cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

firmware.c (52220B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * arch/parisc/kernel/firmware.c  - safe PDC access routines
      4 *
      5 *	PDC == Processor Dependent Code
      6 *
      7 * See PDC documentation at
      8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
      9 * for documentation describing the entry points and calling
     10 * conventions defined below.
     11 *
     12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
     13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
     14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
     15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
     16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
     17 */
     18
     19/*	I think it would be in everyone's best interest to follow this
     20 *	guidelines when writing PDC wrappers:
     21 *
     22 *	 - the name of the pdc wrapper should match one of the macros
     23 *	   used for the first two arguments
     24 *	 - don't use caps for random parts of the name
     25 *	 - use the static PDC result buffers and "copyout" to structs
     26 *	   supplied by the caller to encapsulate alignment restrictions
     27 *	 - hold pdc_lock while in PDC or using static result buffers
     28 *	 - use __pa() to convert virtual (kernel) pointers to physical
     29 *	   ones.
     30 *	 - the name of the struct used for pdc return values should equal
     31 *	   one of the macros used for the first two arguments to the
     32 *	   corresponding PDC call
     33 *	 - keep the order of arguments
     34 *	 - don't be smart (setting trailing NUL bytes for strings, return
     35 *	   something useful even if the call failed) unless you are sure
     36 *	   it's not going to affect functionality or performance
     37 *
     38 *	Example:
     39 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
     40 *	{
     41 *		int retval;
     42 *
     43 *		spin_lock_irq(&pdc_lock);
     44 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
     45 *		convert_to_wide(pdc_result);
     46 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
     47 *		spin_unlock_irq(&pdc_lock);
     48 *
     49 *		return retval;
     50 *	}
     51 *					prumpf	991016	
     52 */
     53
     54#include <linux/stdarg.h>
     55
     56#include <linux/delay.h>
     57#include <linux/init.h>
     58#include <linux/kernel.h>
     59#include <linux/module.h>
     60#include <linux/string.h>
     61#include <linux/spinlock.h>
     62
     63#include <asm/page.h>
     64#include <asm/pdc.h>
     65#include <asm/pdcpat.h>
     66#include <asm/processor.h>	/* for boot_cpu_data */
     67
     68#if defined(BOOTLOADER)
     69# undef  spin_lock_irqsave
     70# define spin_lock_irqsave(a, b) { b = 1; }
     71# undef  spin_unlock_irqrestore
     72# define spin_unlock_irqrestore(a, b)
     73#else
     74static DEFINE_SPINLOCK(pdc_lock);
     75#endif
     76
     77extern unsigned long pdc_result[NUM_PDC_RESULT];
     78extern unsigned long pdc_result2[NUM_PDC_RESULT];
     79
     80#ifdef CONFIG_64BIT
     81#define WIDE_FIRMWARE 0x1
     82#define NARROW_FIRMWARE 0x2
     83
     84/* Firmware needs to be initially set to narrow to determine the 
     85 * actual firmware width. */
     86int parisc_narrow_firmware __ro_after_init = 2;
     87#endif
     88
     89/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
     90 * and MEM_PDC calls are always the same width as the OS.
     91 * Some PAT boxes may have 64-bit IODC I/O.
     92 *
     93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
     94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
     95 * This allowed wide kernels to run on Cxxx boxes.
     96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
     97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
     98 */
     99
    100#ifdef CONFIG_64BIT
    101long real64_call(unsigned long function, ...);
    102#endif
    103long real32_call(unsigned long function, ...);
    104
    105#ifdef CONFIG_64BIT
    106#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
    107#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
    108#else
    109#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
    110#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
    111#endif
    112
    113
    114/**
    115 * f_extend - Convert PDC addresses to kernel addresses.
    116 * @address: Address returned from PDC.
    117 *
    118 * This function is used to convert PDC addresses into kernel addresses
    119 * when the PDC address size and kernel address size are different.
    120 */
    121static unsigned long f_extend(unsigned long address)
    122{
    123#ifdef CONFIG_64BIT
    124	if(unlikely(parisc_narrow_firmware)) {
    125		if((address & 0xff000000) == 0xf0000000)
    126			return 0xf0f0f0f000000000UL | (u32)address;
    127
    128		if((address & 0xf0000000) == 0xf0000000)
    129			return 0xffffffff00000000UL | (u32)address;
    130	}
    131#endif
    132	return address;
    133}
    134
    135/**
    136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
    137 * @address: The return buffer from PDC.
    138 *
    139 * This function is used to convert the return buffer addresses retrieved from PDC
    140 * into kernel addresses when the PDC address size and kernel address size are
    141 * different.
    142 */
    143static void convert_to_wide(unsigned long *addr)
    144{
    145#ifdef CONFIG_64BIT
    146	int i;
    147	unsigned int *p = (unsigned int *)addr;
    148
    149	if (unlikely(parisc_narrow_firmware)) {
    150		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
    151			addr[i] = p[i];
    152	}
    153#endif
    154}
    155
    156#ifdef CONFIG_64BIT
    157void set_firmware_width_unlocked(void)
    158{
    159	int ret;
    160
    161	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
    162		__pa(pdc_result), 0);
    163	convert_to_wide(pdc_result);
    164	if (pdc_result[0] != NARROW_FIRMWARE)
    165		parisc_narrow_firmware = 0;
    166}
    167	
    168/**
    169 * set_firmware_width - Determine if the firmware is wide or narrow.
    170 * 
    171 * This function must be called before any pdc_* function that uses the
    172 * convert_to_wide function.
    173 */
    174void set_firmware_width(void)
    175{
    176	unsigned long flags;
    177
    178	/* already initialized? */
    179	if (parisc_narrow_firmware != 2)
    180		return;
    181
    182	spin_lock_irqsave(&pdc_lock, flags);
    183	set_firmware_width_unlocked();
    184	spin_unlock_irqrestore(&pdc_lock, flags);
    185}
    186#else
    187void set_firmware_width_unlocked(void)
    188{
    189	return;
    190}
    191
    192void set_firmware_width(void)
    193{
    194	return;
    195}
    196#endif /*CONFIG_64BIT*/
    197
    198
    199#if !defined(BOOTLOADER)
    200/**
    201 * pdc_emergency_unlock - Unlock the linux pdc lock
    202 *
    203 * This call unlocks the linux pdc lock in case we need some PDC functions
    204 * (like pdc_add_valid) during kernel stack dump.
    205 */
    206void pdc_emergency_unlock(void)
    207{
    208 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
    209        if (spin_is_locked(&pdc_lock))
    210		spin_unlock(&pdc_lock);
    211}
    212
    213
    214/**
    215 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
    216 * @address: Address to be verified.
    217 *
    218 * This PDC call attempts to read from the specified address and verifies
    219 * if the address is valid.
    220 * 
    221 * The return value is PDC_OK (0) in case accessing this address is valid.
    222 */
    223int pdc_add_valid(unsigned long address)
    224{
    225        int retval;
    226	unsigned long flags;
    227
    228        spin_lock_irqsave(&pdc_lock, flags);
    229        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
    230        spin_unlock_irqrestore(&pdc_lock, flags);
    231
    232        return retval;
    233}
    234EXPORT_SYMBOL(pdc_add_valid);
    235
    236/**
    237 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
    238 * @instr: Pointer to variable which will get instruction opcode.
    239 *
    240 * The return value is PDC_OK (0) in case call succeeded.
    241 */
    242int __init pdc_instr(unsigned int *instr)
    243{
    244	int retval;
    245	unsigned long flags;
    246
    247	spin_lock_irqsave(&pdc_lock, flags);
    248	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
    249	convert_to_wide(pdc_result);
    250	*instr = pdc_result[0];
    251	spin_unlock_irqrestore(&pdc_lock, flags);
    252
    253	return retval;
    254}
    255
    256/**
    257 * pdc_chassis_info - Return chassis information.
    258 * @result: The return buffer.
    259 * @chassis_info: The memory buffer address.
    260 * @len: The size of the memory buffer address.
    261 *
    262 * An HVERSION dependent call for returning the chassis information.
    263 */
    264int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
    265{
    266        int retval;
    267	unsigned long flags;
    268
    269        spin_lock_irqsave(&pdc_lock, flags);
    270        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
    271        memcpy(&pdc_result2, led_info, len);
    272        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
    273                              __pa(pdc_result), __pa(pdc_result2), len);
    274        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
    275        memcpy(led_info, pdc_result2, len);
    276        spin_unlock_irqrestore(&pdc_lock, flags);
    277
    278        return retval;
    279}
    280
    281/**
    282 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
    283 * @retval: -1 on error, 0 on success. Other value are PDC errors
    284 * 
    285 * Must be correctly formatted or expect system crash
    286 */
    287#ifdef CONFIG_64BIT
    288int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
    289{
    290	int retval = 0;
    291	unsigned long flags;
    292        
    293	if (!is_pdc_pat())
    294		return -1;
    295
    296	spin_lock_irqsave(&pdc_lock, flags);
    297	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
    298	spin_unlock_irqrestore(&pdc_lock, flags);
    299
    300	return retval;
    301}
    302#endif
    303
    304/**
    305 * pdc_chassis_disp - Updates chassis code
    306 * @retval: -1 on error, 0 on success
    307 */
    308int pdc_chassis_disp(unsigned long disp)
    309{
    310	int retval = 0;
    311	unsigned long flags;
    312
    313	spin_lock_irqsave(&pdc_lock, flags);
    314	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
    315	spin_unlock_irqrestore(&pdc_lock, flags);
    316
    317	return retval;
    318}
    319
    320/**
    321 * pdc_cpu_rendenzvous - Stop currently executing CPU
    322 * @retval: -1 on error, 0 on success
    323 */
    324int __pdc_cpu_rendezvous(void)
    325{
    326	if (is_pdc_pat())
    327		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
    328	else
    329		return mem_pdc_call(PDC_PROC, 1, 0);
    330}
    331
    332/**
    333 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
    334 */
    335void pdc_cpu_rendezvous_lock(void)
    336{
    337	spin_lock(&pdc_lock);
    338}
    339
    340/**
    341 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
    342 */
    343void pdc_cpu_rendezvous_unlock(void)
    344{
    345	spin_unlock(&pdc_lock);
    346}
    347
    348/**
    349 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
    350 * @retval: -1 on error, 0 on success
    351 */
    352int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
    353{
    354	int retval = 0;
    355	unsigned long flags;
    356
    357	if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
    358		*pdc_entry = MEM_PDC;
    359		return 0;
    360	}
    361
    362	spin_lock_irqsave(&pdc_lock, flags);
    363	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
    364			__pa(pdc_result));
    365	*pdc_entry = pdc_result[0];
    366	spin_unlock_irqrestore(&pdc_lock, flags);
    367
    368	return retval;
    369}
    370/**
    371 * pdc_chassis_warn - Fetches chassis warnings
    372 * @retval: -1 on error, 0 on success
    373 */
    374int pdc_chassis_warn(unsigned long *warn)
    375{
    376	int retval = 0;
    377	unsigned long flags;
    378
    379	spin_lock_irqsave(&pdc_lock, flags);
    380	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
    381	*warn = pdc_result[0];
    382	spin_unlock_irqrestore(&pdc_lock, flags);
    383
    384	return retval;
    385}
    386
    387int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
    388{
    389	int ret;
    390
    391	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
    392	convert_to_wide(pdc_result);
    393	pdc_coproc_info->ccr_functional = pdc_result[0];
    394	pdc_coproc_info->ccr_present = pdc_result[1];
    395	pdc_coproc_info->revision = pdc_result[17];
    396	pdc_coproc_info->model = pdc_result[18];
    397
    398	return ret;
    399}
    400
    401/**
    402 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
    403 * @pdc_coproc_info: Return buffer address.
    404 *
    405 * This PDC call returns the presence and status of all the coprocessors
    406 * attached to the processor.
    407 */
    408int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
    409{
    410	int ret;
    411	unsigned long flags;
    412
    413	spin_lock_irqsave(&pdc_lock, flags);
    414	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
    415	spin_unlock_irqrestore(&pdc_lock, flags);
    416
    417	return ret;
    418}
    419
    420/**
    421 * pdc_iodc_read - Read data from the modules IODC.
    422 * @actcnt: The actual number of bytes.
    423 * @hpa: The HPA of the module for the iodc read.
    424 * @index: The iodc entry point.
    425 * @iodc_data: A buffer memory for the iodc options.
    426 * @iodc_data_size: Size of the memory buffer.
    427 *
    428 * This PDC call reads from the IODC of the module specified by the hpa
    429 * argument.
    430 */
    431int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
    432		  void *iodc_data, unsigned int iodc_data_size)
    433{
    434	int retval;
    435	unsigned long flags;
    436
    437	spin_lock_irqsave(&pdc_lock, flags);
    438	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
    439			      index, __pa(pdc_result2), iodc_data_size);
    440	convert_to_wide(pdc_result);
    441	*actcnt = pdc_result[0];
    442	memcpy(iodc_data, pdc_result2, iodc_data_size);
    443	spin_unlock_irqrestore(&pdc_lock, flags);
    444
    445	return retval;
    446}
    447EXPORT_SYMBOL(pdc_iodc_read);
    448
    449/**
    450 * pdc_system_map_find_mods - Locate unarchitected modules.
    451 * @pdc_mod_info: Return buffer address.
    452 * @mod_path: pointer to dev path structure.
    453 * @mod_index: fixed address module index.
    454 *
    455 * To locate and identify modules which reside at fixed I/O addresses, which
    456 * do not self-identify via architected bus walks.
    457 */
    458int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
    459			     struct pdc_module_path *mod_path, long mod_index)
    460{
    461	int retval;
    462	unsigned long flags;
    463
    464	spin_lock_irqsave(&pdc_lock, flags);
    465	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
    466			      __pa(pdc_result2), mod_index);
    467	convert_to_wide(pdc_result);
    468	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
    469	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
    470	spin_unlock_irqrestore(&pdc_lock, flags);
    471
    472	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
    473	return retval;
    474}
    475
    476/**
    477 * pdc_system_map_find_addrs - Retrieve additional address ranges.
    478 * @pdc_addr_info: Return buffer address.
    479 * @mod_index: Fixed address module index.
    480 * @addr_index: Address range index.
    481 * 
    482 * Retrieve additional information about subsequent address ranges for modules
    483 * with multiple address ranges.  
    484 */
    485int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
    486			      long mod_index, long addr_index)
    487{
    488	int retval;
    489	unsigned long flags;
    490
    491	spin_lock_irqsave(&pdc_lock, flags);
    492	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
    493			      mod_index, addr_index);
    494	convert_to_wide(pdc_result);
    495	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
    496	spin_unlock_irqrestore(&pdc_lock, flags);
    497
    498	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
    499	return retval;
    500}
    501
    502/**
    503 * pdc_model_info - Return model information about the processor.
    504 * @model: The return buffer.
    505 *
    506 * Returns the version numbers, identifiers, and capabilities from the processor module.
    507 */
    508int pdc_model_info(struct pdc_model *model) 
    509{
    510	int retval;
    511	unsigned long flags;
    512
    513	spin_lock_irqsave(&pdc_lock, flags);
    514	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
    515	convert_to_wide(pdc_result);
    516	memcpy(model, pdc_result, sizeof(*model));
    517	spin_unlock_irqrestore(&pdc_lock, flags);
    518
    519	return retval;
    520}
    521
    522/**
    523 * pdc_model_sysmodel - Get the system model name.
    524 * @name: A char array of at least 81 characters.
    525 *
    526 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
    527 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
    528 * on HP/UX.
    529 */
    530int pdc_model_sysmodel(char *name)
    531{
    532        int retval;
    533	unsigned long flags;
    534
    535        spin_lock_irqsave(&pdc_lock, flags);
    536        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
    537                              OS_ID_HPUX, __pa(name));
    538        convert_to_wide(pdc_result);
    539
    540        if (retval == PDC_OK) {
    541                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
    542        } else {
    543                name[0] = 0;
    544        }
    545        spin_unlock_irqrestore(&pdc_lock, flags);
    546
    547        return retval;
    548}
    549
    550/**
    551 * pdc_model_versions - Identify the version number of each processor.
    552 * @cpu_id: The return buffer.
    553 * @id: The id of the processor to check.
    554 *
    555 * Returns the version number for each processor component.
    556 *
    557 * This comment was here before, but I do not know what it means :( -RB
    558 * id: 0 = cpu revision, 1 = boot-rom-version
    559 */
    560int pdc_model_versions(unsigned long *versions, int id)
    561{
    562        int retval;
    563	unsigned long flags;
    564
    565        spin_lock_irqsave(&pdc_lock, flags);
    566        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
    567        convert_to_wide(pdc_result);
    568        *versions = pdc_result[0];
    569        spin_unlock_irqrestore(&pdc_lock, flags);
    570
    571        return retval;
    572}
    573
    574/**
    575 * pdc_model_cpuid - Returns the CPU_ID.
    576 * @cpu_id: The return buffer.
    577 *
    578 * Returns the CPU_ID value which uniquely identifies the cpu portion of
    579 * the processor module.
    580 */
    581int pdc_model_cpuid(unsigned long *cpu_id)
    582{
    583        int retval;
    584	unsigned long flags;
    585
    586        spin_lock_irqsave(&pdc_lock, flags);
    587        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
    588        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
    589        convert_to_wide(pdc_result);
    590        *cpu_id = pdc_result[0];
    591        spin_unlock_irqrestore(&pdc_lock, flags);
    592
    593        return retval;
    594}
    595
    596/**
    597 * pdc_model_capabilities - Returns the platform capabilities.
    598 * @capabilities: The return buffer.
    599 *
    600 * Returns information about platform support for 32- and/or 64-bit
    601 * OSes, IO-PDIR coherency, and virtual aliasing.
    602 */
    603int pdc_model_capabilities(unsigned long *capabilities)
    604{
    605        int retval;
    606	unsigned long flags;
    607
    608        spin_lock_irqsave(&pdc_lock, flags);
    609        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
    610        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
    611        convert_to_wide(pdc_result);
    612        if (retval == PDC_OK) {
    613                *capabilities = pdc_result[0];
    614        } else {
    615                *capabilities = PDC_MODEL_OS32;
    616        }
    617        spin_unlock_irqrestore(&pdc_lock, flags);
    618
    619        return retval;
    620}
    621
    622/**
    623 * pdc_model_platform_info - Returns machine product and serial number.
    624 * @orig_prod_num: Return buffer for original product number.
    625 * @current_prod_num: Return buffer for current product number.
    626 * @serial_no: Return buffer for serial number.
    627 *
    628 * Returns strings containing the original and current product numbers and the
    629 * serial number of the system.
    630 */
    631int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
    632		char *serial_no)
    633{
    634	int retval;
    635	unsigned long flags;
    636
    637	spin_lock_irqsave(&pdc_lock, flags);
    638	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
    639		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
    640	convert_to_wide(pdc_result);
    641	spin_unlock_irqrestore(&pdc_lock, flags);
    642
    643	return retval;
    644}
    645
    646/**
    647 * pdc_cache_info - Return cache and TLB information.
    648 * @cache_info: The return buffer.
    649 *
    650 * Returns information about the processor's cache and TLB.
    651 */
    652int pdc_cache_info(struct pdc_cache_info *cache_info)
    653{
    654        int retval;
    655	unsigned long flags;
    656
    657        spin_lock_irqsave(&pdc_lock, flags);
    658        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
    659        convert_to_wide(pdc_result);
    660        memcpy(cache_info, pdc_result, sizeof(*cache_info));
    661        spin_unlock_irqrestore(&pdc_lock, flags);
    662
    663        return retval;
    664}
    665
    666/**
    667 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
    668 * @space_bits: Should be 0, if not, bad mojo!
    669 *
    670 * Returns information about Space ID hashing.
    671 */
    672int pdc_spaceid_bits(unsigned long *space_bits)
    673{
    674	int retval;
    675	unsigned long flags;
    676
    677	spin_lock_irqsave(&pdc_lock, flags);
    678	pdc_result[0] = 0;
    679	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
    680	convert_to_wide(pdc_result);
    681	*space_bits = pdc_result[0];
    682	spin_unlock_irqrestore(&pdc_lock, flags);
    683
    684	return retval;
    685}
    686
    687#ifndef CONFIG_PA20
    688/**
    689 * pdc_btlb_info - Return block TLB information.
    690 * @btlb: The return buffer.
    691 *
    692 * Returns information about the hardware Block TLB.
    693 */
    694int pdc_btlb_info(struct pdc_btlb_info *btlb) 
    695{
    696        int retval;
    697	unsigned long flags;
    698
    699        spin_lock_irqsave(&pdc_lock, flags);
    700        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
    701        memcpy(btlb, pdc_result, sizeof(*btlb));
    702        spin_unlock_irqrestore(&pdc_lock, flags);
    703
    704        if(retval < 0) {
    705                btlb->max_size = 0;
    706        }
    707        return retval;
    708}
    709
    710/**
    711 * pdc_mem_map_hpa - Find fixed module information.  
    712 * @address: The return buffer
    713 * @mod_path: pointer to dev path structure.
    714 *
    715 * This call was developed for S700 workstations to allow the kernel to find
    716 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
    717 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
    718 * call.
    719 *
    720 * This call is supported by all existing S700 workstations (up to  Gecko).
    721 */
    722int pdc_mem_map_hpa(struct pdc_memory_map *address,
    723		struct pdc_module_path *mod_path)
    724{
    725        int retval;
    726	unsigned long flags;
    727
    728        spin_lock_irqsave(&pdc_lock, flags);
    729        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
    730        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
    731				__pa(pdc_result2));
    732        memcpy(address, pdc_result, sizeof(*address));
    733        spin_unlock_irqrestore(&pdc_lock, flags);
    734
    735        return retval;
    736}
    737#endif	/* !CONFIG_PA20 */
    738
    739/**
    740 * pdc_lan_station_id - Get the LAN address.
    741 * @lan_addr: The return buffer.
    742 * @hpa: The network device HPA.
    743 *
    744 * Get the LAN station address when it is not directly available from the LAN hardware.
    745 */
    746int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
    747{
    748	int retval;
    749	unsigned long flags;
    750
    751	spin_lock_irqsave(&pdc_lock, flags);
    752	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
    753			__pa(pdc_result), hpa);
    754	if (retval < 0) {
    755		/* FIXME: else read MAC from NVRAM */
    756		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
    757	} else {
    758		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
    759	}
    760	spin_unlock_irqrestore(&pdc_lock, flags);
    761
    762	return retval;
    763}
    764EXPORT_SYMBOL(pdc_lan_station_id);
    765
    766/**
    767 * pdc_stable_read - Read data from Stable Storage.
    768 * @staddr: Stable Storage address to access.
    769 * @memaddr: The memory address where Stable Storage data shall be copied.
    770 * @count: number of bytes to transfer. count is multiple of 4.
    771 *
    772 * This PDC call reads from the Stable Storage address supplied in staddr
    773 * and copies count bytes to the memory address memaddr.
    774 * The call will fail if staddr+count > PDC_STABLE size.
    775 */
    776int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
    777{
    778       int retval;
    779	unsigned long flags;
    780
    781       spin_lock_irqsave(&pdc_lock, flags);
    782       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
    783               __pa(pdc_result), count);
    784       convert_to_wide(pdc_result);
    785       memcpy(memaddr, pdc_result, count);
    786       spin_unlock_irqrestore(&pdc_lock, flags);
    787
    788       return retval;
    789}
    790EXPORT_SYMBOL(pdc_stable_read);
    791
    792/**
    793 * pdc_stable_write - Write data to Stable Storage.
    794 * @staddr: Stable Storage address to access.
    795 * @memaddr: The memory address where Stable Storage data shall be read from.
    796 * @count: number of bytes to transfer. count is multiple of 4.
    797 *
    798 * This PDC call reads count bytes from the supplied memaddr address,
    799 * and copies count bytes to the Stable Storage address staddr.
    800 * The call will fail if staddr+count > PDC_STABLE size.
    801 */
    802int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
    803{
    804       int retval;
    805	unsigned long flags;
    806
    807       spin_lock_irqsave(&pdc_lock, flags);
    808       memcpy(pdc_result, memaddr, count);
    809       convert_to_wide(pdc_result);
    810       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
    811               __pa(pdc_result), count);
    812       spin_unlock_irqrestore(&pdc_lock, flags);
    813
    814       return retval;
    815}
    816EXPORT_SYMBOL(pdc_stable_write);
    817
    818/**
    819 * pdc_stable_get_size - Get Stable Storage size in bytes.
    820 * @size: pointer where the size will be stored.
    821 *
    822 * This PDC call returns the number of bytes in the processor's Stable
    823 * Storage, which is the number of contiguous bytes implemented in Stable
    824 * Storage starting from staddr=0. size in an unsigned 64-bit integer
    825 * which is a multiple of four.
    826 */
    827int pdc_stable_get_size(unsigned long *size)
    828{
    829       int retval;
    830	unsigned long flags;
    831
    832       spin_lock_irqsave(&pdc_lock, flags);
    833       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
    834       *size = pdc_result[0];
    835       spin_unlock_irqrestore(&pdc_lock, flags);
    836
    837       return retval;
    838}
    839EXPORT_SYMBOL(pdc_stable_get_size);
    840
    841/**
    842 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
    843 *
    844 * This PDC call is meant to be used to check the integrity of the current
    845 * contents of Stable Storage.
    846 */
    847int pdc_stable_verify_contents(void)
    848{
    849       int retval;
    850	unsigned long flags;
    851
    852       spin_lock_irqsave(&pdc_lock, flags);
    853       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
    854       spin_unlock_irqrestore(&pdc_lock, flags);
    855
    856       return retval;
    857}
    858EXPORT_SYMBOL(pdc_stable_verify_contents);
    859
    860/**
    861 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
    862 * the validity indicator.
    863 *
    864 * This PDC call will erase all contents of Stable Storage. Use with care!
    865 */
    866int pdc_stable_initialize(void)
    867{
    868       int retval;
    869	unsigned long flags;
    870
    871       spin_lock_irqsave(&pdc_lock, flags);
    872       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
    873       spin_unlock_irqrestore(&pdc_lock, flags);
    874
    875       return retval;
    876}
    877EXPORT_SYMBOL(pdc_stable_initialize);
    878
    879/**
    880 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
    881 * @hwpath: fully bc.mod style path to the device.
    882 * @initiator: the array to return the result into
    883 *
    884 * Get the SCSI operational parameters from PDC.
    885 * Needed since HPUX never used BIOS or symbios card NVRAM.
    886 * Most ncr/sym cards won't have an entry and just use whatever
    887 * capabilities of the card are (eg Ultra, LVD). But there are
    888 * several cases where it's useful:
    889 *    o set SCSI id for Multi-initiator clusters,
    890 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
    891 *    o bus width exported is less than what the interface chip supports.
    892 */
    893int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
    894{
    895	int retval;
    896	unsigned long flags;
    897
    898	spin_lock_irqsave(&pdc_lock, flags);
    899
    900/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
    901#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
    902	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
    903
    904	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
    905			      __pa(pdc_result), __pa(hwpath));
    906	if (retval < PDC_OK)
    907		goto out;
    908
    909	if (pdc_result[0] < 16) {
    910		initiator->host_id = pdc_result[0];
    911	} else {
    912		initiator->host_id = -1;
    913	}
    914
    915	/*
    916	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
    917	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
    918	 */
    919	switch (pdc_result[1]) {
    920		case  1: initiator->factor = 50; break;
    921		case  2: initiator->factor = 25; break;
    922		case  5: initiator->factor = 12; break;
    923		case 25: initiator->factor = 10; break;
    924		case 20: initiator->factor = 12; break;
    925		case 40: initiator->factor = 10; break;
    926		default: initiator->factor = -1; break;
    927	}
    928
    929	if (IS_SPROCKETS()) {
    930		initiator->width = pdc_result[4];
    931		initiator->mode = pdc_result[5];
    932	} else {
    933		initiator->width = -1;
    934		initiator->mode = -1;
    935	}
    936
    937 out:
    938	spin_unlock_irqrestore(&pdc_lock, flags);
    939
    940	return (retval >= PDC_OK);
    941}
    942EXPORT_SYMBOL(pdc_get_initiator);
    943
    944
    945/**
    946 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
    947 * @num_entries: The return value.
    948 * @hpa: The HPA for the device.
    949 *
    950 * This PDC function returns the number of entries in the specified cell's
    951 * interrupt table.
    952 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
    953 */ 
    954int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
    955{
    956	int retval;
    957	unsigned long flags;
    958
    959	spin_lock_irqsave(&pdc_lock, flags);
    960	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
    961			      __pa(pdc_result), hpa);
    962	convert_to_wide(pdc_result);
    963	*num_entries = pdc_result[0];
    964	spin_unlock_irqrestore(&pdc_lock, flags);
    965
    966	return retval;
    967}
    968
    969/** 
    970 * pdc_pci_irt - Get the PCI interrupt routing table.
    971 * @num_entries: The number of entries in the table.
    972 * @hpa: The Hard Physical Address of the device.
    973 * @tbl: 
    974 *
    975 * Get the PCI interrupt routing table for the device at the given HPA.
    976 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
    977 */
    978int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
    979{
    980	int retval;
    981	unsigned long flags;
    982
    983	BUG_ON((unsigned long)tbl & 0x7);
    984
    985	spin_lock_irqsave(&pdc_lock, flags);
    986	pdc_result[0] = num_entries;
    987	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
    988			      __pa(pdc_result), hpa, __pa(tbl));
    989	spin_unlock_irqrestore(&pdc_lock, flags);
    990
    991	return retval;
    992}
    993
    994
    995#if 0	/* UNTEST CODE - left here in case someone needs it */
    996
    997/** 
    998 * pdc_pci_config_read - read PCI config space.
    999 * @hpa		token from PDC to indicate which PCI device
   1000 * @pci_addr	configuration space address to read from
   1001 *
   1002 * Read PCI Configuration space *before* linux PCI subsystem is running.
   1003 */
   1004unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
   1005{
   1006	int retval;
   1007	unsigned long flags;
   1008
   1009	spin_lock_irqsave(&pdc_lock, flags);
   1010	pdc_result[0] = 0;
   1011	pdc_result[1] = 0;
   1012	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
   1013			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
   1014	spin_unlock_irqrestore(&pdc_lock, flags);
   1015
   1016	return retval ? ~0 : (unsigned int) pdc_result[0];
   1017}
   1018
   1019
   1020/** 
   1021 * pdc_pci_config_write - read PCI config space.
   1022 * @hpa		token from PDC to indicate which PCI device
   1023 * @pci_addr	configuration space address to write
   1024 * @val		value we want in the 32-bit register
   1025 *
   1026 * Write PCI Configuration space *before* linux PCI subsystem is running.
   1027 */
   1028void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
   1029{
   1030	int retval;
   1031	unsigned long flags;
   1032
   1033	spin_lock_irqsave(&pdc_lock, flags);
   1034	pdc_result[0] = 0;
   1035	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
   1036			      __pa(pdc_result), hpa,
   1037			      cfg_addr&~3UL, 4UL, (unsigned long) val);
   1038	spin_unlock_irqrestore(&pdc_lock, flags);
   1039
   1040	return retval;
   1041}
   1042#endif /* UNTESTED CODE */
   1043
   1044/**
   1045 * pdc_tod_read - Read the Time-Of-Day clock.
   1046 * @tod: The return buffer:
   1047 *
   1048 * Read the Time-Of-Day clock
   1049 */
   1050int pdc_tod_read(struct pdc_tod *tod)
   1051{
   1052        int retval;
   1053	unsigned long flags;
   1054
   1055        spin_lock_irqsave(&pdc_lock, flags);
   1056        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
   1057        convert_to_wide(pdc_result);
   1058        memcpy(tod, pdc_result, sizeof(*tod));
   1059        spin_unlock_irqrestore(&pdc_lock, flags);
   1060
   1061        return retval;
   1062}
   1063EXPORT_SYMBOL(pdc_tod_read);
   1064
   1065int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
   1066{
   1067	int retval;
   1068	unsigned long flags;
   1069
   1070	spin_lock_irqsave(&pdc_lock, flags);
   1071	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
   1072	convert_to_wide(pdc_result);
   1073	memcpy(rinfo, pdc_result, sizeof(*rinfo));
   1074	spin_unlock_irqrestore(&pdc_lock, flags);
   1075
   1076	return retval;
   1077}
   1078
   1079int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
   1080		unsigned long *pdt_entries_ptr)
   1081{
   1082	int retval;
   1083	unsigned long flags;
   1084
   1085	spin_lock_irqsave(&pdc_lock, flags);
   1086	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
   1087			__pa(pdt_entries_ptr));
   1088	if (retval == PDC_OK) {
   1089		convert_to_wide(pdc_result);
   1090		memcpy(pret, pdc_result, sizeof(*pret));
   1091	}
   1092	spin_unlock_irqrestore(&pdc_lock, flags);
   1093
   1094#ifdef CONFIG_64BIT
   1095	/*
   1096	 * 64-bit kernels should not call this PDT function in narrow mode.
   1097	 * The pdt_entries_ptr array above will now contain 32-bit values
   1098	 */
   1099	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
   1100		return PDC_ERROR;
   1101#endif
   1102
   1103	return retval;
   1104}
   1105
   1106/**
   1107 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
   1108 * @ret: pointer to return buffer
   1109 */
   1110int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
   1111{
   1112	int retval;
   1113	unsigned long flags;
   1114
   1115	spin_lock_irqsave(&pdc_lock, flags);
   1116	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
   1117			      __pa(ret), sizeof(*ret));
   1118	spin_unlock_irqrestore(&pdc_lock, flags);
   1119	return retval;
   1120}
   1121
   1122/**
   1123 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
   1124 * @ret: pointer to return buffer
   1125 */
   1126int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
   1127{
   1128	int retval;
   1129	unsigned long flags;
   1130
   1131	spin_lock_irqsave(&pdc_lock, flags);
   1132	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
   1133			      __pa(ret), sizeof(*ret));
   1134	spin_unlock_irqrestore(&pdc_lock, flags);
   1135	return retval;
   1136}
   1137
   1138/**
   1139 * pdc_tod_set - Set the Time-Of-Day clock.
   1140 * @sec: The number of seconds since epoch.
   1141 * @usec: The number of micro seconds.
   1142 *
   1143 * Set the Time-Of-Day clock.
   1144 */ 
   1145int pdc_tod_set(unsigned long sec, unsigned long usec)
   1146{
   1147        int retval;
   1148	unsigned long flags;
   1149
   1150        spin_lock_irqsave(&pdc_lock, flags);
   1151        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
   1152        spin_unlock_irqrestore(&pdc_lock, flags);
   1153
   1154        return retval;
   1155}
   1156EXPORT_SYMBOL(pdc_tod_set);
   1157
   1158#ifdef CONFIG_64BIT
   1159int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
   1160		struct pdc_memory_table *tbl, unsigned long entries)
   1161{
   1162	int retval;
   1163	unsigned long flags;
   1164
   1165	spin_lock_irqsave(&pdc_lock, flags);
   1166	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
   1167	convert_to_wide(pdc_result);
   1168	memcpy(r_addr, pdc_result, sizeof(*r_addr));
   1169	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
   1170	spin_unlock_irqrestore(&pdc_lock, flags);
   1171
   1172	return retval;
   1173}
   1174#endif /* CONFIG_64BIT */
   1175
   1176/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
   1177 * so I guessed at unsigned long.  Someone who knows what this does, can fix
   1178 * it later. :)
   1179 */
   1180int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
   1181{
   1182        int retval;
   1183	unsigned long flags;
   1184
   1185        spin_lock_irqsave(&pdc_lock, flags);
   1186        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
   1187                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
   1188        spin_unlock_irqrestore(&pdc_lock, flags);
   1189
   1190        return retval;
   1191}
   1192
   1193/*
   1194 * pdc_do_reset - Reset the system.
   1195 *
   1196 * Reset the system.
   1197 */
   1198int pdc_do_reset(void)
   1199{
   1200        int retval;
   1201	unsigned long flags;
   1202
   1203        spin_lock_irqsave(&pdc_lock, flags);
   1204        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
   1205        spin_unlock_irqrestore(&pdc_lock, flags);
   1206
   1207        return retval;
   1208}
   1209
   1210/*
   1211 * pdc_soft_power_info - Enable soft power switch.
   1212 * @power_reg: address of soft power register
   1213 *
   1214 * Return the absolute address of the soft power switch register
   1215 */
   1216int __init pdc_soft_power_info(unsigned long *power_reg)
   1217{
   1218	int retval;
   1219	unsigned long flags;
   1220
   1221	*power_reg = (unsigned long) (-1);
   1222	
   1223	spin_lock_irqsave(&pdc_lock, flags);
   1224	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
   1225	if (retval == PDC_OK) {
   1226                convert_to_wide(pdc_result);
   1227                *power_reg = f_extend(pdc_result[0]);
   1228	}
   1229	spin_unlock_irqrestore(&pdc_lock, flags);
   1230
   1231	return retval;
   1232}
   1233
   1234/*
   1235 * pdc_soft_power_button - Control the soft power button behaviour
   1236 * @sw_control: 0 for hardware control, 1 for software control 
   1237 *
   1238 *
   1239 * This PDC function places the soft power button under software or
   1240 * hardware control.
   1241 * Under software control the OS may control to when to allow to shut 
   1242 * down the system. Under hardware control pressing the power button 
   1243 * powers off the system immediately.
   1244 */
   1245int pdc_soft_power_button(int sw_control)
   1246{
   1247	int retval;
   1248	unsigned long flags;
   1249
   1250	spin_lock_irqsave(&pdc_lock, flags);
   1251	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
   1252	spin_unlock_irqrestore(&pdc_lock, flags);
   1253
   1254	return retval;
   1255}
   1256
   1257/*
   1258 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
   1259 * Primarily a problem on T600 (which parisc-linux doesn't support) but
   1260 * who knows what other platform firmware might do with this OS "hook".
   1261 */
   1262void pdc_io_reset(void)
   1263{
   1264	unsigned long flags;
   1265
   1266	spin_lock_irqsave(&pdc_lock, flags);
   1267	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
   1268	spin_unlock_irqrestore(&pdc_lock, flags);
   1269}
   1270
   1271/*
   1272 * pdc_io_reset_devices - Hack to Stop USB controller
   1273 *
   1274 * If PDC used the usb controller, the usb controller
   1275 * is still running and will crash the machines during iommu 
   1276 * setup, because of still running DMA. This PDC call
   1277 * stops the USB controller.
   1278 * Normally called after calling pdc_io_reset().
   1279 */
   1280void pdc_io_reset_devices(void)
   1281{
   1282	unsigned long flags;
   1283
   1284	spin_lock_irqsave(&pdc_lock, flags);
   1285	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
   1286	spin_unlock_irqrestore(&pdc_lock, flags);
   1287}
   1288
   1289#endif /* defined(BOOTLOADER) */
   1290
   1291/* locked by pdc_console_lock */
   1292static int __attribute__((aligned(8)))   iodc_retbuf[32];
   1293static char __attribute__((aligned(64))) iodc_dbuf[4096];
   1294
   1295/**
   1296 * pdc_iodc_print - Console print using IODC.
   1297 * @str: the string to output.
   1298 * @count: length of str
   1299 *
   1300 * Note that only these special chars are architected for console IODC io:
   1301 * BEL, BS, CR, and LF. Others are passed through.
   1302 * Since the HP console requires CR+LF to perform a 'newline', we translate
   1303 * "\n" to "\r\n".
   1304 */
   1305int pdc_iodc_print(const unsigned char *str, unsigned count)
   1306{
   1307	unsigned int i;
   1308	unsigned long flags;
   1309
   1310	for (i = 0; i < count;) {
   1311		switch(str[i]) {
   1312		case '\n':
   1313			iodc_dbuf[i+0] = '\r';
   1314			iodc_dbuf[i+1] = '\n';
   1315			i += 2;
   1316			goto print;
   1317		default:
   1318			iodc_dbuf[i] = str[i];
   1319			i++;
   1320			break;
   1321		}
   1322	}
   1323
   1324print:
   1325        spin_lock_irqsave(&pdc_lock, flags);
   1326        real32_call(PAGE0->mem_cons.iodc_io,
   1327                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
   1328                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
   1329                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
   1330        spin_unlock_irqrestore(&pdc_lock, flags);
   1331
   1332	return i;
   1333}
   1334
   1335#if !defined(BOOTLOADER)
   1336/**
   1337 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
   1338 *
   1339 * Read a character (non-blocking) from the PDC console, returns -1 if
   1340 * key is not present.
   1341 */
   1342int pdc_iodc_getc(void)
   1343{
   1344	int ch;
   1345	int status;
   1346	unsigned long flags;
   1347
   1348	/* Bail if no console input device. */
   1349	if (!PAGE0->mem_kbd.iodc_io)
   1350		return 0;
   1351	
   1352	/* wait for a keyboard (rs232)-input */
   1353	spin_lock_irqsave(&pdc_lock, flags);
   1354	real32_call(PAGE0->mem_kbd.iodc_io,
   1355		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
   1356		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
   1357		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
   1358
   1359	ch = *iodc_dbuf;
   1360	status = *iodc_retbuf;
   1361	spin_unlock_irqrestore(&pdc_lock, flags);
   1362
   1363	if (status == 0)
   1364	    return -1;
   1365	
   1366	return ch;
   1367}
   1368
   1369int pdc_sti_call(unsigned long func, unsigned long flags,
   1370                 unsigned long inptr, unsigned long outputr,
   1371                 unsigned long glob_cfg)
   1372{
   1373        int retval;
   1374	unsigned long irqflags;
   1375
   1376        spin_lock_irqsave(&pdc_lock, irqflags);  
   1377        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
   1378        spin_unlock_irqrestore(&pdc_lock, irqflags);
   1379
   1380        return retval;
   1381}
   1382EXPORT_SYMBOL(pdc_sti_call);
   1383
   1384#ifdef CONFIG_64BIT
   1385/**
   1386 * pdc_pat_cell_get_number - Returns the cell number.
   1387 * @cell_info: The return buffer.
   1388 *
   1389 * This PDC call returns the cell number of the cell from which the call
   1390 * is made.
   1391 */
   1392int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
   1393{
   1394	int retval;
   1395	unsigned long flags;
   1396
   1397	spin_lock_irqsave(&pdc_lock, flags);
   1398	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
   1399	memcpy(cell_info, pdc_result, sizeof(*cell_info));
   1400	spin_unlock_irqrestore(&pdc_lock, flags);
   1401
   1402	return retval;
   1403}
   1404
   1405/**
   1406 * pdc_pat_cell_module - Retrieve the cell's module information.
   1407 * @actcnt: The number of bytes written to mem_addr.
   1408 * @ploc: The physical location.
   1409 * @mod: The module index.
   1410 * @view_type: The view of the address type.
   1411 * @mem_addr: The return buffer.
   1412 *
   1413 * This PDC call returns information about each module attached to the cell
   1414 * at the specified location.
   1415 */
   1416int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
   1417			unsigned long view_type, void *mem_addr)
   1418{
   1419	int retval;
   1420	unsigned long flags;
   1421	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
   1422
   1423	spin_lock_irqsave(&pdc_lock, flags);
   1424	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
   1425			      ploc, mod, view_type, __pa(&result));
   1426	if(!retval) {
   1427		*actcnt = pdc_result[0];
   1428		memcpy(mem_addr, &result, *actcnt);
   1429	}
   1430	spin_unlock_irqrestore(&pdc_lock, flags);
   1431
   1432	return retval;
   1433}
   1434
   1435/**
   1436 * pdc_pat_cell_info - Retrieve the cell's information.
   1437 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
   1438 * @actcnt: The number of bytes which should be written to info.
   1439 * @offset: offset of the structure.
   1440 * @cell_number: The cell number which should be asked, or -1 for current cell.
   1441 *
   1442 * This PDC call returns information about the given cell (or all cells).
   1443 */
   1444int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
   1445		unsigned long *actcnt, unsigned long offset,
   1446		unsigned long cell_number)
   1447{
   1448	int retval;
   1449	unsigned long flags;
   1450	struct pdc_pat_cell_info_rtn_block result;
   1451
   1452	spin_lock_irqsave(&pdc_lock, flags);
   1453	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
   1454			__pa(pdc_result), __pa(&result), *actcnt,
   1455			offset, cell_number);
   1456	if (!retval) {
   1457		*actcnt = pdc_result[0];
   1458		memcpy(info, &result, *actcnt);
   1459	}
   1460	spin_unlock_irqrestore(&pdc_lock, flags);
   1461
   1462	return retval;
   1463}
   1464
   1465/**
   1466 * pdc_pat_cpu_get_number - Retrieve the cpu number.
   1467 * @cpu_info: The return buffer.
   1468 * @hpa: The Hard Physical Address of the CPU.
   1469 *
   1470 * Retrieve the cpu number for the cpu at the specified HPA.
   1471 */
   1472int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
   1473{
   1474	int retval;
   1475	unsigned long flags;
   1476
   1477	spin_lock_irqsave(&pdc_lock, flags);
   1478	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
   1479			      __pa(&pdc_result), hpa);
   1480	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
   1481	spin_unlock_irqrestore(&pdc_lock, flags);
   1482
   1483	return retval;
   1484}
   1485
   1486/**
   1487 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
   1488 * @num_entries: The return value.
   1489 * @cell_num: The target cell.
   1490 *
   1491 * This PDC function returns the number of entries in the specified cell's
   1492 * interrupt table.
   1493 */
   1494int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
   1495{
   1496	int retval;
   1497	unsigned long flags;
   1498
   1499	spin_lock_irqsave(&pdc_lock, flags);
   1500	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
   1501			      __pa(pdc_result), cell_num);
   1502	*num_entries = pdc_result[0];
   1503	spin_unlock_irqrestore(&pdc_lock, flags);
   1504
   1505	return retval;
   1506}
   1507
   1508/**
   1509 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
   1510 * @r_addr: The return buffer.
   1511 * @cell_num: The target cell.
   1512 *
   1513 * This PDC function returns the actual interrupt table for the specified cell.
   1514 */
   1515int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
   1516{
   1517	int retval;
   1518	unsigned long flags;
   1519
   1520	spin_lock_irqsave(&pdc_lock, flags);
   1521	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
   1522			      __pa(r_addr), cell_num);
   1523	spin_unlock_irqrestore(&pdc_lock, flags);
   1524
   1525	return retval;
   1526}
   1527
   1528/**
   1529 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
   1530 * @actlen: The return buffer.
   1531 * @mem_addr: Pointer to the memory buffer.
   1532 * @count: The number of bytes to read from the buffer.
   1533 * @offset: The offset with respect to the beginning of the buffer.
   1534 *
   1535 */
   1536int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
   1537			    unsigned long count, unsigned long offset)
   1538{
   1539	int retval;
   1540	unsigned long flags;
   1541
   1542	spin_lock_irqsave(&pdc_lock, flags);
   1543	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
   1544			      __pa(pdc_result2), count, offset);
   1545	*actual_len = pdc_result[0];
   1546	memcpy(mem_addr, pdc_result2, *actual_len);
   1547	spin_unlock_irqrestore(&pdc_lock, flags);
   1548
   1549	return retval;
   1550}
   1551
   1552/**
   1553 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
   1554 * @legacy_rev: The legacy revision.
   1555 * @pat_rev: The PAT revision.
   1556 * @pdc_cap: The PDC capabilities.
   1557 *
   1558 */
   1559int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
   1560		unsigned long *pat_rev, unsigned long *pdc_cap)
   1561{
   1562	int retval;
   1563	unsigned long flags;
   1564
   1565	spin_lock_irqsave(&pdc_lock, flags);
   1566	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
   1567				__pa(pdc_result));
   1568	if (retval == PDC_OK) {
   1569		*legacy_rev = pdc_result[0];
   1570		*pat_rev = pdc_result[1];
   1571		*pdc_cap = pdc_result[2];
   1572	}
   1573	spin_unlock_irqrestore(&pdc_lock, flags);
   1574
   1575	return retval;
   1576}
   1577
   1578
   1579/**
   1580 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
   1581 * @pci_addr: PCI configuration space address for which the read request is being made.
   1582 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
   1583 * @mem_addr: Pointer to return memory buffer.
   1584 *
   1585 */
   1586int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
   1587{
   1588	int retval;
   1589	unsigned long flags;
   1590
   1591	spin_lock_irqsave(&pdc_lock, flags);
   1592	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
   1593					__pa(pdc_result), pci_addr, pci_size);
   1594	switch(pci_size) {
   1595		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
   1596		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
   1597		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
   1598	}
   1599	spin_unlock_irqrestore(&pdc_lock, flags);
   1600
   1601	return retval;
   1602}
   1603
   1604/**
   1605 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
   1606 * @pci_addr: PCI configuration space address for which the write  request is being made.
   1607 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
   1608 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
   1609 *         written to PCI Config space.
   1610 *
   1611 */
   1612int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
   1613{
   1614	int retval;
   1615	unsigned long flags;
   1616
   1617	spin_lock_irqsave(&pdc_lock, flags);
   1618	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
   1619				pci_addr, pci_size, val);
   1620	spin_unlock_irqrestore(&pdc_lock, flags);
   1621
   1622	return retval;
   1623}
   1624
   1625/**
   1626 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
   1627 * @rinfo: memory pdt information
   1628 *
   1629 */
   1630int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
   1631{
   1632	int retval;
   1633	unsigned long flags;
   1634
   1635	spin_lock_irqsave(&pdc_lock, flags);
   1636	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
   1637			__pa(&pdc_result));
   1638	if (retval == PDC_OK)
   1639		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
   1640	spin_unlock_irqrestore(&pdc_lock, flags);
   1641
   1642	return retval;
   1643}
   1644
   1645/**
   1646 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
   1647 *				table of a cell
   1648 * @rinfo: memory pdt information
   1649 * @cell: cell number
   1650 *
   1651 */
   1652int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
   1653		unsigned long cell)
   1654{
   1655	int retval;
   1656	unsigned long flags;
   1657
   1658	spin_lock_irqsave(&pdc_lock, flags);
   1659	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
   1660			__pa(&pdc_result), cell);
   1661	if (retval == PDC_OK)
   1662		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
   1663	spin_unlock_irqrestore(&pdc_lock, flags);
   1664
   1665	return retval;
   1666}
   1667
   1668/**
   1669 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
   1670 * @pret: array of PDT entries
   1671 * @pdt_entries_ptr: ptr to hold number of PDT entries
   1672 * @max_entries: maximum number of entries to be read
   1673 *
   1674 */
   1675int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
   1676		unsigned long *pdt_entries_ptr, unsigned long max_entries)
   1677{
   1678	int retval;
   1679	unsigned long flags, entries;
   1680
   1681	spin_lock_irqsave(&pdc_lock, flags);
   1682	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
   1683	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
   1684			__pa(&pdc_result), parisc_cell_num,
   1685			__pa(pdt_entries_ptr));
   1686
   1687	if (retval == PDC_OK) {
   1688		/* build up return value as for PDC_PAT_MEM_PD_READ */
   1689		entries = min(pdc_result[0], max_entries);
   1690		pret->pdt_entries = entries;
   1691		pret->actual_count_bytes = entries * sizeof(unsigned long);
   1692	}
   1693
   1694	spin_unlock_irqrestore(&pdc_lock, flags);
   1695	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
   1696
   1697	return retval;
   1698}
   1699/**
   1700 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
   1701 * @pret: array of PDT entries
   1702 * @pdt_entries_ptr: ptr to hold number of PDT entries
   1703 * @count: number of bytes to read
   1704 * @offset: offset to start (in bytes)
   1705 *
   1706 */
   1707int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
   1708		unsigned long *pdt_entries_ptr, unsigned long count,
   1709		unsigned long offset)
   1710{
   1711	int retval;
   1712	unsigned long flags, entries;
   1713
   1714	spin_lock_irqsave(&pdc_lock, flags);
   1715	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
   1716		__pa(&pdc_result), __pa(pdt_entries_ptr),
   1717		count, offset);
   1718
   1719	if (retval == PDC_OK) {
   1720		entries = min(pdc_result[0], count);
   1721		pret->actual_count_bytes = entries;
   1722		pret->pdt_entries = entries / sizeof(unsigned long);
   1723	}
   1724
   1725	spin_unlock_irqrestore(&pdc_lock, flags);
   1726
   1727	return retval;
   1728}
   1729
   1730/**
   1731 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
   1732 * @pret: ptr to hold returned information
   1733 * @phys_addr: physical address to examine
   1734 *
   1735 */
   1736int pdc_pat_mem_get_dimm_phys_location(
   1737		struct pdc_pat_mem_phys_mem_location *pret,
   1738		unsigned long phys_addr)
   1739{
   1740	int retval;
   1741	unsigned long flags;
   1742
   1743	spin_lock_irqsave(&pdc_lock, flags);
   1744	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
   1745		__pa(&pdc_result), phys_addr);
   1746
   1747	if (retval == PDC_OK)
   1748		memcpy(pret, &pdc_result, sizeof(*pret));
   1749
   1750	spin_unlock_irqrestore(&pdc_lock, flags);
   1751
   1752	return retval;
   1753}
   1754#endif /* CONFIG_64BIT */
   1755#endif /* defined(BOOTLOADER) */
   1756
   1757
   1758/***************** 32-bit real-mode calls ***********/
   1759/* The struct below is used
   1760 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
   1761 * real32_call_asm() then uses this stack in narrow real mode
   1762 */
   1763
   1764struct narrow_stack {
   1765	/* use int, not long which is 64 bits */
   1766	unsigned int arg13;
   1767	unsigned int arg12;
   1768	unsigned int arg11;
   1769	unsigned int arg10;
   1770	unsigned int arg9;
   1771	unsigned int arg8;
   1772	unsigned int arg7;
   1773	unsigned int arg6;
   1774	unsigned int arg5;
   1775	unsigned int arg4;
   1776	unsigned int arg3;
   1777	unsigned int arg2;
   1778	unsigned int arg1;
   1779	unsigned int arg0;
   1780	unsigned int frame_marker[8];
   1781	unsigned int sp;
   1782	/* in reality, there's nearly 8k of stack after this */
   1783};
   1784
   1785long real32_call(unsigned long fn, ...)
   1786{
   1787	va_list args;
   1788	extern struct narrow_stack real_stack;
   1789	extern unsigned long real32_call_asm(unsigned int *,
   1790					     unsigned int *, 
   1791					     unsigned int);
   1792	
   1793	va_start(args, fn);
   1794	real_stack.arg0 = va_arg(args, unsigned int);
   1795	real_stack.arg1 = va_arg(args, unsigned int);
   1796	real_stack.arg2 = va_arg(args, unsigned int);
   1797	real_stack.arg3 = va_arg(args, unsigned int);
   1798	real_stack.arg4 = va_arg(args, unsigned int);
   1799	real_stack.arg5 = va_arg(args, unsigned int);
   1800	real_stack.arg6 = va_arg(args, unsigned int);
   1801	real_stack.arg7 = va_arg(args, unsigned int);
   1802	real_stack.arg8 = va_arg(args, unsigned int);
   1803	real_stack.arg9 = va_arg(args, unsigned int);
   1804	real_stack.arg10 = va_arg(args, unsigned int);
   1805	real_stack.arg11 = va_arg(args, unsigned int);
   1806	real_stack.arg12 = va_arg(args, unsigned int);
   1807	real_stack.arg13 = va_arg(args, unsigned int);
   1808	va_end(args);
   1809	
   1810	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
   1811}
   1812
   1813#ifdef CONFIG_64BIT
   1814/***************** 64-bit real-mode calls ***********/
   1815
   1816struct wide_stack {
   1817	unsigned long arg0;
   1818	unsigned long arg1;
   1819	unsigned long arg2;
   1820	unsigned long arg3;
   1821	unsigned long arg4;
   1822	unsigned long arg5;
   1823	unsigned long arg6;
   1824	unsigned long arg7;
   1825	unsigned long arg8;
   1826	unsigned long arg9;
   1827	unsigned long arg10;
   1828	unsigned long arg11;
   1829	unsigned long arg12;
   1830	unsigned long arg13;
   1831	unsigned long frame_marker[2];	/* rp, previous sp */
   1832	unsigned long sp;
   1833	/* in reality, there's nearly 8k of stack after this */
   1834};
   1835
   1836long real64_call(unsigned long fn, ...)
   1837{
   1838	va_list args;
   1839	extern struct wide_stack real64_stack;
   1840	extern unsigned long real64_call_asm(unsigned long *,
   1841					     unsigned long *, 
   1842					     unsigned long);
   1843    
   1844	va_start(args, fn);
   1845	real64_stack.arg0 = va_arg(args, unsigned long);
   1846	real64_stack.arg1 = va_arg(args, unsigned long);
   1847	real64_stack.arg2 = va_arg(args, unsigned long);
   1848	real64_stack.arg3 = va_arg(args, unsigned long);
   1849	real64_stack.arg4 = va_arg(args, unsigned long);
   1850	real64_stack.arg5 = va_arg(args, unsigned long);
   1851	real64_stack.arg6 = va_arg(args, unsigned long);
   1852	real64_stack.arg7 = va_arg(args, unsigned long);
   1853	real64_stack.arg8 = va_arg(args, unsigned long);
   1854	real64_stack.arg9 = va_arg(args, unsigned long);
   1855	real64_stack.arg10 = va_arg(args, unsigned long);
   1856	real64_stack.arg11 = va_arg(args, unsigned long);
   1857	real64_stack.arg12 = va_arg(args, unsigned long);
   1858	real64_stack.arg13 = va_arg(args, unsigned long);
   1859	va_end(args);
   1860	
   1861	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
   1862}
   1863
   1864#endif /* CONFIG_64BIT */