cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

time.c (4459B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include <linux/types.h>
      3#include <linux/i8253.h>
      4#include <linux/interrupt.h>
      5#include <linux/irq.h>
      6#include <linux/smp.h>
      7#include <linux/time.h>
      8#include <linux/clockchips.h>
      9
     10#include <asm/sni.h>
     11#include <asm/time.h>
     12
     13#define SNI_CLOCK_TICK_RATE	3686400
     14#define SNI_COUNTER2_DIV	64
     15#define SNI_COUNTER0_DIV	((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
     16
     17static int a20r_set_periodic(struct clock_event_device *evt)
     18{
     19	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
     20	wmb();
     21	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV & 0xff;
     22	wmb();
     23	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
     24	wmb();
     25
     26	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
     27	wmb();
     28	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV & 0xff;
     29	wmb();
     30	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
     31	wmb();
     32	return 0;
     33}
     34
     35static struct clock_event_device a20r_clockevent_device = {
     36	.name			= "a20r-timer",
     37	.features		= CLOCK_EVT_FEAT_PERIODIC,
     38
     39	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
     40
     41	.rating			= 300,
     42	.irq			= SNI_A20R_IRQ_TIMER,
     43	.set_state_periodic	= a20r_set_periodic,
     44};
     45
     46static irqreturn_t a20r_interrupt(int irq, void *dev_id)
     47{
     48	struct clock_event_device *cd = dev_id;
     49
     50	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
     51	wmb();
     52
     53	cd->event_handler(cd);
     54
     55	return IRQ_HANDLED;
     56}
     57
     58/*
     59 * a20r platform uses 2 counters to divide the input frequency.
     60 * Counter 2 output is connected to Counter 0 & 1 input.
     61 */
     62static void __init sni_a20r_timer_setup(void)
     63{
     64	struct clock_event_device *cd = &a20r_clockevent_device;
     65	unsigned int cpu = smp_processor_id();
     66
     67	cd->cpumask		= cpumask_of(cpu);
     68	clockevents_register_device(cd);
     69	if (request_irq(SNI_A20R_IRQ_TIMER, a20r_interrupt,
     70			IRQF_PERCPU | IRQF_TIMER, "a20r-timer", cd))
     71		pr_err("Failed to register a20r-timer interrupt\n");
     72}
     73
     74#define SNI_8254_TICK_RATE	  1193182UL
     75
     76#define SNI_8254_TCSAMP_COUNTER	  ((SNI_8254_TICK_RATE / HZ) + 255)
     77
     78static __init unsigned long dosample(void)
     79{
     80	u32 ct0, ct1;
     81	volatile u8 msb;
     82
     83	/* Start the counter. */
     84	outb_p(0x34, 0x43);
     85	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
     86	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
     87
     88	/* Get initial counter invariant */
     89	ct0 = read_c0_count();
     90
     91	/* Latch and spin until top byte of counter0 is zero */
     92	do {
     93		outb(0x00, 0x43);
     94		(void) inb(0x40);
     95		msb = inb(0x40);
     96		ct1 = read_c0_count();
     97	} while (msb);
     98
     99	/* Stop the counter. */
    100	outb(0x38, 0x43);
    101	/*
    102	 * Return the difference, this is how far the r4k counter increments
    103	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
    104	 * clock (= 1000000 / HZ / 2).
    105	 */
    106	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
    107	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
    108}
    109
    110/*
    111 * Here we need to calibrate the cycle counter to at least be close.
    112 */
    113void __init plat_time_init(void)
    114{
    115	unsigned long r4k_ticks[3];
    116	unsigned long r4k_tick;
    117
    118	/*
    119	 * Figure out the r4k offset, the algorithm is very simple and works in
    120	 * _all_ cases as long as the 8254 counter register itself works ok (as
    121	 * an interrupt driving timer it does not because of bug, this is why
    122	 * we are using the onchip r4k counter/compare register to serve this
    123	 * purpose, but for r4k_offset calculation it will work ok for us).
    124	 * There are other very complicated ways of performing this calculation
    125	 * but this one works just fine so I am not going to futz around. ;-)
    126	 */
    127	printk(KERN_INFO "Calibrating system timer... ");
    128	dosample();	/* Prime cache. */
    129	dosample();	/* Prime cache. */
    130	/* Zero is NOT an option. */
    131	do {
    132		r4k_ticks[0] = dosample();
    133	} while (!r4k_ticks[0]);
    134	do {
    135		r4k_ticks[1] = dosample();
    136	} while (!r4k_ticks[1]);
    137
    138	if (r4k_ticks[0] != r4k_ticks[1]) {
    139		printk("warning: timer counts differ, retrying... ");
    140		r4k_ticks[2] = dosample();
    141		if (r4k_ticks[2] == r4k_ticks[0]
    142		    || r4k_ticks[2] == r4k_ticks[1])
    143			r4k_tick = r4k_ticks[2];
    144		else {
    145			printk("disagreement, using average... ");
    146			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
    147				   + r4k_ticks[2]) / 3;
    148		}
    149	} else
    150		r4k_tick = r4k_ticks[0];
    151
    152	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
    153		(int) (r4k_tick / (500000 / HZ)),
    154		(int) (r4k_tick % (500000 / HZ)));
    155
    156	mips_hpt_frequency = r4k_tick * HZ;
    157
    158	switch (sni_brd_type) {
    159	case SNI_BRD_10:
    160	case SNI_BRD_10NEW:
    161	case SNI_BRD_TOWER_OASIC:
    162	case SNI_BRD_MINITOWER:
    163		sni_a20r_timer_setup();
    164		break;
    165	}
    166	setup_pit_timer();
    167}