cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

module.c (27227B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*    Kernel dynamically loadable module help for PARISC.
      3 *
      4 *    The best reference for this stuff is probably the Processor-
      5 *    Specific ELF Supplement for PA-RISC:
      6 *        https://parisc.wiki.kernel.org/index.php/File:Elf-pa-hp.pdf
      7 *
      8 *    Linux/PA-RISC Project
      9 *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
     10 *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
     11 *
     12 *    Notes:
     13 *    - PLT stub handling
     14 *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
     15 *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
     16 *      fail to reach their PLT stub if we only create one big stub array for
     17 *      all sections at the beginning of the core or init section.
     18 *      Instead we now insert individual PLT stub entries directly in front of
     19 *      of the code sections where the stubs are actually called.
     20 *      This reduces the distance between the PCREL location and the stub entry
     21 *      so that the relocations can be fulfilled.
     22 *      While calculating the final layout of the kernel module in memory, the
     23 *      kernel module loader calls arch_mod_section_prepend() to request the
     24 *      to be reserved amount of memory in front of each individual section.
     25 *
     26 *    - SEGREL32 handling
     27 *      We are not doing SEGREL32 handling correctly. According to the ABI, we
     28 *      should do a value offset, like this:
     29 *			if (in_init(me, (void *)val))
     30 *				val -= (uint32_t)me->init_layout.base;
     31 *			else
     32 *				val -= (uint32_t)me->core_layout.base;
     33 *	However, SEGREL32 is used only for PARISC unwind entries, and we want
     34 *	those entries to have an absolute address, and not just an offset.
     35 *
     36 *	The unwind table mechanism has the ability to specify an offset for
     37 *	the unwind table; however, because we split off the init functions into
     38 *	a different piece of memory, it is not possible to do this using a
     39 *	single offset. Instead, we use the above hack for now.
     40 */
     41
     42#include <linux/moduleloader.h>
     43#include <linux/elf.h>
     44#include <linux/vmalloc.h>
     45#include <linux/fs.h>
     46#include <linux/ftrace.h>
     47#include <linux/string.h>
     48#include <linux/kernel.h>
     49#include <linux/bug.h>
     50#include <linux/mm.h>
     51#include <linux/slab.h>
     52
     53#include <asm/unwind.h>
     54#include <asm/sections.h>
     55
     56#define RELOC_REACHABLE(val, bits) \
     57	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
     58	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
     59	0 : 1)
     60
     61#define CHECK_RELOC(val, bits) \
     62	if (!RELOC_REACHABLE(val, bits)) { \
     63		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
     64		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
     65		return -ENOEXEC;			\
     66	}
     67
     68/* Maximum number of GOT entries. We use a long displacement ldd from
     69 * the bottom of the table, which has a maximum signed displacement of
     70 * 0x3fff; however, since we're only going forward, this becomes
     71 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
     72 * at most 1023 entries.
     73 * To overcome this 14bit displacement with some kernel modules, we'll
     74 * use instead the unusal 16bit displacement method (see reassemble_16a)
     75 * which gives us a maximum positive displacement of 0x7fff, and as such
     76 * allows us to allocate up to 4095 GOT entries. */
     77#define MAX_GOTS	4095
     78
     79/* three functions to determine where in the module core
     80 * or init pieces the location is */
     81static inline int in_init(struct module *me, void *loc)
     82{
     83	return (loc >= me->init_layout.base &&
     84		loc <= (me->init_layout.base + me->init_layout.size));
     85}
     86
     87static inline int in_core(struct module *me, void *loc)
     88{
     89	return (loc >= me->core_layout.base &&
     90		loc <= (me->core_layout.base + me->core_layout.size));
     91}
     92
     93static inline int in_local(struct module *me, void *loc)
     94{
     95	return in_init(me, loc) || in_core(me, loc);
     96}
     97
     98#ifndef CONFIG_64BIT
     99struct got_entry {
    100	Elf32_Addr addr;
    101};
    102
    103struct stub_entry {
    104	Elf32_Word insns[2]; /* each stub entry has two insns */
    105};
    106#else
    107struct got_entry {
    108	Elf64_Addr addr;
    109};
    110
    111struct stub_entry {
    112	Elf64_Word insns[4]; /* each stub entry has four insns */
    113};
    114#endif
    115
    116/* Field selection types defined by hppa */
    117#define rnd(x)			(((x)+0x1000)&~0x1fff)
    118/* fsel: full 32 bits */
    119#define fsel(v,a)		((v)+(a))
    120/* lsel: select left 21 bits */
    121#define lsel(v,a)		(((v)+(a))>>11)
    122/* rsel: select right 11 bits */
    123#define rsel(v,a)		(((v)+(a))&0x7ff)
    124/* lrsel with rounding of addend to nearest 8k */
    125#define lrsel(v,a)		(((v)+rnd(a))>>11)
    126/* rrsel with rounding of addend to nearest 8k */
    127#define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
    128
    129#define mask(x,sz)		((x) & ~((1<<(sz))-1))
    130
    131
    132/* The reassemble_* functions prepare an immediate value for
    133   insertion into an opcode. pa-risc uses all sorts of weird bitfields
    134   in the instruction to hold the value.  */
    135static inline int sign_unext(int x, int len)
    136{
    137	int len_ones;
    138
    139	len_ones = (1 << len) - 1;
    140	return x & len_ones;
    141}
    142
    143static inline int low_sign_unext(int x, int len)
    144{
    145	int sign, temp;
    146
    147	sign = (x >> (len-1)) & 1;
    148	temp = sign_unext(x, len-1);
    149	return (temp << 1) | sign;
    150}
    151
    152static inline int reassemble_14(int as14)
    153{
    154	return (((as14 & 0x1fff) << 1) |
    155		((as14 & 0x2000) >> 13));
    156}
    157
    158static inline int reassemble_16a(int as16)
    159{
    160	int s, t;
    161
    162	/* Unusual 16-bit encoding, for wide mode only.  */
    163	t = (as16 << 1) & 0xffff;
    164	s = (as16 & 0x8000);
    165	return (t ^ s ^ (s >> 1)) | (s >> 15);
    166}
    167
    168
    169static inline int reassemble_17(int as17)
    170{
    171	return (((as17 & 0x10000) >> 16) |
    172		((as17 & 0x0f800) << 5) |
    173		((as17 & 0x00400) >> 8) |
    174		((as17 & 0x003ff) << 3));
    175}
    176
    177static inline int reassemble_21(int as21)
    178{
    179	return (((as21 & 0x100000) >> 20) |
    180		((as21 & 0x0ffe00) >> 8) |
    181		((as21 & 0x000180) << 7) |
    182		((as21 & 0x00007c) << 14) |
    183		((as21 & 0x000003) << 12));
    184}
    185
    186static inline int reassemble_22(int as22)
    187{
    188	return (((as22 & 0x200000) >> 21) |
    189		((as22 & 0x1f0000) << 5) |
    190		((as22 & 0x00f800) << 5) |
    191		((as22 & 0x000400) >> 8) |
    192		((as22 & 0x0003ff) << 3));
    193}
    194
    195void *module_alloc(unsigned long size)
    196{
    197	/* using RWX means less protection for modules, but it's
    198	 * easier than trying to map the text, data, init_text and
    199	 * init_data correctly */
    200	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
    201				    GFP_KERNEL,
    202				    PAGE_KERNEL_RWX, 0, NUMA_NO_NODE,
    203				    __builtin_return_address(0));
    204}
    205
    206#ifndef CONFIG_64BIT
    207static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
    208{
    209	return 0;
    210}
    211
    212static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
    213{
    214	return 0;
    215}
    216
    217static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
    218{
    219	unsigned long cnt = 0;
    220
    221	for (; n > 0; n--, rela++)
    222	{
    223		switch (ELF32_R_TYPE(rela->r_info)) {
    224			case R_PARISC_PCREL17F:
    225			case R_PARISC_PCREL22F:
    226				cnt++;
    227		}
    228	}
    229
    230	return cnt;
    231}
    232#else
    233static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
    234{
    235	unsigned long cnt = 0;
    236
    237	for (; n > 0; n--, rela++)
    238	{
    239		switch (ELF64_R_TYPE(rela->r_info)) {
    240			case R_PARISC_LTOFF21L:
    241			case R_PARISC_LTOFF14R:
    242			case R_PARISC_PCREL22F:
    243				cnt++;
    244		}
    245	}
    246
    247	return cnt;
    248}
    249
    250static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
    251{
    252	unsigned long cnt = 0;
    253
    254	for (; n > 0; n--, rela++)
    255	{
    256		switch (ELF64_R_TYPE(rela->r_info)) {
    257			case R_PARISC_FPTR64:
    258				cnt++;
    259		}
    260	}
    261
    262	return cnt;
    263}
    264
    265static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
    266{
    267	unsigned long cnt = 0;
    268
    269	for (; n > 0; n--, rela++)
    270	{
    271		switch (ELF64_R_TYPE(rela->r_info)) {
    272			case R_PARISC_PCREL22F:
    273				cnt++;
    274		}
    275	}
    276
    277	return cnt;
    278}
    279#endif
    280
    281void module_arch_freeing_init(struct module *mod)
    282{
    283	kfree(mod->arch.section);
    284	mod->arch.section = NULL;
    285}
    286
    287/* Additional bytes needed in front of individual sections */
    288unsigned int arch_mod_section_prepend(struct module *mod,
    289				      unsigned int section)
    290{
    291	/* size needed for all stubs of this section (including
    292	 * one additional for correct alignment of the stubs) */
    293	return (mod->arch.section[section].stub_entries + 1)
    294		* sizeof(struct stub_entry);
    295}
    296
    297#define CONST
    298int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
    299			      CONST Elf_Shdr *sechdrs,
    300			      CONST char *secstrings,
    301			      struct module *me)
    302{
    303	unsigned long gots = 0, fdescs = 0, len;
    304	unsigned int i;
    305
    306	len = hdr->e_shnum * sizeof(me->arch.section[0]);
    307	me->arch.section = kzalloc(len, GFP_KERNEL);
    308	if (!me->arch.section)
    309		return -ENOMEM;
    310
    311	for (i = 1; i < hdr->e_shnum; i++) {
    312		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
    313		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
    314		unsigned int count, s;
    315
    316		if (strncmp(secstrings + sechdrs[i].sh_name,
    317			    ".PARISC.unwind", 14) == 0)
    318			me->arch.unwind_section = i;
    319
    320		if (sechdrs[i].sh_type != SHT_RELA)
    321			continue;
    322
    323		/* some of these are not relevant for 32-bit/64-bit
    324		 * we leave them here to make the code common. the
    325		 * compiler will do its thing and optimize out the
    326		 * stuff we don't need
    327		 */
    328		gots += count_gots(rels, nrels);
    329		fdescs += count_fdescs(rels, nrels);
    330
    331		/* XXX: By sorting the relocs and finding duplicate entries
    332		 *  we could reduce the number of necessary stubs and save
    333		 *  some memory. */
    334		count = count_stubs(rels, nrels);
    335		if (!count)
    336			continue;
    337
    338		/* so we need relocation stubs. reserve necessary memory. */
    339		/* sh_info gives the section for which we need to add stubs. */
    340		s = sechdrs[i].sh_info;
    341
    342		/* each code section should only have one relocation section */
    343		WARN_ON(me->arch.section[s].stub_entries);
    344
    345		/* store number of stubs we need for this section */
    346		me->arch.section[s].stub_entries += count;
    347	}
    348
    349	/* align things a bit */
    350	me->core_layout.size = ALIGN(me->core_layout.size, 16);
    351	me->arch.got_offset = me->core_layout.size;
    352	me->core_layout.size += gots * sizeof(struct got_entry);
    353
    354	me->core_layout.size = ALIGN(me->core_layout.size, 16);
    355	me->arch.fdesc_offset = me->core_layout.size;
    356	me->core_layout.size += fdescs * sizeof(Elf_Fdesc);
    357
    358	me->arch.got_max = gots;
    359	me->arch.fdesc_max = fdescs;
    360
    361	return 0;
    362}
    363
    364#ifdef CONFIG_64BIT
    365static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
    366{
    367	unsigned int i;
    368	struct got_entry *got;
    369
    370	value += addend;
    371
    372	BUG_ON(value == 0);
    373
    374	got = me->core_layout.base + me->arch.got_offset;
    375	for (i = 0; got[i].addr; i++)
    376		if (got[i].addr == value)
    377			goto out;
    378
    379	BUG_ON(++me->arch.got_count > me->arch.got_max);
    380
    381	got[i].addr = value;
    382 out:
    383	pr_debug("GOT ENTRY %d[%lx] val %lx\n", i, i*sizeof(struct got_entry),
    384	       value);
    385	return i * sizeof(struct got_entry);
    386}
    387#endif /* CONFIG_64BIT */
    388
    389#ifdef CONFIG_64BIT
    390static Elf_Addr get_fdesc(struct module *me, unsigned long value)
    391{
    392	Elf_Fdesc *fdesc = me->core_layout.base + me->arch.fdesc_offset;
    393
    394	if (!value) {
    395		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
    396		return 0;
    397	}
    398
    399	/* Look for existing fdesc entry. */
    400	while (fdesc->addr) {
    401		if (fdesc->addr == value)
    402			return (Elf_Addr)fdesc;
    403		fdesc++;
    404	}
    405
    406	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
    407
    408	/* Create new one */
    409	fdesc->addr = value;
    410	fdesc->gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
    411	return (Elf_Addr)fdesc;
    412}
    413#endif /* CONFIG_64BIT */
    414
    415enum elf_stub_type {
    416	ELF_STUB_GOT,
    417	ELF_STUB_MILLI,
    418	ELF_STUB_DIRECT,
    419};
    420
    421static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
    422	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
    423{
    424	struct stub_entry *stub;
    425	int __maybe_unused d;
    426
    427	/* initialize stub_offset to point in front of the section */
    428	if (!me->arch.section[targetsec].stub_offset) {
    429		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
    430				sizeof(struct stub_entry);
    431		/* get correct alignment for the stubs */
    432		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
    433		me->arch.section[targetsec].stub_offset = loc0;
    434	}
    435
    436	/* get address of stub entry */
    437	stub = (void *) me->arch.section[targetsec].stub_offset;
    438	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
    439
    440	/* do not write outside available stub area */
    441	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
    442
    443
    444#ifndef CONFIG_64BIT
    445/* for 32-bit the stub looks like this:
    446 * 	ldil L'XXX,%r1
    447 * 	be,n R'XXX(%sr4,%r1)
    448 */
    449	//value = *(unsigned long *)((value + addend) & ~3); /* why? */
    450
    451	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
    452	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/
    453
    454	stub->insns[0] |= reassemble_21(lrsel(value, addend));
    455	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
    456
    457#else
    458/* for 64-bit we have three kinds of stubs:
    459 * for normal function calls:
    460 * 	ldd 0(%dp),%dp
    461 * 	ldd 10(%dp), %r1
    462 * 	bve (%r1)
    463 * 	ldd 18(%dp), %dp
    464 *
    465 * for millicode:
    466 * 	ldil 0, %r1
    467 * 	ldo 0(%r1), %r1
    468 * 	ldd 10(%r1), %r1
    469 * 	bve,n (%r1)
    470 *
    471 * for direct branches (jumps between different section of the
    472 * same module):
    473 *	ldil 0, %r1
    474 *	ldo 0(%r1), %r1
    475 *	bve,n (%r1)
    476 */
    477	switch (stub_type) {
    478	case ELF_STUB_GOT:
    479		d = get_got(me, value, addend);
    480		if (d <= 15) {
    481			/* Format 5 */
    482			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
    483			stub->insns[0] |= low_sign_unext(d, 5) << 16;
    484		} else {
    485			/* Format 3 */
    486			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
    487			stub->insns[0] |= reassemble_16a(d);
    488		}
    489		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
    490		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
    491		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
    492		break;
    493	case ELF_STUB_MILLI:
    494		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
    495		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
    496		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
    497		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/
    498
    499		stub->insns[0] |= reassemble_21(lrsel(value, addend));
    500		stub->insns[1] |= reassemble_14(rrsel(value, addend));
    501		break;
    502	case ELF_STUB_DIRECT:
    503		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
    504		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
    505		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
    506
    507		stub->insns[0] |= reassemble_21(lrsel(value, addend));
    508		stub->insns[1] |= reassemble_14(rrsel(value, addend));
    509		break;
    510	}
    511
    512#endif
    513
    514	return (Elf_Addr)stub;
    515}
    516
    517#ifndef CONFIG_64BIT
    518int apply_relocate_add(Elf_Shdr *sechdrs,
    519		       const char *strtab,
    520		       unsigned int symindex,
    521		       unsigned int relsec,
    522		       struct module *me)
    523{
    524	int i;
    525	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
    526	Elf32_Sym *sym;
    527	Elf32_Word *loc;
    528	Elf32_Addr val;
    529	Elf32_Sword addend;
    530	Elf32_Addr dot;
    531	Elf_Addr loc0;
    532	unsigned int targetsec = sechdrs[relsec].sh_info;
    533	//unsigned long dp = (unsigned long)$global$;
    534	register unsigned long dp asm ("r27");
    535
    536	pr_debug("Applying relocate section %u to %u\n", relsec,
    537	       targetsec);
    538	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
    539		/* This is where to make the change */
    540		loc = (void *)sechdrs[targetsec].sh_addr
    541		      + rel[i].r_offset;
    542		/* This is the start of the target section */
    543		loc0 = sechdrs[targetsec].sh_addr;
    544		/* This is the symbol it is referring to */
    545		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
    546			+ ELF32_R_SYM(rel[i].r_info);
    547		if (!sym->st_value) {
    548			printk(KERN_WARNING "%s: Unknown symbol %s\n",
    549			       me->name, strtab + sym->st_name);
    550			return -ENOENT;
    551		}
    552		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
    553		dot =  (Elf32_Addr)loc & ~0x03;
    554
    555		val = sym->st_value;
    556		addend = rel[i].r_addend;
    557
    558#if 0
    559#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
    560		pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
    561			strtab + sym->st_name,
    562			(uint32_t)loc, val, addend,
    563			r(R_PARISC_PLABEL32)
    564			r(R_PARISC_DIR32)
    565			r(R_PARISC_DIR21L)
    566			r(R_PARISC_DIR14R)
    567			r(R_PARISC_SEGREL32)
    568			r(R_PARISC_DPREL21L)
    569			r(R_PARISC_DPREL14R)
    570			r(R_PARISC_PCREL17F)
    571			r(R_PARISC_PCREL22F)
    572			"UNKNOWN");
    573#undef r
    574#endif
    575
    576		switch (ELF32_R_TYPE(rel[i].r_info)) {
    577		case R_PARISC_PLABEL32:
    578			/* 32-bit function address */
    579			/* no function descriptors... */
    580			*loc = fsel(val, addend);
    581			break;
    582		case R_PARISC_DIR32:
    583			/* direct 32-bit ref */
    584			*loc = fsel(val, addend);
    585			break;
    586		case R_PARISC_DIR21L:
    587			/* left 21 bits of effective address */
    588			val = lrsel(val, addend);
    589			*loc = mask(*loc, 21) | reassemble_21(val);
    590			break;
    591		case R_PARISC_DIR14R:
    592			/* right 14 bits of effective address */
    593			val = rrsel(val, addend);
    594			*loc = mask(*loc, 14) | reassemble_14(val);
    595			break;
    596		case R_PARISC_SEGREL32:
    597			/* 32-bit segment relative address */
    598			/* See note about special handling of SEGREL32 at
    599			 * the beginning of this file.
    600			 */
    601			*loc = fsel(val, addend);
    602			break;
    603		case R_PARISC_SECREL32:
    604			/* 32-bit section relative address. */
    605			*loc = fsel(val, addend);
    606			break;
    607		case R_PARISC_DPREL21L:
    608			/* left 21 bit of relative address */
    609			val = lrsel(val - dp, addend);
    610			*loc = mask(*loc, 21) | reassemble_21(val);
    611			break;
    612		case R_PARISC_DPREL14R:
    613			/* right 14 bit of relative address */
    614			val = rrsel(val - dp, addend);
    615			*loc = mask(*loc, 14) | reassemble_14(val);
    616			break;
    617		case R_PARISC_PCREL17F:
    618			/* 17-bit PC relative address */
    619			/* calculate direct call offset */
    620			val += addend;
    621			val = (val - dot - 8)/4;
    622			if (!RELOC_REACHABLE(val, 17)) {
    623				/* direct distance too far, create
    624				 * stub entry instead */
    625				val = get_stub(me, sym->st_value, addend,
    626					ELF_STUB_DIRECT, loc0, targetsec);
    627				val = (val - dot - 8)/4;
    628				CHECK_RELOC(val, 17);
    629			}
    630			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
    631			break;
    632		case R_PARISC_PCREL22F:
    633			/* 22-bit PC relative address; only defined for pa20 */
    634			/* calculate direct call offset */
    635			val += addend;
    636			val = (val - dot - 8)/4;
    637			if (!RELOC_REACHABLE(val, 22)) {
    638				/* direct distance too far, create
    639				 * stub entry instead */
    640				val = get_stub(me, sym->st_value, addend,
    641					ELF_STUB_DIRECT, loc0, targetsec);
    642				val = (val - dot - 8)/4;
    643				CHECK_RELOC(val, 22);
    644			}
    645			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
    646			break;
    647		case R_PARISC_PCREL32:
    648			/* 32-bit PC relative address */
    649			*loc = val - dot - 8 + addend;
    650			break;
    651
    652		default:
    653			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
    654			       me->name, ELF32_R_TYPE(rel[i].r_info));
    655			return -ENOEXEC;
    656		}
    657	}
    658
    659	return 0;
    660}
    661
    662#else
    663int apply_relocate_add(Elf_Shdr *sechdrs,
    664		       const char *strtab,
    665		       unsigned int symindex,
    666		       unsigned int relsec,
    667		       struct module *me)
    668{
    669	int i;
    670	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
    671	Elf64_Sym *sym;
    672	Elf64_Word *loc;
    673	Elf64_Xword *loc64;
    674	Elf64_Addr val;
    675	Elf64_Sxword addend;
    676	Elf64_Addr dot;
    677	Elf_Addr loc0;
    678	unsigned int targetsec = sechdrs[relsec].sh_info;
    679
    680	pr_debug("Applying relocate section %u to %u\n", relsec,
    681	       targetsec);
    682	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
    683		/* This is where to make the change */
    684		loc = (void *)sechdrs[targetsec].sh_addr
    685		      + rel[i].r_offset;
    686		/* This is the start of the target section */
    687		loc0 = sechdrs[targetsec].sh_addr;
    688		/* This is the symbol it is referring to */
    689		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
    690			+ ELF64_R_SYM(rel[i].r_info);
    691		if (!sym->st_value) {
    692			printk(KERN_WARNING "%s: Unknown symbol %s\n",
    693			       me->name, strtab + sym->st_name);
    694			return -ENOENT;
    695		}
    696		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
    697		dot = (Elf64_Addr)loc & ~0x03;
    698		loc64 = (Elf64_Xword *)loc;
    699
    700		val = sym->st_value;
    701		addend = rel[i].r_addend;
    702
    703#if 0
    704#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
    705		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
    706			strtab + sym->st_name,
    707			loc, val, addend,
    708			r(R_PARISC_LTOFF14R)
    709			r(R_PARISC_LTOFF21L)
    710			r(R_PARISC_PCREL22F)
    711			r(R_PARISC_DIR64)
    712			r(R_PARISC_SEGREL32)
    713			r(R_PARISC_FPTR64)
    714			"UNKNOWN");
    715#undef r
    716#endif
    717
    718		switch (ELF64_R_TYPE(rel[i].r_info)) {
    719		case R_PARISC_LTOFF21L:
    720			/* LT-relative; left 21 bits */
    721			val = get_got(me, val, addend);
    722			pr_debug("LTOFF21L Symbol %s loc %p val %llx\n",
    723			       strtab + sym->st_name,
    724			       loc, val);
    725			val = lrsel(val, 0);
    726			*loc = mask(*loc, 21) | reassemble_21(val);
    727			break;
    728		case R_PARISC_LTOFF14R:
    729			/* L(ltoff(val+addend)) */
    730			/* LT-relative; right 14 bits */
    731			val = get_got(me, val, addend);
    732			val = rrsel(val, 0);
    733			pr_debug("LTOFF14R Symbol %s loc %p val %llx\n",
    734			       strtab + sym->st_name,
    735			       loc, val);
    736			*loc = mask(*loc, 14) | reassemble_14(val);
    737			break;
    738		case R_PARISC_PCREL22F:
    739			/* PC-relative; 22 bits */
    740			pr_debug("PCREL22F Symbol %s loc %p val %llx\n",
    741			       strtab + sym->st_name,
    742			       loc, val);
    743			val += addend;
    744			/* can we reach it locally? */
    745			if (in_local(me, (void *)val)) {
    746				/* this is the case where the symbol is local
    747				 * to the module, but in a different section,
    748				 * so stub the jump in case it's more than 22
    749				 * bits away */
    750				val = (val - dot - 8)/4;
    751				if (!RELOC_REACHABLE(val, 22)) {
    752					/* direct distance too far, create
    753					 * stub entry instead */
    754					val = get_stub(me, sym->st_value,
    755						addend, ELF_STUB_DIRECT,
    756						loc0, targetsec);
    757				} else {
    758					/* Ok, we can reach it directly. */
    759					val = sym->st_value;
    760					val += addend;
    761				}
    762			} else {
    763				val = sym->st_value;
    764				if (strncmp(strtab + sym->st_name, "$$", 2)
    765				    == 0)
    766					val = get_stub(me, val, addend, ELF_STUB_MILLI,
    767						       loc0, targetsec);
    768				else
    769					val = get_stub(me, val, addend, ELF_STUB_GOT,
    770						       loc0, targetsec);
    771			}
    772			pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n",
    773			       strtab + sym->st_name, loc, sym->st_value,
    774			       addend, val);
    775			val = (val - dot - 8)/4;
    776			CHECK_RELOC(val, 22);
    777			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
    778			break;
    779		case R_PARISC_PCREL32:
    780			/* 32-bit PC relative address */
    781			*loc = val - dot - 8 + addend;
    782			break;
    783		case R_PARISC_PCREL64:
    784			/* 64-bit PC relative address */
    785			*loc64 = val - dot - 8 + addend;
    786			break;
    787		case R_PARISC_DIR64:
    788			/* 64-bit effective address */
    789			*loc64 = val + addend;
    790			break;
    791		case R_PARISC_SEGREL32:
    792			/* 32-bit segment relative address */
    793			/* See note about special handling of SEGREL32 at
    794			 * the beginning of this file.
    795			 */
    796			*loc = fsel(val, addend);
    797			break;
    798		case R_PARISC_SECREL32:
    799			/* 32-bit section relative address. */
    800			*loc = fsel(val, addend);
    801			break;
    802		case R_PARISC_FPTR64:
    803			/* 64-bit function address */
    804			if(in_local(me, (void *)(val + addend))) {
    805				*loc64 = get_fdesc(me, val+addend);
    806				pr_debug("FDESC for %s at %llx points to %llx\n",
    807				       strtab + sym->st_name, *loc64,
    808				       ((Elf_Fdesc *)*loc64)->addr);
    809			} else {
    810				/* if the symbol is not local to this
    811				 * module then val+addend is a pointer
    812				 * to the function descriptor */
    813				pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n",
    814				       strtab + sym->st_name,
    815				       loc, val);
    816				*loc64 = val + addend;
    817			}
    818			break;
    819
    820		default:
    821			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
    822			       me->name, ELF64_R_TYPE(rel[i].r_info));
    823			return -ENOEXEC;
    824		}
    825	}
    826	return 0;
    827}
    828#endif
    829
    830static void
    831register_unwind_table(struct module *me,
    832		      const Elf_Shdr *sechdrs)
    833{
    834	unsigned char *table, *end;
    835	unsigned long gp;
    836
    837	if (!me->arch.unwind_section)
    838		return;
    839
    840	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
    841	end = table + sechdrs[me->arch.unwind_section].sh_size;
    842	gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
    843
    844	pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
    845	       me->arch.unwind_section, table, end, gp);
    846	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
    847}
    848
    849static void
    850deregister_unwind_table(struct module *me)
    851{
    852	if (me->arch.unwind)
    853		unwind_table_remove(me->arch.unwind);
    854}
    855
    856int module_finalize(const Elf_Ehdr *hdr,
    857		    const Elf_Shdr *sechdrs,
    858		    struct module *me)
    859{
    860	int i;
    861	unsigned long nsyms;
    862	const char *strtab = NULL;
    863	const Elf_Shdr *s;
    864	char *secstrings;
    865	int symindex = -1;
    866	Elf_Sym *newptr, *oldptr;
    867	Elf_Shdr *symhdr = NULL;
    868#ifdef DEBUG
    869	Elf_Fdesc *entry;
    870	u32 *addr;
    871
    872	entry = (Elf_Fdesc *)me->init;
    873	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
    874	       entry->gp, entry->addr);
    875	addr = (u32 *)entry->addr;
    876	printk("INSNS: %x %x %x %x\n",
    877	       addr[0], addr[1], addr[2], addr[3]);
    878	printk("got entries used %ld, gots max %ld\n"
    879	       "fdescs used %ld, fdescs max %ld\n",
    880	       me->arch.got_count, me->arch.got_max,
    881	       me->arch.fdesc_count, me->arch.fdesc_max);
    882#endif
    883
    884	register_unwind_table(me, sechdrs);
    885
    886	/* haven't filled in me->symtab yet, so have to find it
    887	 * ourselves */
    888	for (i = 1; i < hdr->e_shnum; i++) {
    889		if(sechdrs[i].sh_type == SHT_SYMTAB
    890		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
    891			int strindex = sechdrs[i].sh_link;
    892			symindex = i;
    893			/* FIXME: AWFUL HACK
    894			 * The cast is to drop the const from
    895			 * the sechdrs pointer */
    896			symhdr = (Elf_Shdr *)&sechdrs[i];
    897			strtab = (char *)sechdrs[strindex].sh_addr;
    898			break;
    899		}
    900	}
    901
    902	pr_debug("module %s: strtab %p, symhdr %p\n",
    903	       me->name, strtab, symhdr);
    904
    905	if(me->arch.got_count > MAX_GOTS) {
    906		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
    907				me->name, me->arch.got_count, MAX_GOTS);
    908		return -EINVAL;
    909	}
    910
    911	kfree(me->arch.section);
    912	me->arch.section = NULL;
    913
    914	/* no symbol table */
    915	if(symhdr == NULL)
    916		return 0;
    917
    918	oldptr = (void *)symhdr->sh_addr;
    919	newptr = oldptr + 1;	/* we start counting at 1 */
    920	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
    921	pr_debug("OLD num_symtab %lu\n", nsyms);
    922
    923	for (i = 1; i < nsyms; i++) {
    924		oldptr++;	/* note, count starts at 1 so preincrement */
    925		if(strncmp(strtab + oldptr->st_name,
    926			      ".L", 2) == 0)
    927			continue;
    928
    929		if(newptr != oldptr)
    930			*newptr++ = *oldptr;
    931		else
    932			newptr++;
    933
    934	}
    935	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
    936	pr_debug("NEW num_symtab %lu\n", nsyms);
    937	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
    938
    939	/* find .altinstructions section */
    940	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
    941	for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
    942		void *aseg = (void *) s->sh_addr;
    943		char *secname = secstrings + s->sh_name;
    944
    945		if (!strcmp(".altinstructions", secname))
    946			/* patch .altinstructions */
    947			apply_alternatives(aseg, aseg + s->sh_size, me->name);
    948
    949#ifdef CONFIG_DYNAMIC_FTRACE
    950		/* For 32 bit kernels we're compiling modules with
    951		 * -ffunction-sections so we must relocate the addresses in the
    952		 *  ftrace callsite section.
    953		 */
    954		if (symindex != -1 && !strcmp(secname, FTRACE_CALLSITE_SECTION)) {
    955			int err;
    956			if (s->sh_type == SHT_REL)
    957				err = apply_relocate((Elf_Shdr *)sechdrs,
    958							strtab, symindex,
    959							s - sechdrs, me);
    960			else if (s->sh_type == SHT_RELA)
    961				err = apply_relocate_add((Elf_Shdr *)sechdrs,
    962							strtab, symindex,
    963							s - sechdrs, me);
    964			if (err)
    965				return err;
    966		}
    967#endif
    968	}
    969	return 0;
    970}
    971
    972void module_arch_cleanup(struct module *mod)
    973{
    974	deregister_unwind_table(mod);
    975}
    976
    977#ifdef CONFIG_64BIT
    978void *dereference_module_function_descriptor(struct module *mod, void *ptr)
    979{
    980	unsigned long start_opd = (Elf64_Addr)mod->core_layout.base +
    981				   mod->arch.fdesc_offset;
    982	unsigned long end_opd = start_opd +
    983				mod->arch.fdesc_count * sizeof(Elf64_Fdesc);
    984
    985	if (ptr < (void *)start_opd || ptr >= (void *)end_opd)
    986		return ptr;
    987
    988	return dereference_function_descriptor(ptr);
    989}
    990#endif