cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

process.c (7590B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * OpenRISC process.c
      4 *
      5 * Linux architectural port borrowing liberally from similar works of
      6 * others.  All original copyrights apply as per the original source
      7 * declaration.
      8 *
      9 * Modifications for the OpenRISC architecture:
     10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
     11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
     12 *
     13 * This file handles the architecture-dependent parts of process handling...
     14 */
     15
     16#define __KERNEL_SYSCALLS__
     17#include <linux/errno.h>
     18#include <linux/sched.h>
     19#include <linux/sched/debug.h>
     20#include <linux/sched/task.h>
     21#include <linux/sched/task_stack.h>
     22#include <linux/kernel.h>
     23#include <linux/export.h>
     24#include <linux/mm.h>
     25#include <linux/stddef.h>
     26#include <linux/unistd.h>
     27#include <linux/ptrace.h>
     28#include <linux/slab.h>
     29#include <linux/elfcore.h>
     30#include <linux/interrupt.h>
     31#include <linux/delay.h>
     32#include <linux/init_task.h>
     33#include <linux/mqueue.h>
     34#include <linux/fs.h>
     35#include <linux/reboot.h>
     36
     37#include <linux/uaccess.h>
     38#include <asm/io.h>
     39#include <asm/processor.h>
     40#include <asm/spr_defs.h>
     41
     42#include <linux/smp.h>
     43
     44/*
     45 * Pointer to Current thread info structure.
     46 *
     47 * Used at user space -> kernel transitions.
     48 */
     49struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
     50
     51void machine_restart(char *cmd)
     52{
     53	do_kernel_restart(cmd);
     54
     55	__asm__("l.nop 13");
     56
     57	/* Give a grace period for failure to restart of 1s */
     58	mdelay(1000);
     59
     60	/* Whoops - the platform was unable to reboot. Tell the user! */
     61	pr_emerg("Reboot failed -- System halted\n");
     62	while (1);
     63}
     64
     65/*
     66 * This is used if pm_power_off has not been set by a power management
     67 * driver, in this case we can assume we are on a simulator.  On
     68 * OpenRISC simulators l.nop 1 will trigger the simulator exit.
     69 */
     70static void default_power_off(void)
     71{
     72	__asm__("l.nop 1");
     73}
     74
     75/*
     76 * Similar to machine_power_off, but don't shut off power.  Add code
     77 * here to freeze the system for e.g. post-mortem debug purpose when
     78 * possible.  This halt has nothing to do with the idle halt.
     79 */
     80void machine_halt(void)
     81{
     82	printk(KERN_INFO "*** MACHINE HALT ***\n");
     83	__asm__("l.nop 1");
     84}
     85
     86/* If or when software power-off is implemented, add code here.  */
     87void machine_power_off(void)
     88{
     89	printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
     90	if (pm_power_off != NULL)
     91		pm_power_off();
     92	else
     93		default_power_off();
     94}
     95
     96/*
     97 * Send the doze signal to the cpu if available.
     98 * Make sure, that all interrupts are enabled
     99 */
    100void arch_cpu_idle(void)
    101{
    102	raw_local_irq_enable();
    103	if (mfspr(SPR_UPR) & SPR_UPR_PMP)
    104		mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME);
    105}
    106
    107void (*pm_power_off)(void) = NULL;
    108EXPORT_SYMBOL(pm_power_off);
    109
    110/*
    111 * When a process does an "exec", machine state like FPU and debug
    112 * registers need to be reset.  This is a hook function for that.
    113 * Currently we don't have any such state to reset, so this is empty.
    114 */
    115void flush_thread(void)
    116{
    117}
    118
    119void show_regs(struct pt_regs *regs)
    120{
    121	extern void show_registers(struct pt_regs *regs);
    122
    123	show_regs_print_info(KERN_DEFAULT);
    124	/* __PHX__ cleanup this mess */
    125	show_registers(regs);
    126}
    127
    128void release_thread(struct task_struct *dead_task)
    129{
    130}
    131
    132/*
    133 * Copy the thread-specific (arch specific) info from the current
    134 * process to the new one p
    135 */
    136extern asmlinkage void ret_from_fork(void);
    137
    138/*
    139 * copy_thread
    140 * @clone_flags: flags
    141 * @usp: user stack pointer or fn for kernel thread
    142 * @arg: arg to fn for kernel thread; always NULL for userspace thread
    143 * @p: the newly created task
    144 * @tls: the Thread Local Storage pointer for the new process
    145 *
    146 * At the top of a newly initialized kernel stack are two stacked pt_reg
    147 * structures.  The first (topmost) is the userspace context of the thread.
    148 * The second is the kernelspace context of the thread.
    149 *
    150 * A kernel thread will not be returning to userspace, so the topmost pt_regs
    151 * struct can be uninitialized; it _does_ need to exist, though, because
    152 * a kernel thread can become a userspace thread by doing a kernel_execve, in
    153 * which case the topmost context will be initialized and used for 'returning'
    154 * to userspace.
    155 *
    156 * The second pt_reg struct needs to be initialized to 'return' to
    157 * ret_from_fork.  A kernel thread will need to set r20 to the address of
    158 * a function to call into (with arg in r22); userspace threads need to set
    159 * r20 to NULL in which case ret_from_fork will just continue a return to
    160 * userspace.
    161 *
    162 * A kernel thread 'fn' may return; this is effectively what happens when
    163 * kernel_execve is called.  In that case, the userspace pt_regs must have
    164 * been initialized (which kernel_execve takes care of, see start_thread
    165 * below); ret_from_fork will then continue its execution causing the
    166 * 'kernel thread' to return to userspace as a userspace thread.
    167 */
    168
    169int
    170copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
    171{
    172	unsigned long clone_flags = args->flags;
    173	unsigned long usp = args->stack;
    174	unsigned long tls = args->tls;
    175	struct pt_regs *userregs;
    176	struct pt_regs *kregs;
    177	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
    178	unsigned long top_of_kernel_stack;
    179
    180	top_of_kernel_stack = sp;
    181
    182	/* Locate userspace context on stack... */
    183	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
    184	sp -= sizeof(struct pt_regs);
    185	userregs = (struct pt_regs *) sp;
    186
    187	/* ...and kernel context */
    188	sp -= STACK_FRAME_OVERHEAD;	/* redzone */
    189	sp -= sizeof(struct pt_regs);
    190	kregs = (struct pt_regs *)sp;
    191
    192	if (unlikely(args->fn)) {
    193		memset(kregs, 0, sizeof(struct pt_regs));
    194		kregs->gpr[20] = (unsigned long)args->fn;
    195		kregs->gpr[22] = (unsigned long)args->fn_arg;
    196	} else {
    197		*userregs = *current_pt_regs();
    198
    199		if (usp)
    200			userregs->sp = usp;
    201
    202		/*
    203		 * For CLONE_SETTLS set "tp" (r10) to the TLS pointer.
    204		 */
    205		if (clone_flags & CLONE_SETTLS)
    206			userregs->gpr[10] = tls;
    207
    208		userregs->gpr[11] = 0;	/* Result from fork() */
    209
    210		kregs->gpr[20] = 0;	/* Userspace thread */
    211	}
    212
    213	/*
    214	 * _switch wants the kernel stack page in pt_regs->sp so that it
    215	 * can restore it to thread_info->ksp... see _switch for details.
    216	 */
    217	kregs->sp = top_of_kernel_stack;
    218	kregs->gpr[9] = (unsigned long)ret_from_fork;
    219
    220	task_thread_info(p)->ksp = (unsigned long)kregs;
    221
    222	return 0;
    223}
    224
    225/*
    226 * Set up a thread for executing a new program
    227 */
    228void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
    229{
    230	unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM;
    231
    232	memset(regs, 0, sizeof(struct pt_regs));
    233
    234	regs->pc = pc;
    235	regs->sr = sr;
    236	regs->sp = sp;
    237}
    238
    239extern struct thread_info *_switch(struct thread_info *old_ti,
    240				   struct thread_info *new_ti);
    241extern int lwa_flag;
    242
    243struct task_struct *__switch_to(struct task_struct *old,
    244				struct task_struct *new)
    245{
    246	struct task_struct *last;
    247	struct thread_info *new_ti, *old_ti;
    248	unsigned long flags;
    249
    250	local_irq_save(flags);
    251
    252	/* current_set is an array of saved current pointers
    253	 * (one for each cpu). we need them at user->kernel transition,
    254	 * while we save them at kernel->user transition
    255	 */
    256	new_ti = new->stack;
    257	old_ti = old->stack;
    258
    259	lwa_flag = 0;
    260
    261	current_thread_info_set[smp_processor_id()] = new_ti;
    262	last = (_switch(old_ti, new_ti))->task;
    263
    264	local_irq_restore(flags);
    265
    266	return last;
    267}
    268
    269/*
    270 * Write out registers in core dump format, as defined by the
    271 * struct user_regs_struct
    272 */
    273void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
    274{
    275	dest[0] = 0; /* r0 */
    276	memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
    277	dest[32] = regs->pc;
    278	dest[33] = regs->sr;
    279	dest[34] = 0;
    280	dest[35] = 0;
    281}
    282
    283unsigned long __get_wchan(struct task_struct *p)
    284{
    285	/* TODO */
    286
    287	return 0;
    288}