cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ip27-nmi.c (5579B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include <linux/kernel.h>
      3#include <linux/mmzone.h>
      4#include <linux/nodemask.h>
      5#include <linux/spinlock.h>
      6#include <linux/smp.h>
      7#include <linux/atomic.h>
      8#include <asm/sn/types.h>
      9#include <asm/sn/addrs.h>
     10#include <asm/sn/nmi.h>
     11#include <asm/sn/arch.h>
     12#include <asm/sn/agent.h>
     13
     14#if 0
     15#define NODE_NUM_CPUS(n)	CNODE_NUM_CPUS(n)
     16#else
     17#define NODE_NUM_CPUS(n)	CPUS_PER_NODE
     18#endif
     19
     20#define SEND_NMI(_nasid, _slice)	\
     21	REMOTE_HUB_S((_nasid),  (PI_NMI_A + ((_slice) * PI_NMI_OFFSET)), 1)
     22
     23typedef unsigned long machreg_t;
     24
     25static arch_spinlock_t nmi_lock = __ARCH_SPIN_LOCK_UNLOCKED;
     26
     27/*
     28 * Let's see what else we need to do here. Set up sp, gp?
     29 */
     30void nmi_dump(void)
     31{
     32	void cont_nmi_dump(void);
     33
     34	cont_nmi_dump();
     35}
     36
     37void install_cpu_nmi_handler(int slice)
     38{
     39	nmi_t *nmi_addr;
     40
     41	nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice);
     42	if (nmi_addr->call_addr)
     43		return;
     44	nmi_addr->magic = NMI_MAGIC;
     45	nmi_addr->call_addr = (void *)nmi_dump;
     46	nmi_addr->call_addr_c =
     47		(void *)(~((unsigned long)(nmi_addr->call_addr)));
     48	nmi_addr->call_parm = 0;
     49}
     50
     51/*
     52 * Copy the cpu registers which have been saved in the IP27prom format
     53 * into the eframe format for the node under consideration.
     54 */
     55
     56void nmi_cpu_eframe_save(nasid_t nasid, int slice)
     57{
     58	struct reg_struct *nr;
     59	int		i;
     60
     61	/* Get the pointer to the current cpu's register set. */
     62	nr = (struct reg_struct *)
     63		(TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) +
     64		slice * IP27_NMI_KREGS_CPU_SIZE);
     65
     66	pr_emerg("NMI nasid %d: slice %d\n", nasid, slice);
     67
     68	/*
     69	 * Saved main processor registers
     70	 */
     71	for (i = 0; i < 32; ) {
     72		if ((i % 4) == 0)
     73			pr_emerg("$%2d   :", i);
     74		pr_cont(" %016lx", nr->gpr[i]);
     75
     76		i++;
     77		if ((i % 4) == 0)
     78			pr_cont("\n");
     79	}
     80
     81	pr_emerg("Hi    : (value lost)\n");
     82	pr_emerg("Lo    : (value lost)\n");
     83
     84	/*
     85	 * Saved cp0 registers
     86	 */
     87	pr_emerg("epc   : %016lx %pS\n", nr->epc, (void *)nr->epc);
     88	pr_emerg("%s\n", print_tainted());
     89	pr_emerg("ErrEPC: %016lx %pS\n", nr->error_epc, (void *)nr->error_epc);
     90	pr_emerg("ra    : %016lx %pS\n", nr->gpr[31], (void *)nr->gpr[31]);
     91	pr_emerg("Status: %08lx	      ", nr->sr);
     92
     93	if (nr->sr & ST0_KX)
     94		pr_cont("KX ");
     95	if (nr->sr & ST0_SX)
     96		pr_cont("SX ");
     97	if (nr->sr & ST0_UX)
     98		pr_cont("UX ");
     99
    100	switch (nr->sr & ST0_KSU) {
    101	case KSU_USER:
    102		pr_cont("USER ");
    103		break;
    104	case KSU_SUPERVISOR:
    105		pr_cont("SUPERVISOR ");
    106		break;
    107	case KSU_KERNEL:
    108		pr_cont("KERNEL ");
    109		break;
    110	default:
    111		pr_cont("BAD_MODE ");
    112		break;
    113	}
    114
    115	if (nr->sr & ST0_ERL)
    116		pr_cont("ERL ");
    117	if (nr->sr & ST0_EXL)
    118		pr_cont("EXL ");
    119	if (nr->sr & ST0_IE)
    120		pr_cont("IE ");
    121	pr_cont("\n");
    122
    123	pr_emerg("Cause : %08lx\n", nr->cause);
    124	pr_emerg("PrId  : %08x\n", read_c0_prid());
    125	pr_emerg("BadVA : %016lx\n", nr->badva);
    126	pr_emerg("CErr  : %016lx\n", nr->cache_err);
    127	pr_emerg("NMI_SR: %016lx\n", nr->nmi_sr);
    128
    129	pr_emerg("\n");
    130}
    131
    132void nmi_dump_hub_irq(nasid_t nasid, int slice)
    133{
    134	u64 mask0, mask1, pend0, pend1;
    135
    136	if (slice == 0) {				/* Slice A */
    137		mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_A);
    138		mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_A);
    139	} else {					/* Slice B */
    140		mask0 = REMOTE_HUB_L(nasid, PI_INT_MASK0_B);
    141		mask1 = REMOTE_HUB_L(nasid, PI_INT_MASK1_B);
    142	}
    143
    144	pend0 = REMOTE_HUB_L(nasid, PI_INT_PEND0);
    145	pend1 = REMOTE_HUB_L(nasid, PI_INT_PEND1);
    146
    147	pr_emerg("PI_INT_MASK0: %16llx PI_INT_MASK1: %16llx\n", mask0, mask1);
    148	pr_emerg("PI_INT_PEND0: %16llx PI_INT_PEND1: %16llx\n", pend0, pend1);
    149	pr_emerg("\n\n");
    150}
    151
    152/*
    153 * Copy the cpu registers which have been saved in the IP27prom format
    154 * into the eframe format for the node under consideration.
    155 */
    156void nmi_node_eframe_save(nasid_t nasid)
    157{
    158	int slice;
    159
    160	if (nasid == INVALID_NASID)
    161		return;
    162
    163	/* Save the registers into eframe for each cpu */
    164	for (slice = 0; slice < NODE_NUM_CPUS(slice); slice++) {
    165		nmi_cpu_eframe_save(nasid, slice);
    166		nmi_dump_hub_irq(nasid, slice);
    167	}
    168}
    169
    170/*
    171 * Save the nmi cpu registers for all cpus in the system.
    172 */
    173void
    174nmi_eframes_save(void)
    175{
    176	nasid_t nasid;
    177
    178	for_each_online_node(nasid)
    179		nmi_node_eframe_save(nasid);
    180}
    181
    182void
    183cont_nmi_dump(void)
    184{
    185#ifndef REAL_NMI_SIGNAL
    186	static atomic_t nmied_cpus = ATOMIC_INIT(0);
    187
    188	atomic_inc(&nmied_cpus);
    189#endif
    190	/*
    191	 * Only allow 1 cpu to proceed
    192	 */
    193	arch_spin_lock(&nmi_lock);
    194
    195#ifdef REAL_NMI_SIGNAL
    196	/*
    197	 * Wait up to 15 seconds for the other cpus to respond to the NMI.
    198	 * If a cpu has not responded after 10 sec, send it 1 additional NMI.
    199	 * This is for 2 reasons:
    200	 *	- sometimes a MMSC fail to NMI all cpus.
    201	 *	- on 512p SN0 system, the MMSC will only send NMIs to
    202	 *	  half the cpus. Unfortunately, we don't know which cpus may be
    203	 *	  NMIed - it depends on how the site chooses to configure.
    204	 *
    205	 * Note: it has been measure that it takes the MMSC up to 2.3 secs to
    206	 * send NMIs to all cpus on a 256p system.
    207	 */
    208	for (i=0; i < 1500; i++) {
    209		for_each_online_node(node)
    210			if (NODEPDA(node)->dump_count == 0)
    211				break;
    212		if (node == MAX_NUMNODES)
    213			break;
    214		if (i == 1000) {
    215			for_each_online_node(node)
    216				if (NODEPDA(node)->dump_count == 0) {
    217					cpu = cpumask_first(cpumask_of_node(node));
    218					for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) {
    219						CPUMASK_SETB(nmied_cpus, cpu);
    220						/*
    221						 * cputonasid, cputoslice
    222						 * needs kernel cpuid
    223						 */
    224						SEND_NMI((cputonasid(cpu)), (cputoslice(cpu)));
    225					}
    226				}
    227
    228		}
    229		udelay(10000);
    230	}
    231#else
    232	while (atomic_read(&nmied_cpus) != num_online_cpus());
    233#endif
    234
    235	/*
    236	 * Save the nmi cpu registers for all cpu in the eframe format.
    237	 */
    238	nmi_eframes_save();
    239	LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET);
    240}