple assume MSI devices are well
    285	 * behaved. MSI interrupts are always enable and the ACK is
    286	 * assumed to be enough
    287	 */
    288}
    289
    290static void octeon_irq_msi_disable_pci(struct irq_data *data)
    291{
    292	/* See comment in enable */
    293}
    294
    295static struct irq_chip octeon_irq_chip_msi_pci = {
    296	.name = "MSI",
    297	.irq_enable = octeon_irq_msi_enable_pci,
    298	.irq_disable = octeon_irq_msi_disable_pci,
    299};
    300
    301/*
    302 * Called by the interrupt handling code when an MSI interrupt
    303 * occurs.
    304 */
    305static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
    306{
    307	int irq;
    308	int bit;
    309
    310	bit = fls64(msi_bits);
    311	if (bit) {
    312		bit--;
    313		/* Acknowledge it first. */
    314		cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
    315
    316		irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
    317		do_IRQ(irq);
    318		return IRQ_HANDLED;
    319	}
    320	return IRQ_NONE;
    321}
    322
    323#define OCTEON_MSI_INT_HANDLER_X(x)					\
    324static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id)	\
    325{									\
    326	u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]);			\
    327	return __octeon_msi_do_interrupt((x), msi_bits);		\
    328}
    329
    330/*
    331 * Create octeon_msi_interrupt{0-3} function body
    332 */
    333OCTEON_MSI_INT_HANDLER_X(0);
    334OCTEON_MSI_INT_HANDLER_X(1);
    335OCTEON_MSI_INT_HANDLER_X(2);
    336OCTEON_MSI_INT_HANDLER_X(3);
    337
    338/*
    339 * Initializes the MSI interrupt handling code
    340 */
    341int __init octeon_msi_initialize(void)
    342{
    343	int irq;
    344	struct irq_chip *msi;
    345
    346	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_INVALID) {
    347		return 0;
    348	} else if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
    349		msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
    350		msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
    351		msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
    352		msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
    353		mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
    354		mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
    355		mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
    356		mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
    357		msi = &octeon_irq_chip_msi_pcie;
    358	} else {
    359		msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
    360#define INVALID_GENERATE_ADE 0x8700000000000000ULL;
    361		msi_rcv_reg[1] = INVALID_GENERATE_ADE;
    362		msi_rcv_reg[2] = INVALID_GENERATE_ADE;
    363		msi_rcv_reg[3] = INVALID_GENERATE_ADE;
    364		mis_ena_reg[0] = INVALID_GENERATE_ADE;
    365		mis_ena_reg[1] = INVALID_GENERATE_ADE;
    366		mis_ena_reg[2] = INVALID_GENERATE_ADE;
    367		mis_ena_reg[3] = INVALID_GENERATE_ADE;
    368		msi = &octeon_irq_chip_msi_pci;
    369	}
    370
    371	for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
    372		irq_set_chip_and_handler(irq, msi, handle_simple_irq);
    373
    374	if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
    375		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
    376				0, "MSI[0:63]", octeon_msi_interrupt0))
    377			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
    378
    379		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
    380				0, "MSI[64:127]", octeon_msi_interrupt1))
    381			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
    382
    383		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
    384				0, "MSI[127:191]", octeon_msi_interrupt2))
    385			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
    386
    387		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
    388				0, "MSI[192:255]", octeon_msi_interrupt3))
    389			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
    390
    391		msi_irq_size = 256;
    392	} else if (octeon_is_pci_host()) {
    393		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
    394				0, "MSI[0:15]", octeon_msi_interrupt0))
    395			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
    396
    397		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
    398				0, "MSI[16:31]", octeon_msi_interrupt0))
    399			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
    400
    401		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
    402				0, "MSI[32:47]", octeon_msi_interrupt0))
    403			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
    404
    405		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
    406				0, "MSI[48:63]", octeon_msi_interrupt0))
    407			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
    408		msi_irq_size = 64;
    409	}
    410	return 0;
    411}
    412subsys_initcall(octeon_msi_initialize);