pgtable.h (12800B)
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * OpenRISC Linux 4 * 5 * Linux architectural port borrowing liberally from similar works of 6 * others. All original copyrights apply as per the original source 7 * declaration. 8 * 9 * OpenRISC implementation: 10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com> 11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se> 12 * et al. 13 */ 14 15/* or1k pgtable.h - macros and functions to manipulate page tables 16 * 17 * Based on: 18 * include/asm-cris/pgtable.h 19 */ 20 21#ifndef __ASM_OPENRISC_PGTABLE_H 22#define __ASM_OPENRISC_PGTABLE_H 23 24#include <asm-generic/pgtable-nopmd.h> 25 26#ifndef __ASSEMBLY__ 27#include <asm/mmu.h> 28#include <asm/fixmap.h> 29 30/* 31 * The Linux memory management assumes a three-level page table setup. On 32 * or1k, we use that, but "fold" the mid level into the top-level page 33 * table. Since the MMU TLB is software loaded through an interrupt, it 34 * supports any page table structure, so we could have used a three-level 35 * setup, but for the amounts of memory we normally use, a two-level is 36 * probably more efficient. 37 * 38 * This file contains the functions and defines necessary to modify and use 39 * the or1k page table tree. 40 */ 41 42extern void paging_init(void); 43 44/* Certain architectures need to do special things when pte's 45 * within a page table are directly modified. Thus, the following 46 * hook is made available. 47 */ 48#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) 49#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval) 50/* 51 * (pmds are folded into pgds so this doesn't get actually called, 52 * but the define is needed for a generic inline function.) 53 */ 54#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) 55 56#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2)) 57#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 58#define PGDIR_MASK (~(PGDIR_SIZE-1)) 59 60/* 61 * entries per page directory level: we use a two-level, so 62 * we don't really have any PMD directory physically. 63 * pointers are 4 bytes so we can use the page size and 64 * divide it by 4 (shift by 2). 65 */ 66#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2)) 67 68#define PTRS_PER_PGD (1UL << (32-PGDIR_SHIFT)) 69 70/* calculate how many PGD entries a user-level program can use 71 * the first mappable virtual address is 0 72 * (TASK_SIZE is the maximum virtual address space) 73 */ 74 75#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 76 77/* 78 * Kernels own virtual memory area. 79 */ 80 81/* 82 * The size and location of the vmalloc area are chosen so that modules 83 * placed in this area aren't more than a 28-bit signed offset from any 84 * kernel functions that they may need. This greatly simplifies handling 85 * of the relocations for l.j and l.jal instructions as we don't need to 86 * introduce any trampolines for reaching "distant" code. 87 * 88 * 64 MB of vmalloc area is comparable to what's available on other arches. 89 */ 90 91#define VMALLOC_START (PAGE_OFFSET-0x04000000UL) 92#define VMALLOC_END (PAGE_OFFSET) 93#define VMALLOC_VMADDR(x) ((unsigned long)(x)) 94 95/* Define some higher level generic page attributes. 96 * 97 * If you change _PAGE_CI definition be sure to change it in 98 * io.h for ioremap() too. 99 */ 100 101/* 102 * An OR32 PTE looks like this: 103 * 104 * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 | 105 * Phys pg.num L PP Index D A WOM WBC CI CC 106 * 107 * L : link 108 * PPI: Page protection index 109 * D : Dirty 110 * A : Accessed 111 * WOM: Weakly ordered memory 112 * WBC: Write-back cache 113 * CI : Cache inhibit 114 * CC : Cache coherent 115 * 116 * The protection bits below should correspond to the layout of the actual 117 * PTE as per above 118 */ 119 120#define _PAGE_CC 0x001 /* software: pte contains a translation */ 121#define _PAGE_CI 0x002 /* cache inhibit */ 122#define _PAGE_WBC 0x004 /* write back cache */ 123#define _PAGE_WOM 0x008 /* weakly ordered memory */ 124 125#define _PAGE_A 0x010 /* accessed */ 126#define _PAGE_D 0x020 /* dirty */ 127#define _PAGE_URE 0x040 /* user read enable */ 128#define _PAGE_UWE 0x080 /* user write enable */ 129 130#define _PAGE_SRE 0x100 /* superuser read enable */ 131#define _PAGE_SWE 0x200 /* superuser write enable */ 132#define _PAGE_EXEC 0x400 /* software: page is executable */ 133#define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */ 134 135/* 0x001 is cache coherency bit, which should always be set to 136 * 1 - for SMP (when we support it) 137 * 0 - otherwise 138 * 139 * we just reuse this bit in software for _PAGE_PRESENT and 140 * force it to 0 when loading it into TLB. 141 */ 142#define _PAGE_PRESENT _PAGE_CC 143#define _PAGE_USER _PAGE_URE 144#define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE) 145#define _PAGE_DIRTY _PAGE_D 146#define _PAGE_ACCESSED _PAGE_A 147#define _PAGE_NO_CACHE _PAGE_CI 148#define _PAGE_SHARED _PAGE_U_SHARED 149#define _PAGE_READ (_PAGE_URE | _PAGE_SRE) 150 151#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 152#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 153#define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED) 154#define _KERNPG_TABLE \ 155 (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY) 156 157#define PAGE_NONE __pgprot(_PAGE_ALL) 158#define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE) 159#define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC) 160#define PAGE_SHARED \ 161 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \ 162 | _PAGE_SHARED) 163#define PAGE_SHARED_X \ 164 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \ 165 | _PAGE_SHARED | _PAGE_EXEC) 166#define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE) 167#define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC) 168 169#define PAGE_KERNEL \ 170 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \ 171 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC) 172#define PAGE_KERNEL_RO \ 173 __pgprot(_PAGE_ALL | _PAGE_SRE \ 174 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC) 175#define PAGE_KERNEL_NOCACHE \ 176 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \ 177 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI) 178 179#define __P000 PAGE_NONE 180#define __P001 PAGE_READONLY_X 181#define __P010 PAGE_COPY 182#define __P011 PAGE_COPY_X 183#define __P100 PAGE_READONLY 184#define __P101 PAGE_READONLY_X 185#define __P110 PAGE_COPY 186#define __P111 PAGE_COPY_X 187 188#define __S000 PAGE_NONE 189#define __S001 PAGE_READONLY_X 190#define __S010 PAGE_SHARED 191#define __S011 PAGE_SHARED_X 192#define __S100 PAGE_READONLY 193#define __S101 PAGE_READONLY_X 194#define __S110 PAGE_SHARED 195#define __S111 PAGE_SHARED_X 196 197/* zero page used for uninitialized stuff */ 198extern unsigned long empty_zero_page[2048]; 199#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 200 201/* number of bits that fit into a memory pointer */ 202#define BITS_PER_PTR (8*sizeof(unsigned long)) 203 204/* to align the pointer to a pointer address */ 205#define PTR_MASK (~(sizeof(void *)-1)) 206 207/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ 208/* 64-bit machines, beware! SRB. */ 209#define SIZEOF_PTR_LOG2 2 210 211/* to find an entry in a page-table */ 212#define PAGE_PTR(address) \ 213((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) 214 215/* to set the page-dir */ 216#define SET_PAGE_DIR(tsk, pgdir) 217 218#define pte_none(x) (!pte_val(x)) 219#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 220#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0) 221 222#define pmd_none(x) (!pmd_val(x)) 223#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE) 224#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 225#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) 226 227/* 228 * The following only work if pte_present() is true. 229 * Undefined behaviour if not.. 230 */ 231 232static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } 233static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 234static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 235static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 236static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 237 238static inline pte_t pte_wrprotect(pte_t pte) 239{ 240 pte_val(pte) &= ~(_PAGE_WRITE); 241 return pte; 242} 243 244static inline pte_t pte_rdprotect(pte_t pte) 245{ 246 pte_val(pte) &= ~(_PAGE_READ); 247 return pte; 248} 249 250static inline pte_t pte_exprotect(pte_t pte) 251{ 252 pte_val(pte) &= ~(_PAGE_EXEC); 253 return pte; 254} 255 256static inline pte_t pte_mkclean(pte_t pte) 257{ 258 pte_val(pte) &= ~(_PAGE_DIRTY); 259 return pte; 260} 261 262static inline pte_t pte_mkold(pte_t pte) 263{ 264 pte_val(pte) &= ~(_PAGE_ACCESSED); 265 return pte; 266} 267 268static inline pte_t pte_mkwrite(pte_t pte) 269{ 270 pte_val(pte) |= _PAGE_WRITE; 271 return pte; 272} 273 274static inline pte_t pte_mkread(pte_t pte) 275{ 276 pte_val(pte) |= _PAGE_READ; 277 return pte; 278} 279 280static inline pte_t pte_mkexec(pte_t pte) 281{ 282 pte_val(pte) |= _PAGE_EXEC; 283 return pte; 284} 285 286static inline pte_t pte_mkdirty(pte_t pte) 287{ 288 pte_val(pte) |= _PAGE_DIRTY; 289 return pte; 290} 291 292static inline pte_t pte_mkyoung(pte_t pte) 293{ 294 pte_val(pte) |= _PAGE_ACCESSED; 295 return pte; 296} 297 298/* 299 * Conversion functions: convert a page and protection to a page entry, 300 * and a page entry and page directory to the page they refer to. 301 */ 302 303/* What actually goes as arguments to the various functions is less than 304 * obvious, but a rule of thumb is that struct page's goes as struct page *, 305 * really physical DRAM addresses are unsigned long's, and DRAM "virtual" 306 * addresses (the 0xc0xxxxxx's) goes as void *'s. 307 */ 308 309static inline pte_t __mk_pte(void *page, pgprot_t pgprot) 310{ 311 pte_t pte; 312 /* the PTE needs a physical address */ 313 pte_val(pte) = __pa(page) | pgprot_val(pgprot); 314 return pte; 315} 316 317#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot)) 318 319#define mk_pte_phys(physpage, pgprot) \ 320({ \ 321 pte_t __pte; \ 322 \ 323 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \ 324 __pte; \ 325}) 326 327static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 328{ 329 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 330 return pte; 331} 332 333 334/* 335 * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval 336 * __pte_page(pte_val) refers to the "virtual" DRAM interval 337 * pte_pagenr refers to the page-number counted starting from the virtual 338 * DRAM start 339 */ 340 341static inline unsigned long __pte_page(pte_t pte) 342{ 343 /* the PTE contains a physical address */ 344 return (unsigned long)__va(pte_val(pte) & PAGE_MASK); 345} 346 347#define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT) 348 349/* permanent address of a page */ 350 351#define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT)) 352#define pte_page(pte) (mem_map+pte_pagenr(pte)) 353 354/* 355 * only the pte's themselves need to point to physical DRAM (see above) 356 * the pagetable links are purely handled within the kernel SW and thus 357 * don't need the __pa and __va transformations. 358 */ 359static inline void pmd_set(pmd_t *pmdp, pte_t *ptep) 360{ 361 pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep; 362} 363 364#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) 365#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 366 367static inline unsigned long pmd_page_vaddr(pmd_t pmd) 368{ 369 return ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)); 370} 371 372#define __pmd_offset(address) \ 373 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 374 375#define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT) 376#define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot)) 377 378#define pte_ERROR(e) \ 379 printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \ 380 __FILE__, __LINE__, &(e), pte_val(e)) 381#define pgd_ERROR(e) \ 382 printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \ 383 __FILE__, __LINE__, &(e), pgd_val(e)) 384 385extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */ 386 387struct vm_area_struct; 388 389static inline void update_tlb(struct vm_area_struct *vma, 390 unsigned long address, pte_t *pte) 391{ 392} 393 394extern void update_cache(struct vm_area_struct *vma, 395 unsigned long address, pte_t *pte); 396 397static inline void update_mmu_cache(struct vm_area_struct *vma, 398 unsigned long address, pte_t *pte) 399{ 400 update_tlb(vma, address, pte); 401 update_cache(vma, address, pte); 402} 403 404/* __PHX__ FIXME, SWAP, this probably doesn't work */ 405 406/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */ 407/* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */ 408 409#define __swp_type(x) (((x).val >> 5) & 0x7f) 410#define __swp_offset(x) ((x).val >> 12) 411#define __swp_entry(type, offset) \ 412 ((swp_entry_t) { ((type) << 5) | ((offset) << 12) }) 413#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 414#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 415 416#define kern_addr_valid(addr) (1) 417 418typedef pte_t *pte_addr_t; 419 420#endif /* __ASSEMBLY__ */ 421#endif /* __ASM_OPENRISC_PGTABLE_H */