pgtable.h (7300B)
1/* 2 * Copyright (C) 2011 Tobias Klauser <tklauser@distanz.ch> 3 * Copyright (C) 2009 Wind River Systems Inc 4 * 5 * Based on asm/pgtable-32.h from mips which is: 6 * 7 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle 8 * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc. 9 * 10 * This file is subject to the terms and conditions of the GNU General Public 11 * License. See the file "COPYING" in the main directory of this archive 12 * for more details. 13 */ 14 15#ifndef _ASM_NIOS2_PGTABLE_H 16#define _ASM_NIOS2_PGTABLE_H 17 18#include <linux/io.h> 19#include <linux/bug.h> 20#include <asm/page.h> 21#include <asm/cacheflush.h> 22#include <asm/tlbflush.h> 23 24#include <asm/pgtable-bits.h> 25#include <asm-generic/pgtable-nopmd.h> 26 27#define VMALLOC_START CONFIG_NIOS2_KERNEL_MMU_REGION_BASE 28#define VMALLOC_END (CONFIG_NIOS2_KERNEL_REGION_BASE - 1) 29 30struct mm_struct; 31 32/* Helper macro */ 33#define MKP(x, w, r) __pgprot(_PAGE_PRESENT | _PAGE_CACHED | \ 34 ((x) ? _PAGE_EXEC : 0) | \ 35 ((r) ? _PAGE_READ : 0) | \ 36 ((w) ? _PAGE_WRITE : 0)) 37/* 38 * These are the macros that generic kernel code needs 39 * (to populate protection_map[]) 40 */ 41 42/* Remove W bit on private pages for COW support */ 43#define __P000 MKP(0, 0, 0) 44#define __P001 MKP(0, 0, 1) 45#define __P010 MKP(0, 0, 0) /* COW */ 46#define __P011 MKP(0, 0, 1) /* COW */ 47#define __P100 MKP(1, 0, 0) 48#define __P101 MKP(1, 0, 1) 49#define __P110 MKP(1, 0, 0) /* COW */ 50#define __P111 MKP(1, 0, 1) /* COW */ 51 52/* Shared pages can have exact HW mapping */ 53#define __S000 MKP(0, 0, 0) 54#define __S001 MKP(0, 0, 1) 55#define __S010 MKP(0, 1, 0) 56#define __S011 MKP(0, 1, 1) 57#define __S100 MKP(1, 0, 0) 58#define __S101 MKP(1, 0, 1) 59#define __S110 MKP(1, 1, 0) 60#define __S111 MKP(1, 1, 1) 61 62/* Used all over the kernel */ 63#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_CACHED | _PAGE_READ | \ 64 _PAGE_WRITE | _PAGE_EXEC | _PAGE_GLOBAL) 65 66#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_CACHED | _PAGE_READ | \ 67 _PAGE_WRITE | _PAGE_ACCESSED) 68 69#define PAGE_COPY MKP(0, 0, 1) 70 71#define PGD_ORDER 0 72#define PTE_ORDER 0 73 74#define PTRS_PER_PGD ((PAGE_SIZE << PGD_ORDER) / sizeof(pgd_t)) 75#define PTRS_PER_PTE ((PAGE_SIZE << PTE_ORDER) / sizeof(pte_t)) 76 77#define USER_PTRS_PER_PGD \ 78 (CONFIG_NIOS2_KERNEL_MMU_REGION_BASE / PGDIR_SIZE) 79 80#define PGDIR_SHIFT 22 81#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 82#define PGDIR_MASK (~(PGDIR_SIZE-1)) 83 84/* 85 * ZERO_PAGE is a global shared page that is always zero: used 86 * for zero-mapped memory areas etc.. 87 */ 88extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 89#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 90 91extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 92extern pte_t invalid_pte_table[PAGE_SIZE/sizeof(pte_t)]; 93 94/* 95 * (pmds are folded into puds so this doesn't get actually called, 96 * but the define is needed for a generic inline function.) 97 */ 98static inline void set_pmd(pmd_t *pmdptr, pmd_t pmdval) 99{ 100 *pmdptr = pmdval; 101} 102 103static inline int pte_write(pte_t pte) \ 104 { return pte_val(pte) & _PAGE_WRITE; } 105static inline int pte_dirty(pte_t pte) \ 106 { return pte_val(pte) & _PAGE_DIRTY; } 107static inline int pte_young(pte_t pte) \ 108 { return pte_val(pte) & _PAGE_ACCESSED; } 109 110#define pgprot_noncached pgprot_noncached 111 112static inline pgprot_t pgprot_noncached(pgprot_t _prot) 113{ 114 unsigned long prot = pgprot_val(_prot); 115 116 prot &= ~_PAGE_CACHED; 117 118 return __pgprot(prot); 119} 120 121static inline int pte_none(pte_t pte) 122{ 123 return !(pte_val(pte) & ~(_PAGE_GLOBAL|0xf)); 124} 125 126static inline int pte_present(pte_t pte) \ 127 { return pte_val(pte) & _PAGE_PRESENT; } 128 129/* 130 * The following only work if pte_present() is true. 131 * Undefined behaviour if not.. 132 */ 133static inline pte_t pte_wrprotect(pte_t pte) 134{ 135 pte_val(pte) &= ~_PAGE_WRITE; 136 return pte; 137} 138 139static inline pte_t pte_mkclean(pte_t pte) 140{ 141 pte_val(pte) &= ~_PAGE_DIRTY; 142 return pte; 143} 144 145static inline pte_t pte_mkold(pte_t pte) 146{ 147 pte_val(pte) &= ~_PAGE_ACCESSED; 148 return pte; 149} 150 151static inline pte_t pte_mkwrite(pte_t pte) 152{ 153 pte_val(pte) |= _PAGE_WRITE; 154 return pte; 155} 156 157static inline pte_t pte_mkdirty(pte_t pte) 158{ 159 pte_val(pte) |= _PAGE_DIRTY; 160 return pte; 161} 162 163static inline pte_t pte_mkyoung(pte_t pte) 164{ 165 pte_val(pte) |= _PAGE_ACCESSED; 166 return pte; 167} 168 169static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 170{ 171 const unsigned long mask = _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC; 172 173 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 174 return pte; 175} 176 177static inline int pmd_present(pmd_t pmd) 178{ 179 return (pmd_val(pmd) != (unsigned long) invalid_pte_table) 180 && (pmd_val(pmd) != 0UL); 181} 182 183static inline void pmd_clear(pmd_t *pmdp) 184{ 185 pmd_val(*pmdp) = (unsigned long) invalid_pte_table; 186} 187 188#define pte_pfn(pte) (pte_val(pte) & 0xfffff) 189#define pfn_pte(pfn, prot) (__pte(pfn | pgprot_val(prot))) 190#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 191 192/* 193 * Store a linux PTE into the linux page table. 194 */ 195static inline void set_pte(pte_t *ptep, pte_t pteval) 196{ 197 *ptep = pteval; 198} 199 200static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 201 pte_t *ptep, pte_t pteval) 202{ 203 unsigned long paddr = (unsigned long)page_to_virt(pte_page(pteval)); 204 205 flush_dcache_range(paddr, paddr + PAGE_SIZE); 206 set_pte(ptep, pteval); 207} 208 209static inline int pmd_none(pmd_t pmd) 210{ 211 return (pmd_val(pmd) == 212 (unsigned long) invalid_pte_table) || (pmd_val(pmd) == 0UL); 213} 214 215#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) 216 217static inline void pte_clear(struct mm_struct *mm, 218 unsigned long addr, pte_t *ptep) 219{ 220 pte_t null; 221 222 pte_val(null) = (addr >> PAGE_SHIFT) & 0xf; 223 224 set_pte_at(mm, addr, ptep, null); 225} 226 227/* 228 * Conversion functions: convert a page and protection to a page entry, 229 * and a page entry and page directory to the page they refer to. 230 */ 231#define mk_pte(page, prot) (pfn_pte(page_to_pfn(page), prot)) 232 233/* 234 * Conversion functions: convert a page and protection to a page entry, 235 * and a page entry and page directory to the page they refer to. 236 */ 237#define pmd_phys(pmd) virt_to_phys((void *)pmd_val(pmd)) 238#define pmd_pfn(pmd) (pmd_phys(pmd) >> PAGE_SHIFT) 239#define pmd_page(pmd) (pfn_to_page(pmd_phys(pmd) >> PAGE_SHIFT)) 240 241static inline unsigned long pmd_page_vaddr(pmd_t pmd) 242{ 243 return pmd_val(pmd); 244} 245 246#define pte_ERROR(e) \ 247 pr_err("%s:%d: bad pte %08lx.\n", \ 248 __FILE__, __LINE__, pte_val(e)) 249#define pgd_ERROR(e) \ 250 pr_err("%s:%d: bad pgd %08lx.\n", \ 251 __FILE__, __LINE__, pgd_val(e)) 252 253/* 254 * Encode and decode a swap entry (must be !pte_none(pte) && !pte_present(pte): 255 * 256 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 ... 1 0 257 * 0 0 0 0 type. 0 0 0 0 0 0 offset......... 258 * 259 * This gives us up to 2**2 = 4 swap files and 2**20 * 4K = 4G per swap file. 260 * 261 * Note that the offset field is always non-zero, thus !pte_none(pte) is always 262 * true. 263 */ 264#define __swp_type(swp) (((swp).val >> 26) & 0x3) 265#define __swp_offset(swp) ((swp).val & 0xfffff) 266#define __swp_entry(type, off) ((swp_entry_t) { (((type) & 0x3) << 26) \ 267 | ((off) & 0xfffff) }) 268#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 269#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 270 271#define kern_addr_valid(addr) (1) 272 273extern void __init paging_init(void); 274extern void __init mmu_init(void); 275 276extern void update_mmu_cache(struct vm_area_struct *vma, 277 unsigned long address, pte_t *pte); 278 279#endif /* _ASM_NIOS2_PGTABLE_H */