cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pci-octeon.c (22835B)


      1/*
      2 * This file is subject to the terms and conditions of the GNU General Public
      3 * License.  See the file "COPYING" in the main directory of this archive
      4 * for more details.
      5 *
      6 * Copyright (C) 2005-2009 Cavium Networks
      7 */
      8#include <linux/kernel.h>
      9#include <linux/init.h>
     10#include <linux/pci.h>
     11#include <linux/interrupt.h>
     12#include <linux/time.h>
     13#include <linux/delay.h>
     14#include <linux/platform_device.h>
     15#include <linux/swiotlb.h>
     16
     17#include <asm/time.h>
     18
     19#include <asm/octeon/octeon.h>
     20#include <asm/octeon/cvmx-npi-defs.h>
     21#include <asm/octeon/cvmx-pci-defs.h>
     22#include <asm/octeon/pci-octeon.h>
     23
     24#define USE_OCTEON_INTERNAL_ARBITER
     25
     26/*
     27 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
     28 * addresses. Use PCI endian swapping 1 so no address swapping is
     29 * necessary. The Linux io routines will endian swap the data.
     30 */
     31#define OCTEON_PCI_IOSPACE_BASE	    0x80011a0400000000ull
     32#define OCTEON_PCI_IOSPACE_SIZE	    (1ull<<32)
     33
     34/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
     35#define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
     36
     37u64 octeon_bar1_pci_phys;
     38
     39/**
     40 * This is the bit decoding used for the Octeon PCI controller addresses
     41 */
     42union octeon_pci_address {
     43	uint64_t u64;
     44	struct {
     45		uint64_t upper:2;
     46		uint64_t reserved:13;
     47		uint64_t io:1;
     48		uint64_t did:5;
     49		uint64_t subdid:3;
     50		uint64_t reserved2:4;
     51		uint64_t endian_swap:2;
     52		uint64_t reserved3:10;
     53		uint64_t bus:8;
     54		uint64_t dev:5;
     55		uint64_t func:3;
     56		uint64_t reg:8;
     57	} s;
     58};
     59
     60int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin);
     61enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
     62
     63/**
     64 * Map a PCI device to the appropriate interrupt line
     65 *
     66 * @dev:    The Linux PCI device structure for the device to map
     67 * @slot:   The slot number for this device on __BUS 0__. Linux
     68 *		 enumerates through all the bridges and figures out the
     69 *		 slot on Bus 0 where this device eventually hooks to.
     70 * @pin:    The PCI interrupt pin read from the device, then swizzled
     71 *		 as it goes through each bridge.
     72 * Returns Interrupt number for the device
     73 */
     74int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
     75{
     76	if (octeon_pcibios_map_irq)
     77		return octeon_pcibios_map_irq(dev, slot, pin);
     78	else
     79		panic("octeon_pcibios_map_irq not set.");
     80}
     81
     82
     83/*
     84 * Called to perform platform specific PCI setup
     85 */
     86int pcibios_plat_dev_init(struct pci_dev *dev)
     87{
     88	uint16_t config;
     89	uint32_t dconfig;
     90	int pos;
     91	/*
     92	 * Force the Cache line setting to 64 bytes. The standard
     93	 * Linux bus scan doesn't seem to set it. Octeon really has
     94	 * 128 byte lines, but Intel bridges get really upset if you
     95	 * try and set values above 64 bytes. Value is specified in
     96	 * 32bit words.
     97	 */
     98	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
     99	/* Set latency timers for all devices */
    100	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
    101
    102	/* Enable reporting System errors and parity errors on all devices */
    103	/* Enable parity checking and error reporting */
    104	pci_read_config_word(dev, PCI_COMMAND, &config);
    105	config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
    106	pci_write_config_word(dev, PCI_COMMAND, config);
    107
    108	if (dev->subordinate) {
    109		/* Set latency timers on sub bridges */
    110		pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
    111		/* More bridge error detection */
    112		pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
    113		config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
    114		pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
    115	}
    116
    117	/* Enable the PCIe normal error reporting */
    118	config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
    119	config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
    120	config |= PCI_EXP_DEVCTL_FERE;	/* Fatal Error Reporting */
    121	config |= PCI_EXP_DEVCTL_URRE;	/* Unsupported Request */
    122	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
    123
    124	/* Find the Advanced Error Reporting capability */
    125	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
    126	if (pos) {
    127		/* Clear Uncorrectable Error Status */
    128		pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
    129				      &dconfig);
    130		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
    131				       dconfig);
    132		/* Enable reporting of all uncorrectable errors */
    133		/* Uncorrectable Error Mask - turned on bits disable errors */
    134		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
    135		/*
    136		 * Leave severity at HW default. This only controls if
    137		 * errors are reported as uncorrectable or
    138		 * correctable, not if the error is reported.
    139		 */
    140		/* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
    141		/* Clear Correctable Error Status */
    142		pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
    143		pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
    144		/* Enable reporting of all correctable errors */
    145		/* Correctable Error Mask - turned on bits disable errors */
    146		pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
    147		/* Advanced Error Capabilities */
    148		pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
    149		/* ECRC Generation Enable */
    150		if (config & PCI_ERR_CAP_ECRC_GENC)
    151			config |= PCI_ERR_CAP_ECRC_GENE;
    152		/* ECRC Check Enable */
    153		if (config & PCI_ERR_CAP_ECRC_CHKC)
    154			config |= PCI_ERR_CAP_ECRC_CHKE;
    155		pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
    156		/* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
    157		/* Report all errors to the root complex */
    158		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
    159				       PCI_ERR_ROOT_CMD_COR_EN |
    160				       PCI_ERR_ROOT_CMD_NONFATAL_EN |
    161				       PCI_ERR_ROOT_CMD_FATAL_EN);
    162		/* Clear the Root status register */
    163		pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
    164		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
    165	}
    166
    167	return 0;
    168}
    169
    170/**
    171 * Return the mapping of PCI device number to IRQ line. Each
    172 * character in the return string represents the interrupt
    173 * line for the device at that position. Device 1 maps to the
    174 * first character, etc. The characters A-D are used for PCI
    175 * interrupts.
    176 *
    177 * Returns PCI interrupt mapping
    178 */
    179const char *octeon_get_pci_interrupts(void)
    180{
    181	/*
    182	 * Returning an empty string causes the interrupts to be
    183	 * routed based on the PCI specification. From the PCI spec:
    184	 *
    185	 * INTA# of Device Number 0 is connected to IRQW on the system
    186	 * board.  (Device Number has no significance regarding being
    187	 * located on the system board or in a connector.) INTA# of
    188	 * Device Number 1 is connected to IRQX on the system
    189	 * board. INTA# of Device Number 2 is connected to IRQY on the
    190	 * system board. INTA# of Device Number 3 is connected to IRQZ
    191	 * on the system board. The table below describes how each
    192	 * agent's INTx# lines are connected to the system board
    193	 * interrupt lines. The following equation can be used to
    194	 * determine to which INTx# signal on the system board a given
    195	 * device's INTx# line(s) is connected.
    196	 *
    197	 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
    198	 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
    199	 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
    200	 * INTD# = 3)
    201	 */
    202	if (of_machine_is_compatible("dlink,dsr-500n"))
    203		return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
    204	switch (octeon_bootinfo->board_type) {
    205	case CVMX_BOARD_TYPE_NAO38:
    206		/* This is really the NAC38 */
    207		return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
    208	case CVMX_BOARD_TYPE_EBH3100:
    209	case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
    210	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
    211		return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
    212	case CVMX_BOARD_TYPE_BBGW_REF:
    213		return "AABCD";
    214	case CVMX_BOARD_TYPE_CUST_DSR1000N:
    215		return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
    216	case CVMX_BOARD_TYPE_THUNDER:
    217	case CVMX_BOARD_TYPE_EBH3000:
    218	default:
    219		return "";
    220	}
    221}
    222
    223/**
    224 * Map a PCI device to the appropriate interrupt line
    225 *
    226 * @dev:    The Linux PCI device structure for the device to map
    227 * @slot:   The slot number for this device on __BUS 0__. Linux
    228 *		 enumerates through all the bridges and figures out the
    229 *		 slot on Bus 0 where this device eventually hooks to.
    230 * @pin:    The PCI interrupt pin read from the device, then swizzled
    231 *		 as it goes through each bridge.
    232 * Returns Interrupt number for the device
    233 */
    234int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
    235				      u8 slot, u8 pin)
    236{
    237	int irq_num;
    238	const char *interrupts;
    239	int dev_num;
    240
    241	/* Get the board specific interrupt mapping */
    242	interrupts = octeon_get_pci_interrupts();
    243
    244	dev_num = dev->devfn >> 3;
    245	if (dev_num < strlen(interrupts))
    246		irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
    247			OCTEON_IRQ_PCI_INT0;
    248	else
    249		irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
    250	return irq_num;
    251}
    252
    253
    254/*
    255 * Read a value from configuration space
    256 */
    257static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
    258			      int reg, int size, u32 *val)
    259{
    260	union octeon_pci_address pci_addr;
    261
    262	pci_addr.u64 = 0;
    263	pci_addr.s.upper = 2;
    264	pci_addr.s.io = 1;
    265	pci_addr.s.did = 3;
    266	pci_addr.s.subdid = 1;
    267	pci_addr.s.endian_swap = 1;
    268	pci_addr.s.bus = bus->number;
    269	pci_addr.s.dev = devfn >> 3;
    270	pci_addr.s.func = devfn & 0x7;
    271	pci_addr.s.reg = reg;
    272
    273	switch (size) {
    274	case 4:
    275		*val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
    276		return PCIBIOS_SUCCESSFUL;
    277	case 2:
    278		*val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
    279		return PCIBIOS_SUCCESSFUL;
    280	case 1:
    281		*val = cvmx_read64_uint8(pci_addr.u64);
    282		return PCIBIOS_SUCCESSFUL;
    283	}
    284	return PCIBIOS_FUNC_NOT_SUPPORTED;
    285}
    286
    287
    288/*
    289 * Write a value to PCI configuration space
    290 */
    291static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
    292			       int reg, int size, u32 val)
    293{
    294	union octeon_pci_address pci_addr;
    295
    296	pci_addr.u64 = 0;
    297	pci_addr.s.upper = 2;
    298	pci_addr.s.io = 1;
    299	pci_addr.s.did = 3;
    300	pci_addr.s.subdid = 1;
    301	pci_addr.s.endian_swap = 1;
    302	pci_addr.s.bus = bus->number;
    303	pci_addr.s.dev = devfn >> 3;
    304	pci_addr.s.func = devfn & 0x7;
    305	pci_addr.s.reg = reg;
    306
    307	switch (size) {
    308	case 4:
    309		cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
    310		return PCIBIOS_SUCCESSFUL;
    311	case 2:
    312		cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
    313		return PCIBIOS_SUCCESSFUL;
    314	case 1:
    315		cvmx_write64_uint8(pci_addr.u64, val);
    316		return PCIBIOS_SUCCESSFUL;
    317	}
    318	return PCIBIOS_FUNC_NOT_SUPPORTED;
    319}
    320
    321
    322static struct pci_ops octeon_pci_ops = {
    323	.read	= octeon_read_config,
    324	.write	= octeon_write_config,
    325};
    326
    327static struct resource octeon_pci_mem_resource = {
    328	.start = 0,
    329	.end = 0,
    330	.name = "Octeon PCI MEM",
    331	.flags = IORESOURCE_MEM,
    332};
    333
    334/*
    335 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
    336 * bridge
    337 */
    338static struct resource octeon_pci_io_resource = {
    339	.start = 0x4000,
    340	.end = OCTEON_PCI_IOSPACE_SIZE - 1,
    341	.name = "Octeon PCI IO",
    342	.flags = IORESOURCE_IO,
    343};
    344
    345static struct pci_controller octeon_pci_controller = {
    346	.pci_ops = &octeon_pci_ops,
    347	.mem_resource = &octeon_pci_mem_resource,
    348	.mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
    349	.io_resource = &octeon_pci_io_resource,
    350	.io_offset = 0,
    351	.io_map_base = OCTEON_PCI_IOSPACE_BASE,
    352};
    353
    354
    355/*
    356 * Low level initialize the Octeon PCI controller
    357 */
    358static void octeon_pci_initialize(void)
    359{
    360	union cvmx_pci_cfg01 cfg01;
    361	union cvmx_npi_ctl_status ctl_status;
    362	union cvmx_pci_ctl_status_2 ctl_status_2;
    363	union cvmx_pci_cfg19 cfg19;
    364	union cvmx_pci_cfg16 cfg16;
    365	union cvmx_pci_cfg22 cfg22;
    366	union cvmx_pci_cfg56 cfg56;
    367
    368	/* Reset the PCI Bus */
    369	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
    370	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
    371
    372	udelay(2000);		/* Hold PCI reset for 2 ms */
    373
    374	ctl_status.u64 = 0;	/* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
    375	ctl_status.s.max_word = 1;
    376	ctl_status.s.timer = 1;
    377	cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
    378
    379	/* Deassert PCI reset and advertize PCX Host Mode Device Capability
    380	   (64b) */
    381	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
    382	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
    383
    384	udelay(2000);		/* Wait 2 ms after deasserting PCI reset */
    385
    386	ctl_status_2.u32 = 0;
    387	ctl_status_2.s.tsr_hwm = 1;	/* Initializes to 0.  Must be set
    388					   before any PCI reads. */
    389	ctl_status_2.s.bar2pres = 1;	/* Enable BAR2 */
    390	ctl_status_2.s.bar2_enb = 1;
    391	ctl_status_2.s.bar2_cax = 1;	/* Don't use L2 */
    392	ctl_status_2.s.bar2_esx = 1;
    393	ctl_status_2.s.pmo_amod = 1;	/* Round robin priority */
    394	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
    395		/* BAR1 hole */
    396		ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
    397		ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
    398		ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
    399		ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
    400		ctl_status_2.s.bb1 = 1;	     /* BAR1 is big */
    401		ctl_status_2.s.bb0 = 1;	     /* BAR0 is big */
    402	}
    403
    404	octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
    405	udelay(2000);		/* Wait 2 ms before doing PCI reads */
    406
    407	ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
    408	pr_notice("PCI Status: %s %s-bit\n",
    409		  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
    410		  ctl_status_2.s.ap_64ad ? "64" : "32");
    411
    412	if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
    413		union cvmx_pci_cnt_reg cnt_reg_start;
    414		union cvmx_pci_cnt_reg cnt_reg_end;
    415		unsigned long cycles, pci_clock;
    416
    417		cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
    418		cycles = read_c0_cvmcount();
    419		udelay(1000);
    420		cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
    421		cycles = read_c0_cvmcount() - cycles;
    422		pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
    423			    (cycles / (mips_hpt_frequency / 1000000));
    424		pr_notice("PCI Clock: %lu MHz\n", pci_clock);
    425	}
    426
    427	/*
    428	 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
    429	 * in PCI-X mode to allow four outstanding splits. Otherwise,
    430	 * should not change from its reset value. Don't write PCI_CFG19
    431	 * in PCI mode (0x82000001 reset value), write it to 0x82000004
    432	 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
    433	 * MRBCM -> must be one.
    434	 */
    435	if (ctl_status_2.s.ap_pcix) {
    436		cfg19.u32 = 0;
    437		/*
    438		 * Target Delayed/Split request outstanding maximum
    439		 * count. [1..31] and 0=32.  NOTE: If the user
    440		 * programs these bits beyond the Designed Maximum
    441		 * outstanding count, then the designed maximum table
    442		 * depth will be used instead.	No additional
    443		 * Deferred/Split transactions will be accepted if
    444		 * this outstanding maximum count is
    445		 * reached. Furthermore, no additional deferred/split
    446		 * transactions will be accepted if the I/O delay/ I/O
    447		 * Split Request outstanding maximum is reached.
    448		 */
    449		cfg19.s.tdomc = 4;
    450		/*
    451		 * Master Deferred Read Request Outstanding Max Count
    452		 * (PCI only).	CR4C[26:24] Max SAC cycles MAX DAC
    453		 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
    454		 * 5 2 110 6 3 111 7 3 For example, if these bits are
    455		 * programmed to 100, the core can support 2 DAC
    456		 * cycles, 4 SAC cycles or a combination of 1 DAC and
    457		 * 2 SAC cycles. NOTE: For the PCI-X maximum
    458		 * outstanding split transactions, refer to
    459		 * CRE0[22:20].
    460		 */
    461		cfg19.s.mdrrmc = 2;
    462		/*
    463		 * Master Request (Memory Read) Byte Count/Byte Enable
    464		 * select. 0 = Byte Enables valid. In PCI mode, a
    465		 * burst transaction cannot be performed using Memory
    466		 * Read command=4?h6. 1 = DWORD Byte Count valid
    467		 * (default). In PCI Mode, the memory read byte
    468		 * enables are automatically generated by the
    469		 * core. Note: N3 Master Request transaction sizes are
    470		 * always determined through the
    471		 * am_attr[<35:32>|<7:0>] field.
    472		 */
    473		cfg19.s.mrbcm = 1;
    474		octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
    475	}
    476
    477
    478	cfg01.u32 = 0;
    479	cfg01.s.msae = 1;	/* Memory Space Access Enable */
    480	cfg01.s.me = 1;		/* Master Enable */
    481	cfg01.s.pee = 1;	/* PERR# Enable */
    482	cfg01.s.see = 1;	/* System Error Enable */
    483	cfg01.s.fbbe = 1;	/* Fast Back to Back Transaction Enable */
    484
    485	octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
    486
    487#ifdef USE_OCTEON_INTERNAL_ARBITER
    488	/*
    489	 * When OCTEON is a PCI host, most systems will use OCTEON's
    490	 * internal arbiter, so must enable it before any PCI/PCI-X
    491	 * traffic can occur.
    492	 */
    493	{
    494		union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
    495
    496		pci_int_arb_cfg.u64 = 0;
    497		pci_int_arb_cfg.s.en = 1;	/* Internal arbiter enable */
    498		cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
    499	}
    500#endif	/* USE_OCTEON_INTERNAL_ARBITER */
    501
    502	/*
    503	 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
    504	 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
    505	 * 1..7.
    506	 */
    507	cfg16.u32 = 0;
    508	cfg16.s.mltd = 1;	/* Master Latency Timer Disable */
    509	octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
    510
    511	/*
    512	 * Should be written to 0x4ff00. MTTV -> must be zero.
    513	 * FLUSH -> must be 1. MRV -> should be 0xFF.
    514	 */
    515	cfg22.u32 = 0;
    516	/* Master Retry Value [1..255] and 0=infinite */
    517	cfg22.s.mrv = 0xff;
    518	/*
    519	 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
    520	 * N3K operation.
    521	 */
    522	cfg22.s.flush = 1;
    523	octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
    524
    525	/*
    526	 * MOST Indicates the maximum number of outstanding splits (in -1
    527	 * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
    528	 * affected by the MOST selection.  Should generally be written
    529	 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
    530	 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
    531	 */
    532	cfg56.u32 = 0;
    533	cfg56.s.pxcid = 7;	/* RO - PCI-X Capability ID */
    534	cfg56.s.ncp = 0xe8;	/* RO - Next Capability Pointer */
    535	cfg56.s.dpere = 1;	/* Data Parity Error Recovery Enable */
    536	cfg56.s.roe = 1;	/* Relaxed Ordering Enable */
    537	cfg56.s.mmbc = 1;	/* Maximum Memory Byte Count
    538				   [0=512B,1=1024B,2=2048B,3=4096B] */
    539	cfg56.s.most = 3;	/* Maximum outstanding Split transactions [0=1
    540				   .. 7=32] */
    541
    542	octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
    543
    544	/*
    545	 * Affects PCI performance when OCTEON services reads to its
    546	 * BAR1/BAR2. Refer to Section 10.6.1.	The recommended values are
    547	 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
    548	 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
    549	 * these values need to be changed so they won't possibly prefetch off
    550	 * of the end of memory if PCI is DMAing a buffer at the end of
    551	 * memory. Note that these values differ from their reset values.
    552	 */
    553	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
    554	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
    555	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
    556}
    557
    558
    559/*
    560 * Initialize the Octeon PCI controller
    561 */
    562static int __init octeon_pci_setup(void)
    563{
    564	union cvmx_npi_mem_access_subidx mem_access;
    565	int index;
    566
    567	/* Only these chips have PCI */
    568	if (octeon_has_feature(OCTEON_FEATURE_PCIE))
    569		return 0;
    570
    571	if (!octeon_is_pci_host()) {
    572		pr_notice("Not in host mode, PCI Controller not initialized\n");
    573		return 0;
    574	}
    575
    576	/* Point pcibios_map_irq() to the PCI version of it */
    577	octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
    578
    579	/* Only use the big bars on chips that support it */
    580	if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
    581	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
    582	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
    583		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
    584	else
    585		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
    586
    587	/* PCI I/O and PCI MEM values */
    588	set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
    589	ioport_resource.start = 0;
    590	ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
    591
    592	pr_notice("%s Octeon big bar support\n",
    593		  (octeon_dma_bar_type ==
    594		  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
    595
    596	octeon_pci_initialize();
    597
    598	mem_access.u64 = 0;
    599	mem_access.s.esr = 1;	/* Endian-Swap on read. */
    600	mem_access.s.esw = 1;	/* Endian-Swap on write. */
    601	mem_access.s.nsr = 0;	/* No-Snoop on read. */
    602	mem_access.s.nsw = 0;	/* No-Snoop on write. */
    603	mem_access.s.ror = 0;	/* Relax Read on read. */
    604	mem_access.s.row = 0;	/* Relax Order on write. */
    605	mem_access.s.ba = 0;	/* PCI Address bits [63:36]. */
    606	cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
    607
    608	/*
    609	 * Remap the Octeon BAR 2 above all 32 bit devices
    610	 * (0x8000000000ul).  This is done here so it is remapped
    611	 * before the readl()'s below. We don't want BAR2 overlapping
    612	 * with BAR0/BAR1 during these reads.
    613	 */
    614	octeon_npi_write32(CVMX_NPI_PCI_CFG08,
    615			   (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
    616	octeon_npi_write32(CVMX_NPI_PCI_CFG09,
    617			   (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
    618
    619	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
    620		/* Remap the Octeon BAR 0 to 0-2GB */
    621		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
    622		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
    623
    624		/*
    625		 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
    626		 * BAR 1 hole).
    627		 */
    628		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
    629		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
    630
    631		/* BAR1 movable mappings set for identity mapping */
    632		octeon_bar1_pci_phys = 0x80000000ull;
    633		for (index = 0; index < 32; index++) {
    634			union cvmx_pci_bar1_indexx bar1_index;
    635
    636			bar1_index.u32 = 0;
    637			/* Address bits[35:22] sent to L2C */
    638			bar1_index.s.addr_idx =
    639				(octeon_bar1_pci_phys >> 22) + index;
    640			/* Don't put PCI accesses in L2. */
    641			bar1_index.s.ca = 1;
    642			/* Endian Swap Mode */
    643			bar1_index.s.end_swp = 1;
    644			/* Set '1' when the selected address range is valid. */
    645			bar1_index.s.addr_v = 1;
    646			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
    647					   bar1_index.u32);
    648		}
    649
    650		/* Devices go after BAR1 */
    651		octeon_pci_mem_resource.start =
    652			OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
    653			(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
    654		octeon_pci_mem_resource.end =
    655			octeon_pci_mem_resource.start + (1ul << 30);
    656	} else {
    657		/* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
    658		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
    659		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
    660
    661		/* Remap the Octeon BAR 1 to map 0-128MB */
    662		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
    663		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
    664
    665		/* BAR1 movable regions contiguous to cover the swiotlb */
    666		octeon_bar1_pci_phys =
    667			io_tlb_default_mem.start & ~((1ull << 22) - 1);
    668
    669		for (index = 0; index < 32; index++) {
    670			union cvmx_pci_bar1_indexx bar1_index;
    671
    672			bar1_index.u32 = 0;
    673			/* Address bits[35:22] sent to L2C */
    674			bar1_index.s.addr_idx =
    675				(octeon_bar1_pci_phys >> 22) + index;
    676			/* Don't put PCI accesses in L2. */
    677			bar1_index.s.ca = 1;
    678			/* Endian Swap Mode */
    679			bar1_index.s.end_swp = 1;
    680			/* Set '1' when the selected address range is valid. */
    681			bar1_index.s.addr_v = 1;
    682			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
    683					   bar1_index.u32);
    684		}
    685
    686		/* Devices go after BAR0 */
    687		octeon_pci_mem_resource.start =
    688			OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
    689			(4ul << 10);
    690		octeon_pci_mem_resource.end =
    691			octeon_pci_mem_resource.start + (1ul << 30);
    692	}
    693
    694	register_pci_controller(&octeon_pci_controller);
    695
    696	/*
    697	 * Clear any errors that might be pending from before the bus
    698	 * was setup properly.
    699	 */
    700	cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
    701
    702	if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
    703						   -1, NULL, 0)))
    704		pr_err("Registration of co_pci_edac failed!\n");
    705
    706	octeon_pci_dma_init();
    707
    708	return 0;
    709}
    710
    711arch_initcall(octeon_pci_setup);