firmware.c (52220B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * arch/parisc/kernel/firmware.c - safe PDC access routines 4 * 5 * PDC == Processor Dependent Code 6 * 7 * See PDC documentation at 8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation 9 * for documentation describing the entry points and calling 10 * conventions defined below. 11 * 12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) 13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) 14 * Copyright 2003 Grant Grundler <grundler parisc-linux org> 15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> 16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> 17 */ 18 19/* I think it would be in everyone's best interest to follow this 20 * guidelines when writing PDC wrappers: 21 * 22 * - the name of the pdc wrapper should match one of the macros 23 * used for the first two arguments 24 * - don't use caps for random parts of the name 25 * - use the static PDC result buffers and "copyout" to structs 26 * supplied by the caller to encapsulate alignment restrictions 27 * - hold pdc_lock while in PDC or using static result buffers 28 * - use __pa() to convert virtual (kernel) pointers to physical 29 * ones. 30 * - the name of the struct used for pdc return values should equal 31 * one of the macros used for the first two arguments to the 32 * corresponding PDC call 33 * - keep the order of arguments 34 * - don't be smart (setting trailing NUL bytes for strings, return 35 * something useful even if the call failed) unless you are sure 36 * it's not going to affect functionality or performance 37 * 38 * Example: 39 * int pdc_cache_info(struct pdc_cache_info *cache_info ) 40 * { 41 * int retval; 42 * 43 * spin_lock_irq(&pdc_lock); 44 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); 45 * convert_to_wide(pdc_result); 46 * memcpy(cache_info, pdc_result, sizeof(*cache_info)); 47 * spin_unlock_irq(&pdc_lock); 48 * 49 * return retval; 50 * } 51 * prumpf 991016 52 */ 53 54#include <linux/stdarg.h> 55 56#include <linux/delay.h> 57#include <linux/init.h> 58#include <linux/kernel.h> 59#include <linux/module.h> 60#include <linux/string.h> 61#include <linux/spinlock.h> 62 63#include <asm/page.h> 64#include <asm/pdc.h> 65#include <asm/pdcpat.h> 66#include <asm/processor.h> /* for boot_cpu_data */ 67 68#if defined(BOOTLOADER) 69# undef spin_lock_irqsave 70# define spin_lock_irqsave(a, b) { b = 1; } 71# undef spin_unlock_irqrestore 72# define spin_unlock_irqrestore(a, b) 73#else 74static DEFINE_SPINLOCK(pdc_lock); 75#endif 76 77extern unsigned long pdc_result[NUM_PDC_RESULT]; 78extern unsigned long pdc_result2[NUM_PDC_RESULT]; 79 80#ifdef CONFIG_64BIT 81#define WIDE_FIRMWARE 0x1 82#define NARROW_FIRMWARE 0x2 83 84/* Firmware needs to be initially set to narrow to determine the 85 * actual firmware width. */ 86int parisc_narrow_firmware __ro_after_init = 2; 87#endif 88 89/* On most currently-supported platforms, IODC I/O calls are 32-bit calls 90 * and MEM_PDC calls are always the same width as the OS. 91 * Some PAT boxes may have 64-bit IODC I/O. 92 * 93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow 94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. 95 * This allowed wide kernels to run on Cxxx boxes. 96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode 97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360). 98 */ 99 100#ifdef CONFIG_64BIT 101long real64_call(unsigned long function, ...); 102#endif 103long real32_call(unsigned long function, ...); 104 105#ifdef CONFIG_64BIT 106# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc 107# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) 108#else 109# define MEM_PDC (unsigned long)PAGE0->mem_pdc 110# define mem_pdc_call(args...) real32_call(MEM_PDC, args) 111#endif 112 113 114/** 115 * f_extend - Convert PDC addresses to kernel addresses. 116 * @address: Address returned from PDC. 117 * 118 * This function is used to convert PDC addresses into kernel addresses 119 * when the PDC address size and kernel address size are different. 120 */ 121static unsigned long f_extend(unsigned long address) 122{ 123#ifdef CONFIG_64BIT 124 if(unlikely(parisc_narrow_firmware)) { 125 if((address & 0xff000000) == 0xf0000000) 126 return 0xf0f0f0f000000000UL | (u32)address; 127 128 if((address & 0xf0000000) == 0xf0000000) 129 return 0xffffffff00000000UL | (u32)address; 130 } 131#endif 132 return address; 133} 134 135/** 136 * convert_to_wide - Convert the return buffer addresses into kernel addresses. 137 * @address: The return buffer from PDC. 138 * 139 * This function is used to convert the return buffer addresses retrieved from PDC 140 * into kernel addresses when the PDC address size and kernel address size are 141 * different. 142 */ 143static void convert_to_wide(unsigned long *addr) 144{ 145#ifdef CONFIG_64BIT 146 int i; 147 unsigned int *p = (unsigned int *)addr; 148 149 if (unlikely(parisc_narrow_firmware)) { 150 for (i = (NUM_PDC_RESULT-1); i >= 0; --i) 151 addr[i] = p[i]; 152 } 153#endif 154} 155 156#ifdef CONFIG_64BIT 157void set_firmware_width_unlocked(void) 158{ 159 int ret; 160 161 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, 162 __pa(pdc_result), 0); 163 convert_to_wide(pdc_result); 164 if (pdc_result[0] != NARROW_FIRMWARE) 165 parisc_narrow_firmware = 0; 166} 167 168/** 169 * set_firmware_width - Determine if the firmware is wide or narrow. 170 * 171 * This function must be called before any pdc_* function that uses the 172 * convert_to_wide function. 173 */ 174void set_firmware_width(void) 175{ 176 unsigned long flags; 177 178 /* already initialized? */ 179 if (parisc_narrow_firmware != 2) 180 return; 181 182 spin_lock_irqsave(&pdc_lock, flags); 183 set_firmware_width_unlocked(); 184 spin_unlock_irqrestore(&pdc_lock, flags); 185} 186#else 187void set_firmware_width_unlocked(void) 188{ 189 return; 190} 191 192void set_firmware_width(void) 193{ 194 return; 195} 196#endif /*CONFIG_64BIT*/ 197 198 199#if !defined(BOOTLOADER) 200/** 201 * pdc_emergency_unlock - Unlock the linux pdc lock 202 * 203 * This call unlocks the linux pdc lock in case we need some PDC functions 204 * (like pdc_add_valid) during kernel stack dump. 205 */ 206void pdc_emergency_unlock(void) 207{ 208 /* Spinlock DEBUG code freaks out if we unconditionally unlock */ 209 if (spin_is_locked(&pdc_lock)) 210 spin_unlock(&pdc_lock); 211} 212 213 214/** 215 * pdc_add_valid - Verify address can be accessed without causing a HPMC. 216 * @address: Address to be verified. 217 * 218 * This PDC call attempts to read from the specified address and verifies 219 * if the address is valid. 220 * 221 * The return value is PDC_OK (0) in case accessing this address is valid. 222 */ 223int pdc_add_valid(unsigned long address) 224{ 225 int retval; 226 unsigned long flags; 227 228 spin_lock_irqsave(&pdc_lock, flags); 229 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); 230 spin_unlock_irqrestore(&pdc_lock, flags); 231 232 return retval; 233} 234EXPORT_SYMBOL(pdc_add_valid); 235 236/** 237 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler. 238 * @instr: Pointer to variable which will get instruction opcode. 239 * 240 * The return value is PDC_OK (0) in case call succeeded. 241 */ 242int __init pdc_instr(unsigned int *instr) 243{ 244 int retval; 245 unsigned long flags; 246 247 spin_lock_irqsave(&pdc_lock, flags); 248 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result)); 249 convert_to_wide(pdc_result); 250 *instr = pdc_result[0]; 251 spin_unlock_irqrestore(&pdc_lock, flags); 252 253 return retval; 254} 255 256/** 257 * pdc_chassis_info - Return chassis information. 258 * @result: The return buffer. 259 * @chassis_info: The memory buffer address. 260 * @len: The size of the memory buffer address. 261 * 262 * An HVERSION dependent call for returning the chassis information. 263 */ 264int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) 265{ 266 int retval; 267 unsigned long flags; 268 269 spin_lock_irqsave(&pdc_lock, flags); 270 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); 271 memcpy(&pdc_result2, led_info, len); 272 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, 273 __pa(pdc_result), __pa(pdc_result2), len); 274 memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); 275 memcpy(led_info, pdc_result2, len); 276 spin_unlock_irqrestore(&pdc_lock, flags); 277 278 return retval; 279} 280 281/** 282 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. 283 * @retval: -1 on error, 0 on success. Other value are PDC errors 284 * 285 * Must be correctly formatted or expect system crash 286 */ 287#ifdef CONFIG_64BIT 288int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) 289{ 290 int retval = 0; 291 unsigned long flags; 292 293 if (!is_pdc_pat()) 294 return -1; 295 296 spin_lock_irqsave(&pdc_lock, flags); 297 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); 298 spin_unlock_irqrestore(&pdc_lock, flags); 299 300 return retval; 301} 302#endif 303 304/** 305 * pdc_chassis_disp - Updates chassis code 306 * @retval: -1 on error, 0 on success 307 */ 308int pdc_chassis_disp(unsigned long disp) 309{ 310 int retval = 0; 311 unsigned long flags; 312 313 spin_lock_irqsave(&pdc_lock, flags); 314 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); 315 spin_unlock_irqrestore(&pdc_lock, flags); 316 317 return retval; 318} 319 320/** 321 * pdc_cpu_rendenzvous - Stop currently executing CPU 322 * @retval: -1 on error, 0 on success 323 */ 324int __pdc_cpu_rendezvous(void) 325{ 326 if (is_pdc_pat()) 327 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS); 328 else 329 return mem_pdc_call(PDC_PROC, 1, 0); 330} 331 332/** 333 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state 334 */ 335void pdc_cpu_rendezvous_lock(void) 336{ 337 spin_lock(&pdc_lock); 338} 339 340/** 341 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state 342 */ 343void pdc_cpu_rendezvous_unlock(void) 344{ 345 spin_unlock(&pdc_lock); 346} 347 348/** 349 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU 350 * @retval: -1 on error, 0 on success 351 */ 352int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry) 353{ 354 int retval = 0; 355 unsigned long flags; 356 357 if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) { 358 *pdc_entry = MEM_PDC; 359 return 0; 360 } 361 362 spin_lock_irqsave(&pdc_lock, flags); 363 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT, 364 __pa(pdc_result)); 365 *pdc_entry = pdc_result[0]; 366 spin_unlock_irqrestore(&pdc_lock, flags); 367 368 return retval; 369} 370/** 371 * pdc_chassis_warn - Fetches chassis warnings 372 * @retval: -1 on error, 0 on success 373 */ 374int pdc_chassis_warn(unsigned long *warn) 375{ 376 int retval = 0; 377 unsigned long flags; 378 379 spin_lock_irqsave(&pdc_lock, flags); 380 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); 381 *warn = pdc_result[0]; 382 spin_unlock_irqrestore(&pdc_lock, flags); 383 384 return retval; 385} 386 387int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info) 388{ 389 int ret; 390 391 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); 392 convert_to_wide(pdc_result); 393 pdc_coproc_info->ccr_functional = pdc_result[0]; 394 pdc_coproc_info->ccr_present = pdc_result[1]; 395 pdc_coproc_info->revision = pdc_result[17]; 396 pdc_coproc_info->model = pdc_result[18]; 397 398 return ret; 399} 400 401/** 402 * pdc_coproc_cfg - To identify coprocessors attached to the processor. 403 * @pdc_coproc_info: Return buffer address. 404 * 405 * This PDC call returns the presence and status of all the coprocessors 406 * attached to the processor. 407 */ 408int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) 409{ 410 int ret; 411 unsigned long flags; 412 413 spin_lock_irqsave(&pdc_lock, flags); 414 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info); 415 spin_unlock_irqrestore(&pdc_lock, flags); 416 417 return ret; 418} 419 420/** 421 * pdc_iodc_read - Read data from the modules IODC. 422 * @actcnt: The actual number of bytes. 423 * @hpa: The HPA of the module for the iodc read. 424 * @index: The iodc entry point. 425 * @iodc_data: A buffer memory for the iodc options. 426 * @iodc_data_size: Size of the memory buffer. 427 * 428 * This PDC call reads from the IODC of the module specified by the hpa 429 * argument. 430 */ 431int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, 432 void *iodc_data, unsigned int iodc_data_size) 433{ 434 int retval; 435 unsigned long flags; 436 437 spin_lock_irqsave(&pdc_lock, flags); 438 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 439 index, __pa(pdc_result2), iodc_data_size); 440 convert_to_wide(pdc_result); 441 *actcnt = pdc_result[0]; 442 memcpy(iodc_data, pdc_result2, iodc_data_size); 443 spin_unlock_irqrestore(&pdc_lock, flags); 444 445 return retval; 446} 447EXPORT_SYMBOL(pdc_iodc_read); 448 449/** 450 * pdc_system_map_find_mods - Locate unarchitected modules. 451 * @pdc_mod_info: Return buffer address. 452 * @mod_path: pointer to dev path structure. 453 * @mod_index: fixed address module index. 454 * 455 * To locate and identify modules which reside at fixed I/O addresses, which 456 * do not self-identify via architected bus walks. 457 */ 458int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, 459 struct pdc_module_path *mod_path, long mod_index) 460{ 461 int retval; 462 unsigned long flags; 463 464 spin_lock_irqsave(&pdc_lock, flags); 465 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 466 __pa(pdc_result2), mod_index); 467 convert_to_wide(pdc_result); 468 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); 469 memcpy(mod_path, pdc_result2, sizeof(*mod_path)); 470 spin_unlock_irqrestore(&pdc_lock, flags); 471 472 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); 473 return retval; 474} 475 476/** 477 * pdc_system_map_find_addrs - Retrieve additional address ranges. 478 * @pdc_addr_info: Return buffer address. 479 * @mod_index: Fixed address module index. 480 * @addr_index: Address range index. 481 * 482 * Retrieve additional information about subsequent address ranges for modules 483 * with multiple address ranges. 484 */ 485int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 486 long mod_index, long addr_index) 487{ 488 int retval; 489 unsigned long flags; 490 491 spin_lock_irqsave(&pdc_lock, flags); 492 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), 493 mod_index, addr_index); 494 convert_to_wide(pdc_result); 495 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); 496 spin_unlock_irqrestore(&pdc_lock, flags); 497 498 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); 499 return retval; 500} 501 502/** 503 * pdc_model_info - Return model information about the processor. 504 * @model: The return buffer. 505 * 506 * Returns the version numbers, identifiers, and capabilities from the processor module. 507 */ 508int pdc_model_info(struct pdc_model *model) 509{ 510 int retval; 511 unsigned long flags; 512 513 spin_lock_irqsave(&pdc_lock, flags); 514 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); 515 convert_to_wide(pdc_result); 516 memcpy(model, pdc_result, sizeof(*model)); 517 spin_unlock_irqrestore(&pdc_lock, flags); 518 519 return retval; 520} 521 522/** 523 * pdc_model_sysmodel - Get the system model name. 524 * @name: A char array of at least 81 characters. 525 * 526 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L). 527 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command 528 * on HP/UX. 529 */ 530int pdc_model_sysmodel(char *name) 531{ 532 int retval; 533 unsigned long flags; 534 535 spin_lock_irqsave(&pdc_lock, flags); 536 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), 537 OS_ID_HPUX, __pa(name)); 538 convert_to_wide(pdc_result); 539 540 if (retval == PDC_OK) { 541 name[pdc_result[0]] = '\0'; /* add trailing '\0' */ 542 } else { 543 name[0] = 0; 544 } 545 spin_unlock_irqrestore(&pdc_lock, flags); 546 547 return retval; 548} 549 550/** 551 * pdc_model_versions - Identify the version number of each processor. 552 * @cpu_id: The return buffer. 553 * @id: The id of the processor to check. 554 * 555 * Returns the version number for each processor component. 556 * 557 * This comment was here before, but I do not know what it means :( -RB 558 * id: 0 = cpu revision, 1 = boot-rom-version 559 */ 560int pdc_model_versions(unsigned long *versions, int id) 561{ 562 int retval; 563 unsigned long flags; 564 565 spin_lock_irqsave(&pdc_lock, flags); 566 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); 567 convert_to_wide(pdc_result); 568 *versions = pdc_result[0]; 569 spin_unlock_irqrestore(&pdc_lock, flags); 570 571 return retval; 572} 573 574/** 575 * pdc_model_cpuid - Returns the CPU_ID. 576 * @cpu_id: The return buffer. 577 * 578 * Returns the CPU_ID value which uniquely identifies the cpu portion of 579 * the processor module. 580 */ 581int pdc_model_cpuid(unsigned long *cpu_id) 582{ 583 int retval; 584 unsigned long flags; 585 586 spin_lock_irqsave(&pdc_lock, flags); 587 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 588 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); 589 convert_to_wide(pdc_result); 590 *cpu_id = pdc_result[0]; 591 spin_unlock_irqrestore(&pdc_lock, flags); 592 593 return retval; 594} 595 596/** 597 * pdc_model_capabilities - Returns the platform capabilities. 598 * @capabilities: The return buffer. 599 * 600 * Returns information about platform support for 32- and/or 64-bit 601 * OSes, IO-PDIR coherency, and virtual aliasing. 602 */ 603int pdc_model_capabilities(unsigned long *capabilities) 604{ 605 int retval; 606 unsigned long flags; 607 608 spin_lock_irqsave(&pdc_lock, flags); 609 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ 610 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); 611 convert_to_wide(pdc_result); 612 if (retval == PDC_OK) { 613 *capabilities = pdc_result[0]; 614 } else { 615 *capabilities = PDC_MODEL_OS32; 616 } 617 spin_unlock_irqrestore(&pdc_lock, flags); 618 619 return retval; 620} 621 622/** 623 * pdc_model_platform_info - Returns machine product and serial number. 624 * @orig_prod_num: Return buffer for original product number. 625 * @current_prod_num: Return buffer for current product number. 626 * @serial_no: Return buffer for serial number. 627 * 628 * Returns strings containing the original and current product numbers and the 629 * serial number of the system. 630 */ 631int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num, 632 char *serial_no) 633{ 634 int retval; 635 unsigned long flags; 636 637 spin_lock_irqsave(&pdc_lock, flags); 638 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO, 639 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no)); 640 convert_to_wide(pdc_result); 641 spin_unlock_irqrestore(&pdc_lock, flags); 642 643 return retval; 644} 645 646/** 647 * pdc_cache_info - Return cache and TLB information. 648 * @cache_info: The return buffer. 649 * 650 * Returns information about the processor's cache and TLB. 651 */ 652int pdc_cache_info(struct pdc_cache_info *cache_info) 653{ 654 int retval; 655 unsigned long flags; 656 657 spin_lock_irqsave(&pdc_lock, flags); 658 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); 659 convert_to_wide(pdc_result); 660 memcpy(cache_info, pdc_result, sizeof(*cache_info)); 661 spin_unlock_irqrestore(&pdc_lock, flags); 662 663 return retval; 664} 665 666/** 667 * pdc_spaceid_bits - Return whether Space ID hashing is turned on. 668 * @space_bits: Should be 0, if not, bad mojo! 669 * 670 * Returns information about Space ID hashing. 671 */ 672int pdc_spaceid_bits(unsigned long *space_bits) 673{ 674 int retval; 675 unsigned long flags; 676 677 spin_lock_irqsave(&pdc_lock, flags); 678 pdc_result[0] = 0; 679 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0); 680 convert_to_wide(pdc_result); 681 *space_bits = pdc_result[0]; 682 spin_unlock_irqrestore(&pdc_lock, flags); 683 684 return retval; 685} 686 687#ifndef CONFIG_PA20 688/** 689 * pdc_btlb_info - Return block TLB information. 690 * @btlb: The return buffer. 691 * 692 * Returns information about the hardware Block TLB. 693 */ 694int pdc_btlb_info(struct pdc_btlb_info *btlb) 695{ 696 int retval; 697 unsigned long flags; 698 699 spin_lock_irqsave(&pdc_lock, flags); 700 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); 701 memcpy(btlb, pdc_result, sizeof(*btlb)); 702 spin_unlock_irqrestore(&pdc_lock, flags); 703 704 if(retval < 0) { 705 btlb->max_size = 0; 706 } 707 return retval; 708} 709 710/** 711 * pdc_mem_map_hpa - Find fixed module information. 712 * @address: The return buffer 713 * @mod_path: pointer to dev path structure. 714 * 715 * This call was developed for S700 workstations to allow the kernel to find 716 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this 717 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP 718 * call. 719 * 720 * This call is supported by all existing S700 workstations (up to Gecko). 721 */ 722int pdc_mem_map_hpa(struct pdc_memory_map *address, 723 struct pdc_module_path *mod_path) 724{ 725 int retval; 726 unsigned long flags; 727 728 spin_lock_irqsave(&pdc_lock, flags); 729 memcpy(pdc_result2, mod_path, sizeof(*mod_path)); 730 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), 731 __pa(pdc_result2)); 732 memcpy(address, pdc_result, sizeof(*address)); 733 spin_unlock_irqrestore(&pdc_lock, flags); 734 735 return retval; 736} 737#endif /* !CONFIG_PA20 */ 738 739/** 740 * pdc_lan_station_id - Get the LAN address. 741 * @lan_addr: The return buffer. 742 * @hpa: The network device HPA. 743 * 744 * Get the LAN station address when it is not directly available from the LAN hardware. 745 */ 746int pdc_lan_station_id(char *lan_addr, unsigned long hpa) 747{ 748 int retval; 749 unsigned long flags; 750 751 spin_lock_irqsave(&pdc_lock, flags); 752 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, 753 __pa(pdc_result), hpa); 754 if (retval < 0) { 755 /* FIXME: else read MAC from NVRAM */ 756 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); 757 } else { 758 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); 759 } 760 spin_unlock_irqrestore(&pdc_lock, flags); 761 762 return retval; 763} 764EXPORT_SYMBOL(pdc_lan_station_id); 765 766/** 767 * pdc_stable_read - Read data from Stable Storage. 768 * @staddr: Stable Storage address to access. 769 * @memaddr: The memory address where Stable Storage data shall be copied. 770 * @count: number of bytes to transfer. count is multiple of 4. 771 * 772 * This PDC call reads from the Stable Storage address supplied in staddr 773 * and copies count bytes to the memory address memaddr. 774 * The call will fail if staddr+count > PDC_STABLE size. 775 */ 776int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) 777{ 778 int retval; 779 unsigned long flags; 780 781 spin_lock_irqsave(&pdc_lock, flags); 782 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, 783 __pa(pdc_result), count); 784 convert_to_wide(pdc_result); 785 memcpy(memaddr, pdc_result, count); 786 spin_unlock_irqrestore(&pdc_lock, flags); 787 788 return retval; 789} 790EXPORT_SYMBOL(pdc_stable_read); 791 792/** 793 * pdc_stable_write - Write data to Stable Storage. 794 * @staddr: Stable Storage address to access. 795 * @memaddr: The memory address where Stable Storage data shall be read from. 796 * @count: number of bytes to transfer. count is multiple of 4. 797 * 798 * This PDC call reads count bytes from the supplied memaddr address, 799 * and copies count bytes to the Stable Storage address staddr. 800 * The call will fail if staddr+count > PDC_STABLE size. 801 */ 802int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) 803{ 804 int retval; 805 unsigned long flags; 806 807 spin_lock_irqsave(&pdc_lock, flags); 808 memcpy(pdc_result, memaddr, count); 809 convert_to_wide(pdc_result); 810 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, 811 __pa(pdc_result), count); 812 spin_unlock_irqrestore(&pdc_lock, flags); 813 814 return retval; 815} 816EXPORT_SYMBOL(pdc_stable_write); 817 818/** 819 * pdc_stable_get_size - Get Stable Storage size in bytes. 820 * @size: pointer where the size will be stored. 821 * 822 * This PDC call returns the number of bytes in the processor's Stable 823 * Storage, which is the number of contiguous bytes implemented in Stable 824 * Storage starting from staddr=0. size in an unsigned 64-bit integer 825 * which is a multiple of four. 826 */ 827int pdc_stable_get_size(unsigned long *size) 828{ 829 int retval; 830 unsigned long flags; 831 832 spin_lock_irqsave(&pdc_lock, flags); 833 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); 834 *size = pdc_result[0]; 835 spin_unlock_irqrestore(&pdc_lock, flags); 836 837 return retval; 838} 839EXPORT_SYMBOL(pdc_stable_get_size); 840 841/** 842 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. 843 * 844 * This PDC call is meant to be used to check the integrity of the current 845 * contents of Stable Storage. 846 */ 847int pdc_stable_verify_contents(void) 848{ 849 int retval; 850 unsigned long flags; 851 852 spin_lock_irqsave(&pdc_lock, flags); 853 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); 854 spin_unlock_irqrestore(&pdc_lock, flags); 855 856 return retval; 857} 858EXPORT_SYMBOL(pdc_stable_verify_contents); 859 860/** 861 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize 862 * the validity indicator. 863 * 864 * This PDC call will erase all contents of Stable Storage. Use with care! 865 */ 866int pdc_stable_initialize(void) 867{ 868 int retval; 869 unsigned long flags; 870 871 spin_lock_irqsave(&pdc_lock, flags); 872 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); 873 spin_unlock_irqrestore(&pdc_lock, flags); 874 875 return retval; 876} 877EXPORT_SYMBOL(pdc_stable_initialize); 878 879/** 880 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) 881 * @hwpath: fully bc.mod style path to the device. 882 * @initiator: the array to return the result into 883 * 884 * Get the SCSI operational parameters from PDC. 885 * Needed since HPUX never used BIOS or symbios card NVRAM. 886 * Most ncr/sym cards won't have an entry and just use whatever 887 * capabilities of the card are (eg Ultra, LVD). But there are 888 * several cases where it's useful: 889 * o set SCSI id for Multi-initiator clusters, 890 * o cable too long (ie SE scsi 10Mhz won't support 6m length), 891 * o bus width exported is less than what the interface chip supports. 892 */ 893int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) 894{ 895 int retval; 896 unsigned long flags; 897 898 spin_lock_irqsave(&pdc_lock, flags); 899 900/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ 901#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ 902 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) 903 904 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 905 __pa(pdc_result), __pa(hwpath)); 906 if (retval < PDC_OK) 907 goto out; 908 909 if (pdc_result[0] < 16) { 910 initiator->host_id = pdc_result[0]; 911 } else { 912 initiator->host_id = -1; 913 } 914 915 /* 916 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns 917 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively 918 */ 919 switch (pdc_result[1]) { 920 case 1: initiator->factor = 50; break; 921 case 2: initiator->factor = 25; break; 922 case 5: initiator->factor = 12; break; 923 case 25: initiator->factor = 10; break; 924 case 20: initiator->factor = 12; break; 925 case 40: initiator->factor = 10; break; 926 default: initiator->factor = -1; break; 927 } 928 929 if (IS_SPROCKETS()) { 930 initiator->width = pdc_result[4]; 931 initiator->mode = pdc_result[5]; 932 } else { 933 initiator->width = -1; 934 initiator->mode = -1; 935 } 936 937 out: 938 spin_unlock_irqrestore(&pdc_lock, flags); 939 940 return (retval >= PDC_OK); 941} 942EXPORT_SYMBOL(pdc_get_initiator); 943 944 945/** 946 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. 947 * @num_entries: The return value. 948 * @hpa: The HPA for the device. 949 * 950 * This PDC function returns the number of entries in the specified cell's 951 * interrupt table. 952 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 953 */ 954int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) 955{ 956 int retval; 957 unsigned long flags; 958 959 spin_lock_irqsave(&pdc_lock, flags); 960 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 961 __pa(pdc_result), hpa); 962 convert_to_wide(pdc_result); 963 *num_entries = pdc_result[0]; 964 spin_unlock_irqrestore(&pdc_lock, flags); 965 966 return retval; 967} 968 969/** 970 * pdc_pci_irt - Get the PCI interrupt routing table. 971 * @num_entries: The number of entries in the table. 972 * @hpa: The Hard Physical Address of the device. 973 * @tbl: 974 * 975 * Get the PCI interrupt routing table for the device at the given HPA. 976 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes 977 */ 978int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) 979{ 980 int retval; 981 unsigned long flags; 982 983 BUG_ON((unsigned long)tbl & 0x7); 984 985 spin_lock_irqsave(&pdc_lock, flags); 986 pdc_result[0] = num_entries; 987 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 988 __pa(pdc_result), hpa, __pa(tbl)); 989 spin_unlock_irqrestore(&pdc_lock, flags); 990 991 return retval; 992} 993 994 995#if 0 /* UNTEST CODE - left here in case someone needs it */ 996 997/** 998 * pdc_pci_config_read - read PCI config space. 999 * @hpa token from PDC to indicate which PCI device 1000 * @pci_addr configuration space address to read from 1001 * 1002 * Read PCI Configuration space *before* linux PCI subsystem is running. 1003 */ 1004unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) 1005{ 1006 int retval; 1007 unsigned long flags; 1008 1009 spin_lock_irqsave(&pdc_lock, flags); 1010 pdc_result[0] = 0; 1011 pdc_result[1] = 0; 1012 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 1013 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); 1014 spin_unlock_irqrestore(&pdc_lock, flags); 1015 1016 return retval ? ~0 : (unsigned int) pdc_result[0]; 1017} 1018 1019 1020/** 1021 * pdc_pci_config_write - read PCI config space. 1022 * @hpa token from PDC to indicate which PCI device 1023 * @pci_addr configuration space address to write 1024 * @val value we want in the 32-bit register 1025 * 1026 * Write PCI Configuration space *before* linux PCI subsystem is running. 1027 */ 1028void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) 1029{ 1030 int retval; 1031 unsigned long flags; 1032 1033 spin_lock_irqsave(&pdc_lock, flags); 1034 pdc_result[0] = 0; 1035 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 1036 __pa(pdc_result), hpa, 1037 cfg_addr&~3UL, 4UL, (unsigned long) val); 1038 spin_unlock_irqrestore(&pdc_lock, flags); 1039 1040 return retval; 1041} 1042#endif /* UNTESTED CODE */ 1043 1044/** 1045 * pdc_tod_read - Read the Time-Of-Day clock. 1046 * @tod: The return buffer: 1047 * 1048 * Read the Time-Of-Day clock 1049 */ 1050int pdc_tod_read(struct pdc_tod *tod) 1051{ 1052 int retval; 1053 unsigned long flags; 1054 1055 spin_lock_irqsave(&pdc_lock, flags); 1056 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); 1057 convert_to_wide(pdc_result); 1058 memcpy(tod, pdc_result, sizeof(*tod)); 1059 spin_unlock_irqrestore(&pdc_lock, flags); 1060 1061 return retval; 1062} 1063EXPORT_SYMBOL(pdc_tod_read); 1064 1065int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo) 1066{ 1067 int retval; 1068 unsigned long flags; 1069 1070 spin_lock_irqsave(&pdc_lock, flags); 1071 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0); 1072 convert_to_wide(pdc_result); 1073 memcpy(rinfo, pdc_result, sizeof(*rinfo)); 1074 spin_unlock_irqrestore(&pdc_lock, flags); 1075 1076 return retval; 1077} 1078 1079int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret, 1080 unsigned long *pdt_entries_ptr) 1081{ 1082 int retval; 1083 unsigned long flags; 1084 1085 spin_lock_irqsave(&pdc_lock, flags); 1086 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result), 1087 __pa(pdt_entries_ptr)); 1088 if (retval == PDC_OK) { 1089 convert_to_wide(pdc_result); 1090 memcpy(pret, pdc_result, sizeof(*pret)); 1091 } 1092 spin_unlock_irqrestore(&pdc_lock, flags); 1093 1094#ifdef CONFIG_64BIT 1095 /* 1096 * 64-bit kernels should not call this PDT function in narrow mode. 1097 * The pdt_entries_ptr array above will now contain 32-bit values 1098 */ 1099 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware)) 1100 return PDC_ERROR; 1101#endif 1102 1103 return retval; 1104} 1105 1106/** 1107 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware. 1108 * @ret: pointer to return buffer 1109 */ 1110int pdc_pim_toc11(struct pdc_toc_pim_11 *ret) 1111{ 1112 int retval; 1113 unsigned long flags; 1114 1115 spin_lock_irqsave(&pdc_lock, flags); 1116 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result), 1117 __pa(ret), sizeof(*ret)); 1118 spin_unlock_irqrestore(&pdc_lock, flags); 1119 return retval; 1120} 1121 1122/** 1123 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware. 1124 * @ret: pointer to return buffer 1125 */ 1126int pdc_pim_toc20(struct pdc_toc_pim_20 *ret) 1127{ 1128 int retval; 1129 unsigned long flags; 1130 1131 spin_lock_irqsave(&pdc_lock, flags); 1132 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result), 1133 __pa(ret), sizeof(*ret)); 1134 spin_unlock_irqrestore(&pdc_lock, flags); 1135 return retval; 1136} 1137 1138/** 1139 * pdc_tod_set - Set the Time-Of-Day clock. 1140 * @sec: The number of seconds since epoch. 1141 * @usec: The number of micro seconds. 1142 * 1143 * Set the Time-Of-Day clock. 1144 */ 1145int pdc_tod_set(unsigned long sec, unsigned long usec) 1146{ 1147 int retval; 1148 unsigned long flags; 1149 1150 spin_lock_irqsave(&pdc_lock, flags); 1151 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); 1152 spin_unlock_irqrestore(&pdc_lock, flags); 1153 1154 return retval; 1155} 1156EXPORT_SYMBOL(pdc_tod_set); 1157 1158#ifdef CONFIG_64BIT 1159int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, 1160 struct pdc_memory_table *tbl, unsigned long entries) 1161{ 1162 int retval; 1163 unsigned long flags; 1164 1165 spin_lock_irqsave(&pdc_lock, flags); 1166 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); 1167 convert_to_wide(pdc_result); 1168 memcpy(r_addr, pdc_result, sizeof(*r_addr)); 1169 memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); 1170 spin_unlock_irqrestore(&pdc_lock, flags); 1171 1172 return retval; 1173} 1174#endif /* CONFIG_64BIT */ 1175 1176/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap 1177 * so I guessed at unsigned long. Someone who knows what this does, can fix 1178 * it later. :) 1179 */ 1180int pdc_do_firm_test_reset(unsigned long ftc_bitmap) 1181{ 1182 int retval; 1183 unsigned long flags; 1184 1185 spin_lock_irqsave(&pdc_lock, flags); 1186 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, 1187 PDC_FIRM_TEST_MAGIC, ftc_bitmap); 1188 spin_unlock_irqrestore(&pdc_lock, flags); 1189 1190 return retval; 1191} 1192 1193/* 1194 * pdc_do_reset - Reset the system. 1195 * 1196 * Reset the system. 1197 */ 1198int pdc_do_reset(void) 1199{ 1200 int retval; 1201 unsigned long flags; 1202 1203 spin_lock_irqsave(&pdc_lock, flags); 1204 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); 1205 spin_unlock_irqrestore(&pdc_lock, flags); 1206 1207 return retval; 1208} 1209 1210/* 1211 * pdc_soft_power_info - Enable soft power switch. 1212 * @power_reg: address of soft power register 1213 * 1214 * Return the absolute address of the soft power switch register 1215 */ 1216int __init pdc_soft_power_info(unsigned long *power_reg) 1217{ 1218 int retval; 1219 unsigned long flags; 1220 1221 *power_reg = (unsigned long) (-1); 1222 1223 spin_lock_irqsave(&pdc_lock, flags); 1224 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); 1225 if (retval == PDC_OK) { 1226 convert_to_wide(pdc_result); 1227 *power_reg = f_extend(pdc_result[0]); 1228 } 1229 spin_unlock_irqrestore(&pdc_lock, flags); 1230 1231 return retval; 1232} 1233 1234/* 1235 * pdc_soft_power_button - Control the soft power button behaviour 1236 * @sw_control: 0 for hardware control, 1 for software control 1237 * 1238 * 1239 * This PDC function places the soft power button under software or 1240 * hardware control. 1241 * Under software control the OS may control to when to allow to shut 1242 * down the system. Under hardware control pressing the power button 1243 * powers off the system immediately. 1244 */ 1245int pdc_soft_power_button(int sw_control) 1246{ 1247 int retval; 1248 unsigned long flags; 1249 1250 spin_lock_irqsave(&pdc_lock, flags); 1251 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); 1252 spin_unlock_irqrestore(&pdc_lock, flags); 1253 1254 return retval; 1255} 1256 1257/* 1258 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. 1259 * Primarily a problem on T600 (which parisc-linux doesn't support) but 1260 * who knows what other platform firmware might do with this OS "hook". 1261 */ 1262void pdc_io_reset(void) 1263{ 1264 unsigned long flags; 1265 1266 spin_lock_irqsave(&pdc_lock, flags); 1267 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); 1268 spin_unlock_irqrestore(&pdc_lock, flags); 1269} 1270 1271/* 1272 * pdc_io_reset_devices - Hack to Stop USB controller 1273 * 1274 * If PDC used the usb controller, the usb controller 1275 * is still running and will crash the machines during iommu 1276 * setup, because of still running DMA. This PDC call 1277 * stops the USB controller. 1278 * Normally called after calling pdc_io_reset(). 1279 */ 1280void pdc_io_reset_devices(void) 1281{ 1282 unsigned long flags; 1283 1284 spin_lock_irqsave(&pdc_lock, flags); 1285 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); 1286 spin_unlock_irqrestore(&pdc_lock, flags); 1287} 1288 1289#endif /* defined(BOOTLOADER) */ 1290 1291/* locked by pdc_console_lock */ 1292static int __attribute__((aligned(8))) iodc_retbuf[32]; 1293static char __attribute__((aligned(64))) iodc_dbuf[4096]; 1294 1295/** 1296 * pdc_iodc_print - Console print using IODC. 1297 * @str: the string to output. 1298 * @count: length of str 1299 * 1300 * Note that only these special chars are architected for console IODC io: 1301 * BEL, BS, CR, and LF. Others are passed through. 1302 * Since the HP console requires CR+LF to perform a 'newline', we translate 1303 * "\n" to "\r\n". 1304 */ 1305int pdc_iodc_print(const unsigned char *str, unsigned count) 1306{ 1307 unsigned int i; 1308 unsigned long flags; 1309 1310 for (i = 0; i < count;) { 1311 switch(str[i]) { 1312 case '\n': 1313 iodc_dbuf[i+0] = '\r'; 1314 iodc_dbuf[i+1] = '\n'; 1315 i += 2; 1316 goto print; 1317 default: 1318 iodc_dbuf[i] = str[i]; 1319 i++; 1320 break; 1321 } 1322 } 1323 1324print: 1325 spin_lock_irqsave(&pdc_lock, flags); 1326 real32_call(PAGE0->mem_cons.iodc_io, 1327 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, 1328 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), 1329 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0); 1330 spin_unlock_irqrestore(&pdc_lock, flags); 1331 1332 return i; 1333} 1334 1335#if !defined(BOOTLOADER) 1336/** 1337 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. 1338 * 1339 * Read a character (non-blocking) from the PDC console, returns -1 if 1340 * key is not present. 1341 */ 1342int pdc_iodc_getc(void) 1343{ 1344 int ch; 1345 int status; 1346 unsigned long flags; 1347 1348 /* Bail if no console input device. */ 1349 if (!PAGE0->mem_kbd.iodc_io) 1350 return 0; 1351 1352 /* wait for a keyboard (rs232)-input */ 1353 spin_lock_irqsave(&pdc_lock, flags); 1354 real32_call(PAGE0->mem_kbd.iodc_io, 1355 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, 1356 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 1357 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0); 1358 1359 ch = *iodc_dbuf; 1360 status = *iodc_retbuf; 1361 spin_unlock_irqrestore(&pdc_lock, flags); 1362 1363 if (status == 0) 1364 return -1; 1365 1366 return ch; 1367} 1368 1369int pdc_sti_call(unsigned long func, unsigned long flags, 1370 unsigned long inptr, unsigned long outputr, 1371 unsigned long glob_cfg) 1372{ 1373 int retval; 1374 unsigned long irqflags; 1375 1376 spin_lock_irqsave(&pdc_lock, irqflags); 1377 retval = real32_call(func, flags, inptr, outputr, glob_cfg); 1378 spin_unlock_irqrestore(&pdc_lock, irqflags); 1379 1380 return retval; 1381} 1382EXPORT_SYMBOL(pdc_sti_call); 1383 1384#ifdef CONFIG_64BIT 1385/** 1386 * pdc_pat_cell_get_number - Returns the cell number. 1387 * @cell_info: The return buffer. 1388 * 1389 * This PDC call returns the cell number of the cell from which the call 1390 * is made. 1391 */ 1392int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) 1393{ 1394 int retval; 1395 unsigned long flags; 1396 1397 spin_lock_irqsave(&pdc_lock, flags); 1398 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); 1399 memcpy(cell_info, pdc_result, sizeof(*cell_info)); 1400 spin_unlock_irqrestore(&pdc_lock, flags); 1401 1402 return retval; 1403} 1404 1405/** 1406 * pdc_pat_cell_module - Retrieve the cell's module information. 1407 * @actcnt: The number of bytes written to mem_addr. 1408 * @ploc: The physical location. 1409 * @mod: The module index. 1410 * @view_type: The view of the address type. 1411 * @mem_addr: The return buffer. 1412 * 1413 * This PDC call returns information about each module attached to the cell 1414 * at the specified location. 1415 */ 1416int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, 1417 unsigned long view_type, void *mem_addr) 1418{ 1419 int retval; 1420 unsigned long flags; 1421 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); 1422 1423 spin_lock_irqsave(&pdc_lock, flags); 1424 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 1425 ploc, mod, view_type, __pa(&result)); 1426 if(!retval) { 1427 *actcnt = pdc_result[0]; 1428 memcpy(mem_addr, &result, *actcnt); 1429 } 1430 spin_unlock_irqrestore(&pdc_lock, flags); 1431 1432 return retval; 1433} 1434 1435/** 1436 * pdc_pat_cell_info - Retrieve the cell's information. 1437 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block. 1438 * @actcnt: The number of bytes which should be written to info. 1439 * @offset: offset of the structure. 1440 * @cell_number: The cell number which should be asked, or -1 for current cell. 1441 * 1442 * This PDC call returns information about the given cell (or all cells). 1443 */ 1444int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info, 1445 unsigned long *actcnt, unsigned long offset, 1446 unsigned long cell_number) 1447{ 1448 int retval; 1449 unsigned long flags; 1450 struct pdc_pat_cell_info_rtn_block result; 1451 1452 spin_lock_irqsave(&pdc_lock, flags); 1453 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO, 1454 __pa(pdc_result), __pa(&result), *actcnt, 1455 offset, cell_number); 1456 if (!retval) { 1457 *actcnt = pdc_result[0]; 1458 memcpy(info, &result, *actcnt); 1459 } 1460 spin_unlock_irqrestore(&pdc_lock, flags); 1461 1462 return retval; 1463} 1464 1465/** 1466 * pdc_pat_cpu_get_number - Retrieve the cpu number. 1467 * @cpu_info: The return buffer. 1468 * @hpa: The Hard Physical Address of the CPU. 1469 * 1470 * Retrieve the cpu number for the cpu at the specified HPA. 1471 */ 1472int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa) 1473{ 1474 int retval; 1475 unsigned long flags; 1476 1477 spin_lock_irqsave(&pdc_lock, flags); 1478 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, 1479 __pa(&pdc_result), hpa); 1480 memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); 1481 spin_unlock_irqrestore(&pdc_lock, flags); 1482 1483 return retval; 1484} 1485 1486/** 1487 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. 1488 * @num_entries: The return value. 1489 * @cell_num: The target cell. 1490 * 1491 * This PDC function returns the number of entries in the specified cell's 1492 * interrupt table. 1493 */ 1494int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) 1495{ 1496 int retval; 1497 unsigned long flags; 1498 1499 spin_lock_irqsave(&pdc_lock, flags); 1500 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, 1501 __pa(pdc_result), cell_num); 1502 *num_entries = pdc_result[0]; 1503 spin_unlock_irqrestore(&pdc_lock, flags); 1504 1505 return retval; 1506} 1507 1508/** 1509 * pdc_pat_get_irt - Retrieve the cell's interrupt table. 1510 * @r_addr: The return buffer. 1511 * @cell_num: The target cell. 1512 * 1513 * This PDC function returns the actual interrupt table for the specified cell. 1514 */ 1515int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) 1516{ 1517 int retval; 1518 unsigned long flags; 1519 1520 spin_lock_irqsave(&pdc_lock, flags); 1521 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, 1522 __pa(r_addr), cell_num); 1523 spin_unlock_irqrestore(&pdc_lock, flags); 1524 1525 return retval; 1526} 1527 1528/** 1529 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. 1530 * @actlen: The return buffer. 1531 * @mem_addr: Pointer to the memory buffer. 1532 * @count: The number of bytes to read from the buffer. 1533 * @offset: The offset with respect to the beginning of the buffer. 1534 * 1535 */ 1536int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 1537 unsigned long count, unsigned long offset) 1538{ 1539 int retval; 1540 unsigned long flags; 1541 1542 spin_lock_irqsave(&pdc_lock, flags); 1543 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 1544 __pa(pdc_result2), count, offset); 1545 *actual_len = pdc_result[0]; 1546 memcpy(mem_addr, pdc_result2, *actual_len); 1547 spin_unlock_irqrestore(&pdc_lock, flags); 1548 1549 return retval; 1550} 1551 1552/** 1553 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions. 1554 * @legacy_rev: The legacy revision. 1555 * @pat_rev: The PAT revision. 1556 * @pdc_cap: The PDC capabilities. 1557 * 1558 */ 1559int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev, 1560 unsigned long *pat_rev, unsigned long *pdc_cap) 1561{ 1562 int retval; 1563 unsigned long flags; 1564 1565 spin_lock_irqsave(&pdc_lock, flags); 1566 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV, 1567 __pa(pdc_result)); 1568 if (retval == PDC_OK) { 1569 *legacy_rev = pdc_result[0]; 1570 *pat_rev = pdc_result[1]; 1571 *pdc_cap = pdc_result[2]; 1572 } 1573 spin_unlock_irqrestore(&pdc_lock, flags); 1574 1575 return retval; 1576} 1577 1578 1579/** 1580 * pdc_pat_io_pci_cfg_read - Read PCI configuration space. 1581 * @pci_addr: PCI configuration space address for which the read request is being made. 1582 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 1583 * @mem_addr: Pointer to return memory buffer. 1584 * 1585 */ 1586int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) 1587{ 1588 int retval; 1589 unsigned long flags; 1590 1591 spin_lock_irqsave(&pdc_lock, flags); 1592 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, 1593 __pa(pdc_result), pci_addr, pci_size); 1594 switch(pci_size) { 1595 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break; 1596 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break; 1597 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break; 1598 } 1599 spin_unlock_irqrestore(&pdc_lock, flags); 1600 1601 return retval; 1602} 1603 1604/** 1605 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. 1606 * @pci_addr: PCI configuration space address for which the write request is being made. 1607 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 1608 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 1609 * written to PCI Config space. 1610 * 1611 */ 1612int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) 1613{ 1614 int retval; 1615 unsigned long flags; 1616 1617 spin_lock_irqsave(&pdc_lock, flags); 1618 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, 1619 pci_addr, pci_size, val); 1620 spin_unlock_irqrestore(&pdc_lock, flags); 1621 1622 return retval; 1623} 1624 1625/** 1626 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table 1627 * @rinfo: memory pdt information 1628 * 1629 */ 1630int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo) 1631{ 1632 int retval; 1633 unsigned long flags; 1634 1635 spin_lock_irqsave(&pdc_lock, flags); 1636 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO, 1637 __pa(&pdc_result)); 1638 if (retval == PDC_OK) 1639 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1640 spin_unlock_irqrestore(&pdc_lock, flags); 1641 1642 return retval; 1643} 1644 1645/** 1646 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation 1647 * table of a cell 1648 * @rinfo: memory pdt information 1649 * @cell: cell number 1650 * 1651 */ 1652int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo, 1653 unsigned long cell) 1654{ 1655 int retval; 1656 unsigned long flags; 1657 1658 spin_lock_irqsave(&pdc_lock, flags); 1659 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO, 1660 __pa(&pdc_result), cell); 1661 if (retval == PDC_OK) 1662 memcpy(rinfo, &pdc_result, sizeof(*rinfo)); 1663 spin_unlock_irqrestore(&pdc_lock, flags); 1664 1665 return retval; 1666} 1667 1668/** 1669 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware 1670 * @pret: array of PDT entries 1671 * @pdt_entries_ptr: ptr to hold number of PDT entries 1672 * @max_entries: maximum number of entries to be read 1673 * 1674 */ 1675int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1676 unsigned long *pdt_entries_ptr, unsigned long max_entries) 1677{ 1678 int retval; 1679 unsigned long flags, entries; 1680 1681 spin_lock_irqsave(&pdc_lock, flags); 1682 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */ 1683 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ, 1684 __pa(&pdc_result), parisc_cell_num, 1685 __pa(pdt_entries_ptr)); 1686 1687 if (retval == PDC_OK) { 1688 /* build up return value as for PDC_PAT_MEM_PD_READ */ 1689 entries = min(pdc_result[0], max_entries); 1690 pret->pdt_entries = entries; 1691 pret->actual_count_bytes = entries * sizeof(unsigned long); 1692 } 1693 1694 spin_unlock_irqrestore(&pdc_lock, flags); 1695 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries); 1696 1697 return retval; 1698} 1699/** 1700 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware 1701 * @pret: array of PDT entries 1702 * @pdt_entries_ptr: ptr to hold number of PDT entries 1703 * @count: number of bytes to read 1704 * @offset: offset to start (in bytes) 1705 * 1706 */ 1707int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret, 1708 unsigned long *pdt_entries_ptr, unsigned long count, 1709 unsigned long offset) 1710{ 1711 int retval; 1712 unsigned long flags, entries; 1713 1714 spin_lock_irqsave(&pdc_lock, flags); 1715 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ, 1716 __pa(&pdc_result), __pa(pdt_entries_ptr), 1717 count, offset); 1718 1719 if (retval == PDC_OK) { 1720 entries = min(pdc_result[0], count); 1721 pret->actual_count_bytes = entries; 1722 pret->pdt_entries = entries / sizeof(unsigned long); 1723 } 1724 1725 spin_unlock_irqrestore(&pdc_lock, flags); 1726 1727 return retval; 1728} 1729 1730/** 1731 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware 1732 * @pret: ptr to hold returned information 1733 * @phys_addr: physical address to examine 1734 * 1735 */ 1736int pdc_pat_mem_get_dimm_phys_location( 1737 struct pdc_pat_mem_phys_mem_location *pret, 1738 unsigned long phys_addr) 1739{ 1740 int retval; 1741 unsigned long flags; 1742 1743 spin_lock_irqsave(&pdc_lock, flags); 1744 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS, 1745 __pa(&pdc_result), phys_addr); 1746 1747 if (retval == PDC_OK) 1748 memcpy(pret, &pdc_result, sizeof(*pret)); 1749 1750 spin_unlock_irqrestore(&pdc_lock, flags); 1751 1752 return retval; 1753} 1754#endif /* CONFIG_64BIT */ 1755#endif /* defined(BOOTLOADER) */ 1756 1757 1758/***************** 32-bit real-mode calls ***********/ 1759/* The struct below is used 1760 * to overlay real_stack (real2.S), preparing a 32-bit call frame. 1761 * real32_call_asm() then uses this stack in narrow real mode 1762 */ 1763 1764struct narrow_stack { 1765 /* use int, not long which is 64 bits */ 1766 unsigned int arg13; 1767 unsigned int arg12; 1768 unsigned int arg11; 1769 unsigned int arg10; 1770 unsigned int arg9; 1771 unsigned int arg8; 1772 unsigned int arg7; 1773 unsigned int arg6; 1774 unsigned int arg5; 1775 unsigned int arg4; 1776 unsigned int arg3; 1777 unsigned int arg2; 1778 unsigned int arg1; 1779 unsigned int arg0; 1780 unsigned int frame_marker[8]; 1781 unsigned int sp; 1782 /* in reality, there's nearly 8k of stack after this */ 1783}; 1784 1785long real32_call(unsigned long fn, ...) 1786{ 1787 va_list args; 1788 extern struct narrow_stack real_stack; 1789 extern unsigned long real32_call_asm(unsigned int *, 1790 unsigned int *, 1791 unsigned int); 1792 1793 va_start(args, fn); 1794 real_stack.arg0 = va_arg(args, unsigned int); 1795 real_stack.arg1 = va_arg(args, unsigned int); 1796 real_stack.arg2 = va_arg(args, unsigned int); 1797 real_stack.arg3 = va_arg(args, unsigned int); 1798 real_stack.arg4 = va_arg(args, unsigned int); 1799 real_stack.arg5 = va_arg(args, unsigned int); 1800 real_stack.arg6 = va_arg(args, unsigned int); 1801 real_stack.arg7 = va_arg(args, unsigned int); 1802 real_stack.arg8 = va_arg(args, unsigned int); 1803 real_stack.arg9 = va_arg(args, unsigned int); 1804 real_stack.arg10 = va_arg(args, unsigned int); 1805 real_stack.arg11 = va_arg(args, unsigned int); 1806 real_stack.arg12 = va_arg(args, unsigned int); 1807 real_stack.arg13 = va_arg(args, unsigned int); 1808 va_end(args); 1809 1810 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); 1811} 1812 1813#ifdef CONFIG_64BIT 1814/***************** 64-bit real-mode calls ***********/ 1815 1816struct wide_stack { 1817 unsigned long arg0; 1818 unsigned long arg1; 1819 unsigned long arg2; 1820 unsigned long arg3; 1821 unsigned long arg4; 1822 unsigned long arg5; 1823 unsigned long arg6; 1824 unsigned long arg7; 1825 unsigned long arg8; 1826 unsigned long arg9; 1827 unsigned long arg10; 1828 unsigned long arg11; 1829 unsigned long arg12; 1830 unsigned long arg13; 1831 unsigned long frame_marker[2]; /* rp, previous sp */ 1832 unsigned long sp; 1833 /* in reality, there's nearly 8k of stack after this */ 1834}; 1835 1836long real64_call(unsigned long fn, ...) 1837{ 1838 va_list args; 1839 extern struct wide_stack real64_stack; 1840 extern unsigned long real64_call_asm(unsigned long *, 1841 unsigned long *, 1842 unsigned long); 1843 1844 va_start(args, fn); 1845 real64_stack.arg0 = va_arg(args, unsigned long); 1846 real64_stack.arg1 = va_arg(args, unsigned long); 1847 real64_stack.arg2 = va_arg(args, unsigned long); 1848 real64_stack.arg3 = va_arg(args, unsigned long); 1849 real64_stack.arg4 = va_arg(args, unsigned long); 1850 real64_stack.arg5 = va_arg(args, unsigned long); 1851 real64_stack.arg6 = va_arg(args, unsigned long); 1852 real64_stack.arg7 = va_arg(args, unsigned long); 1853 real64_stack.arg8 = va_arg(args, unsigned long); 1854 real64_stack.arg9 = va_arg(args, unsigned long); 1855 real64_stack.arg10 = va_arg(args, unsigned long); 1856 real64_stack.arg11 = va_arg(args, unsigned long); 1857 real64_stack.arg12 = va_arg(args, unsigned long); 1858 real64_stack.arg13 = va_arg(args, unsigned long); 1859 va_end(args); 1860 1861 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); 1862} 1863 1864#endif /* CONFIG_64BIT */