cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kprobes.c (5478B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * arch/parisc/kernel/kprobes.c
      4 *
      5 * PA-RISC kprobes implementation
      6 *
      7 * Copyright (c) 2019 Sven Schnelle <svens@stackframe.org>
      8 * Copyright (c) 2022 Helge Deller <deller@gmx.de>
      9 */
     10
     11#include <linux/types.h>
     12#include <linux/kprobes.h>
     13#include <linux/slab.h>
     14#include <asm/cacheflush.h>
     15#include <asm/patch.h>
     16
     17DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
     18DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
     19
     20int __kprobes arch_prepare_kprobe(struct kprobe *p)
     21{
     22	if ((unsigned long)p->addr & 3UL)
     23		return -EINVAL;
     24
     25	p->ainsn.insn = get_insn_slot();
     26	if (!p->ainsn.insn)
     27		return -ENOMEM;
     28
     29	/*
     30	 * Set up new instructions. Second break instruction will
     31	 * trigger call of parisc_kprobe_ss_handler().
     32	 */
     33	p->opcode = *p->addr;
     34	p->ainsn.insn[0] = p->opcode;
     35	p->ainsn.insn[1] = PARISC_KPROBES_BREAK_INSN2;
     36
     37	flush_insn_slot(p);
     38	return 0;
     39}
     40
     41void __kprobes arch_remove_kprobe(struct kprobe *p)
     42{
     43	if (!p->ainsn.insn)
     44		return;
     45
     46	free_insn_slot(p->ainsn.insn, 0);
     47	p->ainsn.insn = NULL;
     48}
     49
     50void __kprobes arch_arm_kprobe(struct kprobe *p)
     51{
     52	patch_text(p->addr, PARISC_KPROBES_BREAK_INSN);
     53}
     54
     55void __kprobes arch_disarm_kprobe(struct kprobe *p)
     56{
     57	patch_text(p->addr, p->opcode);
     58}
     59
     60static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
     61{
     62	kcb->prev_kprobe.kp = kprobe_running();
     63	kcb->prev_kprobe.status = kcb->kprobe_status;
     64}
     65
     66static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
     67{
     68	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
     69	kcb->kprobe_status = kcb->prev_kprobe.status;
     70}
     71
     72static inline void __kprobes set_current_kprobe(struct kprobe *p)
     73{
     74	__this_cpu_write(current_kprobe, p);
     75}
     76
     77static void __kprobes setup_singlestep(struct kprobe *p,
     78		struct kprobe_ctlblk *kcb, struct pt_regs *regs)
     79{
     80	kcb->iaoq[0] = regs->iaoq[0];
     81	kcb->iaoq[1] = regs->iaoq[1];
     82	instruction_pointer_set(regs, (unsigned long)p->ainsn.insn);
     83}
     84
     85int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs)
     86{
     87	struct kprobe *p;
     88	struct kprobe_ctlblk *kcb;
     89
     90	preempt_disable();
     91
     92	kcb = get_kprobe_ctlblk();
     93	p = get_kprobe((unsigned long *)regs->iaoq[0]);
     94
     95	if (!p) {
     96		preempt_enable_no_resched();
     97		return 0;
     98	}
     99
    100	if (kprobe_running()) {
    101		/*
    102		 * We have reentered the kprobe_handler, since another kprobe
    103		 * was hit while within the handler, we save the original
    104		 * kprobes and single step on the instruction of the new probe
    105		 * without calling any user handlers to avoid recursive
    106		 * kprobes.
    107		 */
    108		save_previous_kprobe(kcb);
    109		set_current_kprobe(p);
    110		kprobes_inc_nmissed_count(p);
    111		setup_singlestep(p, kcb, regs);
    112		kcb->kprobe_status = KPROBE_REENTER;
    113		return 1;
    114	}
    115
    116	set_current_kprobe(p);
    117	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
    118
    119	/* If we have no pre-handler or it returned 0, we continue with
    120	 * normal processing. If we have a pre-handler and it returned
    121	 * non-zero - which means user handler setup registers to exit
    122	 * to another instruction, we must skip the single stepping.
    123	 */
    124
    125	if (!p->pre_handler || !p->pre_handler(p, regs)) {
    126		setup_singlestep(p, kcb, regs);
    127		kcb->kprobe_status = KPROBE_HIT_SS;
    128	} else {
    129		reset_current_kprobe();
    130		preempt_enable_no_resched();
    131	}
    132	return 1;
    133}
    134
    135int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs)
    136{
    137	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
    138	struct kprobe *p = kprobe_running();
    139
    140	if (!p)
    141		return 0;
    142
    143	if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4)
    144		return 0;
    145
    146	/* restore back original saved kprobe variables and continue */
    147	if (kcb->kprobe_status == KPROBE_REENTER) {
    148		restore_previous_kprobe(kcb);
    149		return 1;
    150	}
    151
    152	/* for absolute branch instructions we can copy iaoq_b. for relative
    153	 * branch instructions we need to calculate the new address based on the
    154	 * difference between iaoq_f and iaoq_b. We cannot use iaoq_b without
    155	 * modifications because it's based on our ainsn.insn address.
    156	 */
    157
    158	if (p->post_handler)
    159		p->post_handler(p, regs, 0);
    160
    161	switch (regs->iir >> 26) {
    162	case 0x38: /* BE */
    163	case 0x39: /* BE,L */
    164	case 0x3a: /* BV */
    165	case 0x3b: /* BVE */
    166		/* for absolute branches, regs->iaoq[1] has already the right
    167		 * address
    168		 */
    169		regs->iaoq[0] = kcb->iaoq[1];
    170		break;
    171	default:
    172		regs->iaoq[0] = kcb->iaoq[1];
    173		regs->iaoq[1] = regs->iaoq[0] + 4;
    174		break;
    175	}
    176	kcb->kprobe_status = KPROBE_HIT_SSDONE;
    177	reset_current_kprobe();
    178	return 1;
    179}
    180
    181void __kretprobe_trampoline(void)
    182{
    183	asm volatile("nop");
    184	asm volatile("nop");
    185}
    186
    187static int __kprobes trampoline_probe_handler(struct kprobe *p,
    188					      struct pt_regs *regs);
    189
    190static struct kprobe trampoline_p = {
    191	.pre_handler = trampoline_probe_handler
    192};
    193
    194static int __kprobes trampoline_probe_handler(struct kprobe *p,
    195					      struct pt_regs *regs)
    196{
    197	__kretprobe_trampoline_handler(regs, NULL);
    198
    199	return 1;
    200}
    201
    202void arch_kretprobe_fixup_return(struct pt_regs *regs,
    203				 kprobe_opcode_t *correct_ret_addr)
    204{
    205	regs->gr[2] = (unsigned long)correct_ret_addr;
    206}
    207
    208void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
    209				      struct pt_regs *regs)
    210{
    211	ri->ret_addr = (kprobe_opcode_t *)regs->gr[2];
    212	ri->fp = NULL;
    213
    214	/* Replace the return addr with trampoline addr. */
    215	regs->gr[2] = (unsigned long)trampoline_p.addr;
    216}
    217
    218int __kprobes arch_trampoline_kprobe(struct kprobe *p)
    219{
    220	return p->addr == trampoline_p.addr;
    221}
    222
    223int __init arch_init_kprobes(void)
    224{
    225	trampoline_p.addr = (kprobe_opcode_t *)
    226		dereference_function_descriptor(__kretprobe_trampoline);
    227	return register_kprobe(&trampoline_p);
    228}